Search results for: Plug Flow Reactor
1316 Investigation and Congestion Management to Solvethe Over-Load Problem of Shiraz Substation in FREC
Authors: M Nayeripour, E. Azad, A. Roosta, T. Niknam
Abstract:
In this paper, the transformers over-load problem of Shiraz substation in Fars Regional Electric Company (FREC) is investigated for a period of three years plan. So the suggestions for using phase shifting transformer (PST) and unified power flow controller (UPFC) in order to solve this problem are examined in details and finally, some economical and practical designs will be given in order to solve the related problems. Practical consideration and using the basic and fundamental concept of powers in transmission lines in order to find the economical design are the main advantages of this research. The simulation results of the integrated overall system with different designs compare them base on economical and practical aspects to solve the over-load and loss-reduction.
Keywords: Congestion management, Phase shifting transformer(PST), Unified power flow controller (UPFC), Transmission lines.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20061315 Design of Power System Stabilizer with Neuro-Fuzzy UPFC Controller
Authors: U. Ramesh Babu, V. Vijay Kumar Reddy, S. Tara Kalyani
Abstract:
The growth in the demand of electrical energy is leading to load on the Power system which increases the occurrence of frequent oscillations in the system. The reason for the oscillations is due to the lack of damping torque which is required to dominate the disturbances of Power system. By using FACT devices, such as Unified Power Flow Controller (UPFC) can control power flow, reduce sub-synchronous resonances and increase transient stability. Hence, UPFC is used to damp the oscillations occurred in Power system. This research focuses on adapting the neuro fuzzy controller for the UPFC design by connecting the infinite bus (SMIB - Single machine Infinite Bus) to a linearized model of synchronous machine (Heffron-Phillips) in the power system. This model gains the capability to improve the transient stability and to damp the oscillations of the system.Keywords: Power System, UPFC, (ANFIS) Adaptive Neuro Fuzzy Inference System, transient, Low frequency oscillations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20081314 Efficient Design Optimization of Multi-State Flow Network for Multiple Commodities
Authors: Yu-Cheng Chou, Po Ting Lin
Abstract:
The network of delivering commodities has been an important design problem in our daily lives and many transportation applications. The delivery performance is evaluated based on the system reliability of delivering commodities from a source node to a sink node in the network. The system reliability is thus maximized to find the optimal routing. However, the design problem is not simple because (1) each path segment has randomly distributed attributes; (2) there are multiple commodities that consume various path capacities; (3) the optimal routing must successfully complete the delivery process within the allowable time constraints. In this paper, we want to focus on the design optimization of the Multi-State Flow Network (MSFN) for multiple commodities. We propose an efficient approach to evaluate the system reliability in the MSFN with respect to randomly distributed path attributes and find the optimal routing subject to the allowable time constraints. The delivery rates, also known as delivery currents, of the path segments are evaluated and the minimal-current arcs are eliminated to reduce the complexity of the MSFN. Accordingly, the correct optimal routing is found and the worst-case reliability is evaluated. It has been shown that the reliability of the optimal routing is at least higher than worst-case measure. Two benchmark examples are utilized to demonstrate the proposed method. The comparisons between the original and the reduced networks show that the proposed method is very efficient.
Keywords: Multiple Commodities, Multi-State Flow Network (MSFN), Time Constraints, Worst-Case Reliability (WCR)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14581313 Research and Application of Consultative Committee for Space Data Systems Wireless Communications Standards for Spacecraft
Authors: Cuitao Zhang, Xiongwen He
Abstract:
According to the new requirements of the future spacecraft, such as networking, modularization and non-cable, this paper studies the CCSDS wireless communications standards, and focuses on the low data-rate wireless communications for spacecraft monitoring and control. The application fields and advantages of wireless communications are analyzed. Wireless communications technology has significant advantages in reducing the weight of the spacecraft, saving time in spacecraft integration, etc. Based on this technology, a scheme for spacecraft data system is put forward. The corresponding block diagram and key wireless interface design of the spacecraft data system are given. The design proposal of the wireless node and information flow of the spacecraft are also analyzed. The results show that the wireless communications scheme is reasonable and feasible. The wireless communications technology can meet the future spacecraft demands in networking, modularization and non-cable.
Keywords: CCSDS standards, information flow, non-cable, spacecraft, wireless communications.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9511312 CSTR Control by Using Model Reference Adaptive Control and PSO
Authors: Neha Khanduja
Abstract:
This paper presents a comparative analysis of continuously stirred tank reactor (CSTR) control based on adaptive control and optimal tuning of PID control based on particle swarm optimization. In the design of adaptive control, Model reference adaptive control (MRAC) scheme is used, in which the adaptation law have been developed by MIT rule & Lyapunov’s rule. In PSO control parameters of PID controller is tuned by using the concept of particle swarm optimization to get optimized operating point for minimum integral square error (ISE) condition. The results show the adjustment of PID parameters converting into the optimal operating point and the good control response can be obtained by the PSO technique.Keywords: Model reference adaptive control (MRAC), optimal control, particle swarm optimization (PSO).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23481311 Influence of Reaction Temperature and Water Content on Wheat Straw Pyrolysis
Authors: N.Ibrahim, Peter A. Jensen, K. Dam-Johansen, Roshafima.R. Ali, Rafiziana.M. Kasmani
Abstract:
The aim of this study was to investigate the influence of reaction temperature and wheat straw moisture content on the pyrolysis product yields, in the temperature range of 475-575 °C. Samples of straw with moisture contents from 1.5 wt % to 15.0 wt % were fed to a bench scale Pyrolysis Centrifuge Reactor (PCR). The experimental results show that the changes in straw moisture content have no significant effect on the distribution of pyrolysis product yields. The maximum bio-oil yields approximately 60 (wt %, on dry ash free feedstock basis) was observed around 525 °C - 550 °C for all straw moisture levels. The water content in the wet straw bio-oil was the highest. The heating value of bio-oil and solid char were measured and the percentages of its energy distribution were calculated. The energy distributions of bio-oil, char and gas were 56- 69 % 24-33 %, and 2-19 %, respectively.Keywords: Flash pyrolysis, moisture content, wheat straw, biooil.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33101310 Research on the Aeration Systems’ Efficiency of a Lab-Scale Wastewater Treatment Plant
Authors: Oliver Marunțălu, Elena Elisabeta Manea, Lăcrămioara Diana Robescu, Mihai Necșoiu, Gheorghe Lăzăroiu, Dana Andreya Bondrea
Abstract:
In order to obtain efficient pollutants removal in small-scale wastewater treatment plants, uniform water flow has to be achieved. The experimental setup, designed for treating high-load wastewater (leachate), consists of two aerobic biological reactors and a lamellar settler. Both biological tanks were aerated by using three different types of aeration systems - perforated pipes, membrane air diffusers and tube ceramic diffusers. The possibility of homogenizing the water mass with each of the air diffusion systems was evaluated comparatively. The oxygen concentration was determined by optical sensors with data logging. The experimental data was analyzed comparatively for all three different air dispersion systems aiming to identify the oxygen concentration variation during different operational conditions. The Oxygenation Capacity was calculated for each of the three systems and used as performance and selection parameter. The global mass transfer coefficients were also evaluated as important tools in designing the aeration system. Even though using the tubular porous diffusers leads to higher oxygen concentration compared to the perforated pipe system (which provides medium-sized bubbles in the aqueous solution), it doesn’t achieve the threshold limit of 80% oxygen saturation in less than 30 minutes. The study has shown that the optimal solution for the studied configuration was the radial air diffusers which ensure an oxygen saturation of 80% in 20 minutes. An increment of the values was identified when the air flow was increased.Keywords: Flow, aeration, bioreactor, oxygen concentration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24651309 Determining the Best Fitting Distributions for Minimum Flows of Streams in Gediz Basin
Authors: Naci Büyükkaracığan
Abstract:
Today, the need for water sources is swiftly increasing due to population growth. At the same time, it is known that some regions will face with shortage of water and drought because of the global warming and climate change. In this context, evaluation and analysis of hydrological data such as the observed trends, drought and flood prediction of short term flow has great deal of importance. The most accurate selection probability distribution is important to describe the low flow statistics for the studies related to drought analysis. As in many basins In Turkey, Gediz River basin will be affected enough by the drought and will decrease the amount of used water. The aim of this study is to derive appropriate probability distributions for frequency analysis of annual minimum flows at 6 gauging stations of the Gediz Basin. After applying 10 different probability distributions, six different parameter estimation methods and 3 fitness test, the Pearson 3 distribution and general extreme values distributions were found to give optimal results.
Keywords: Gediz Basin, goodness-of-fit tests, Minimum flows, probability distribution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25111308 Investigation into Heterotrophic Activities and Algal Biomass in Surface Flow Stormwater Wetlands
Authors: Wendong Tao
Abstract:
Stormwater wetlands have been mainly designed in an empirical approach for water quality improvement, with little quantitative understanding of the internal microbial processes. This study investigated into heterotrophic bacterial production rate, heterotrophic bacterial mineralization percentage, and algal biomass in hypertrophic and eutrophic surface flow stormwater wetlands. Compared to a nearby wood leachate treatment wetland, the stormwater wetlands had much higher chlorophyll-a concentrations. The eutrophic stormwater wetland had improved water quality, whereas the hypertrophic stormwater wetland had degraded water quality. Heterotrophic bacterial activities in water were limited in the stormwater wetlands due to competition of algal growth for nutrients. The relative contribution of biofilms to the overall heterotrophic activities was higher in the stormwater wetlands than that in the wood leachate treatment wetland.Keywords: chlorophyll-a, constructed wetland, heterotrophicproduction, mineralization, stormwater
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14921307 Human Intraocular Thermal Field in Action with Different Boundary Conditions Considering Aqueous Humor and Vitreous Humor Fluid Flow
Authors: Dara Singh, Keikhosrow Firouzbakhsh, Mohammad Taghi Ahmadian
Abstract:
In this study, a validated 3D finite volume model of human eye is developed to study the fluid flow and heat transfer in the human eye at steady state conditions. For this purpose, discretized bio-heat transfer equation coupled with Boussinesq equation is analyzed with different anatomical, environmental, and physiological conditions. It is demonstrated that the fluid circulation is formed as a result of thermal gradients in various regions of eye. It is also shown that posterior region of the human eye is less affected by the ambient conditions compared to the anterior segment which is sensitive to the ambient conditions and also to the way the gravitational field is defined compared to the geometry of the eye making the circulations and the thermal field complicated in transient states. The effect of variation in material and boundary conditions guides us to the conclusion that thermal field of a healthy and non-healthy eye can be distinguished via computer simulations.
Keywords: Bio-heat, Boussinesq, conduction, convection, eye.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8801306 Photocatalytic Degradation of Produced Water Hydrocarbon of an Oil Field by Using Ag-Doped TiO2 Nanoparticles
Authors: Hamed Bazrafshan, Saeideh Dabirnia, Zahra Alipour Tesieh, Samaneh Alavi, Bahram Dabir
Abstract:
In this study, the removal of pollutants of a real produced water sample from an oil reservoir (a light oil reservoir), using a photocatalytic degradation process in a cylindrical glass reactor, was investigated. Using TiO2 and Ag-TiO2 in slurry form, the photocatalytic degradation was studied by measuring the Chemical Oxygen Demand (COD) parameter, qualitative analysis, and GC-MS. At first, optimization of the parameters on photocatalytic degradation of hydrocarbon pollutants in real produced water, using TiO2 nanoparticles as photocatalysts under UV light, was carried out applying response surface methodology. The results of the design of the experiment showed that the optimum conditions were at a catalyst concentration of 1.14 g/lit and pH of 2.67, and the percentage of COD removal was 72.65%.
Keywords: Photocatalyst, Ag-doped, TiO2, produced water, nanoparticles.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5371305 Semi-Lagrangian Method for Advection Equation on GPU in Unstructured R3 Mesh for Fluid Dynamics Application
Authors: Irakli V. Gugushvili, Nickolay M. Evstigneev
Abstract:
Numerical integration of initial boundary problem for advection equation in 3 ℜ is considered. The method used is conditionally stable semi-Lagrangian advection scheme with high order interpolation on unstructured mesh. In order to increase time step integration the BFECC method with limiter TVD correction is used. The method is adopted on parallel graphic processor unit environment using NVIDIA CUDA and applied in Navier-Stokes solver. It is shown that the calculation on NVIDIA GeForce 8800 GPU is 184 times faster than on one processor AMDX2 4800+ CPU. The method is extended to the incompressible fluid dynamics solver. Flow over a Cylinder for 3D case is compared to the experimental data.
Keywords: Advection equations, CUDA technology, Flow overthe 3D Cylinder, Incompressible Pressure Projection Solver, Parallel computation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28591304 Optimizing Network Latency with Fast Path Assignment for Incoming Flows
Abstract:
Various flows in the network require to go through different types of middlebox. The improper placement of network middlebox and path assignment for flows could greatly increase the network latency and also decrease the performance of network. Minimizing the total end to end latency of all the ows requires to assign path for the incoming flows. In this paper, the flow path assignment problem in regard to the placement of various kinds of middlebox is studied. The flow path assignment problem is formulated to a linear programming problem, which is very time consuming. On the other hand, a naive greedy algorithm is studied. Which is very fast but causes much more latency than the linear programming algorithm. At last, the paper presents a heuristic algorithm named FPA, which takes bottleneck link information and estimated bandwidth occupancy into consideration, and achieves near optimal latency in much less time. Evaluation results validate the effectiveness of the proposed algorithm.Keywords: Latency, Fast path assignment, Bottleneck link.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6021303 Development of a Telemedical Network Supporting an Automated Flow Cytometric Analysis for the Clinical Follow-up of Leukaemia
Authors: Claude Takenga, Rolf-Dietrich Berndt, Erling Si, Markus Diem, Guohui Qiao, Melanie Gau, Michael Brandstoetter, Martin Kampel, Michael Dworzak
Abstract:
In patients with acute lymphoblastic leukaemia (ALL), treatment response is increasingly evaluated with minimal residual disease (MRD) analyses. Flow Cytometry (FCM) is a fast and sensitive method to detect MRD. However, the interpretation of these multi-parametric data requires intensive operator training and experience. This paper presents a pipeline-software, as a ready-to-use FCM-based MRD-assessment tool for the daily clinical practice for patients with ALL. The new tool increases accuracy in assessment of FCM-MRD in samples which are difficult to analyse by conventional operator-based gating since computer-aided analysis potentially has a superior resolution due to utilization of the whole multi-parametric FCM-data space at once instead of step-wise, two-dimensional plot-based visualization. The system developed as a telemedical network reduces the work-load and lab-costs, staff-time needed for training, continuous quality control, operator-based data interpretation. It allows dissemination of automated FCM-MRD analysis to medical centres which have no established expertise for the benefit of an even larger community of diseased children worldwide. We established a telemedical network system for analysis and clinical follow-up and treatment monitoring of Leukaemia. The system is scalable and adapted to link several centres and laboratories worldwide.Keywords: Data security, flow cytometry, leukaemia, telematics platform, telemedicine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15771302 Influence of Cavity Length on Forward-facing Cavity and Opposing Jet Combined Thermal Protection System Cooling Efficiency
Authors: Hai-bo Lu, Wei-qiang Liu
Abstract:
A numerical study on the influence of forward-facing cavity length upon forward-facing cavity and opposing jet combined thermal protection system (TPS) cooling efficiency under hypersonic flow is conducted, by means of which the flow field parameters, heat flux distribution along the outer body surface are obtained. The numerical simulation results are validated by experiments and the cooling effect of the combined TPS with different cavity length is analyzed. The numerical results show that the combined configuration dose well in cooling the nose of the hypersonic vehicle. The deeper the cavity is, the weaker the heat flux is. The recirculation region plays a key role for the reduction of the aerodynamic heating.Keywords: Thermal protection, hypersonic vehicle, aerodynamic heating, forward-facing cavity, opposing jet
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17371301 Design and Development of Pico-hydro Generation System for Energy Storage Using Consuming Water Distributed to Houses
Authors: H. Zainuddin, M. S. Yahaya, J. M. Lazi, M. F. M. Basar, Z. Ibrahim
Abstract:
This paper describes the design and development of pico-hydro generation system using consuming water distributed to houses. Water flow in the domestic pipes has kinetic energy that potential to generate electricity for energy storage purposes in addition to the routine activities such as laundry, cook and bathe. The inherent water pressure and flow inside the pipe from utility-s main tank that used for those usual activities is also used to rotate small scale hydro turbine to drive a generator for electrical power generation. Hence, this project is conducted to develop a small scale hydro generation system using consuming water distributed to houses as an alternative electrical energy source for residential use.
Keywords: Alternative Energy, Energy storage, Permanent Magnet DC Generator, Pico-Hydro Generation System.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 83501300 Potential cIBR-Conjugated PLGA Nanoparticles for Selective Targeting to Leukemic Cells
Authors: Rungsinee Phongpradist, Sawitree Chiampanichayakul, Singkome Tima, Teruna J. Siahaan, Cory J. Berkland, Songyot Anuchapreeda, Chadarat Ampasavate
Abstract:
The expression of LFA-1 diverges from the physiological condition, thus active targeting carrier can provide the benefits from difference into LFA-1 expression in various conditions. Here, the selectivity of cIBR-conjugated nanoparticles (cIBR-NPs), in terms of uptake, was investigated using PBMCs, Mixed PBMCMolt- 3 cells and Molt-3 cells. The expressions of LFA-1 on Molt-3 cells, from flow cytometry and Western blot, possessed the highest level whereas PBMCs showed the lowest level. The kinetic uptake profiles of cIBR-NPs were obtained by flow cytometry, which the degree of cellular uptake presented a similar trend with the level of LFA-1 indicating the influence of LFA-1 expression on the cellular uptake of cIBR-NPs. The conformation of LFA-1 had a slight effect on the cellular uptake of cIBR-NPs. Overall we demonstrated that cIBR-NPs enhanced cellular uptake and improved the selectivity of drug carriers to LFA-1 on the leukemia cells, which related with the order of LFA-1 expression.Keywords: cIBR, LFA-1, Molt-3, PBMCs
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19441299 Gasoline and Diesel Production via Fischer- Tropsch Synthesis over Cobalt Based Catalyst
Authors: N. Choosri, N. Swadchaipong, T. Utistham, U. W. Hartley
Abstract:
Performance of a cobalt doped sol-gel derived silica (Co/SiO2) catalyst for Fischer–Tropsch synthesis (FTS) in slurryphase reactor was studied using paraffin wax as initial liquid media. The reactive mixed gas, hydrogen (H2) and carbon monoxide (CO) in a molar ratio of 2:1, was flowed at 50 ml/min. Braunauer-Emmett- Teller (BET) surface area and X-ray diffraction (XRD) techniques were employed to characterize both the specific surface area and crystallinity of the catalyst, respectively. The reduction behavior of Co/SiO2 catalyst was investigated using the Temperature Programmmed Reduction (TPR) method. Operating temperatures were varied from 493 to 533K to find the optimum conditions to maximize liquid fuels production, gasoline and diesel.
Keywords: Fischer Tropsch synthesis, slurry phase, Co/SiO2, operating temperature.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 41211298 Optimization of Diverter Box Configuration in a V94.2 Gas Turbine Exhaust System using Numerical Simulation
Authors: A. Mohajer, A. Noroozi, S. Norouzi
Abstract:
The bypass exhaust system of a 160 MW combined cycle has been modeled and analyzed using numerical simulation in 2D prospective. Analysis was carried out using the commercial numerical simulation software, FLUENT 6.2. All inputs were based on the technical data gathered from working conditions of a Siemens V94.2 gas turbine, installed in the Yazd power plant. This paper deals with reduction of pressure drop in bypass exhaust system using turning vanes mounted in diverter box in order to alleviate turbulent energy dissipation rate above diverter box. The geometry of such turning vanes has been optimized based on the flow pattern at diverter box inlet. The results show that the use of optimized turning vanes in diverter box can improve the flow pattern and eliminate vortices around sharp edges just before the silencer. Furthermore, this optimization could decrease the pressure drop in bypass exhaust system and leads to higher plant efficiency.
Keywords: Numerical simulation, Diverter box, Turning vanes, Exhaust system
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28111297 Increase of Sensitivity in 3D Suspended Polymeric Microfluidic Platform through Lateral Misalignment
Authors: Ehsan Yazdanpanah Moghadam, Muthukumaran Packirisamy
Abstract:
In the present study, a design of the suspended polymeric microfluidic platform is introduced that is fabricated with three polymeric layers. Changing the microchannel plane to be perpendicular to microcantilever plane, drastically decreases moment of inertia in that direction. In addition, the platform is made of polymer (around five orders of magnitude less compared to silicon). It causes significant increase in the sensitivity of the cantilever deflection. Next, although the dimensions of this platform are constant, by misaligning the embedded microchannels laterally in the suspended microfluidic platform, the sensitivity can be highly increased. The investigation is studied on four fluids including water, seawater, milk, and blood for flow ranges from low rate of 5 to 70 µl/min to obtain the best design with the highest sensitivity. The best design in this study shows the sensitivity increases around 50% for water, seawater, milk, and blood at the flow rate of 70 µl/min by just misaligning the embedded microchannels in the suspended polymeric microfluidic platform.Keywords: Microfluidic, biosensor, MEMS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9001296 Comparison of Chemical Coagulation and Electrocoagulation for Boron Removal from Synthetic Wastewater Using Aluminium
Authors: Kartikaningsih Danis, Yao-Hui Huang
Abstract:
Various techniques including conventional and advanced have been employed for the boron treatment from water and wastewater. The electrocoagulation involves an electrolytic reactor for coagulation/flotation with aluminium as anode and cathode. There is aluminium as coagulant to be used for removal which may induce secondary pollution in chemical coagulation. The purpose of this study is to investigate and compare the performance between electrocoagulation and chemical coagulation on boron removal from synthetic wastewater. The effect of different parameters, such as pH reaction, coagulant dosage, and initial boron concentration were examined. The results show that the boron removal using chemical coagulation was lower. At the optimum condition (e.g. pH 8 and 0.8 mol coagulant dosage), boron removal efficiencies for chemical coagulation and electrocoagulation were 61% and 91%, respectively. In addition, the electrocoagulation needs no chemical reagents and makes the boron treatment easy for application.
Keywords: Electrocoagulation, chemical coagulation, aluminum electrode, boron removal.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17481295 Redesigning Business Processes: A Method Based on Simulation and Process Mining Techniques
Authors: Zahra Mohammadnazari, Fateme Rostambeygi, Fatemeh Dehrouyeh, Hwang Ki-Soon, Amir Aghsami
Abstract:
Corporations have always prioritized efforts to examine and improve processes. Various metrics, such as the cost and time required to implement the process and can be specified in this regard. Process improvement can be defined as an improvement of these indicators. This is accomplished by looking at prospective adjustments to the current executive process model or the resources allotted to it. Research has been conducted in this paper to the improve the procurement process and aims to explore assessment prospects in the project using a combination of process mining and simulation (benefiting from Play-In and Play-Out methodologies). To run the simulation, we will need to complete the control flow diagram, institution settings, resource settings, and activity settings. The process of mining event logs yields the process control flow. However, both the entry of institutions and the distribution of resources must be modeled. The rate of admission of institutions and the distribution of time for the implementation of activities will be determined in the next step.
Keywords: Business reengineering, Petri net, process-based simulation, process mining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4941294 Numerical Analysis of Turbulent Natural Convection in a Square Cavity using Large- Eddy Simulation in Lattice Boltzmann Method
Authors: H. Sajjadi, M. Gorji, GH.R. Kefayati, D. D. Ganji, M. Shayan Nia
Abstract:
In this paper Lattice Boltzmann simulation of turbulent natural convection with large-eddy simulations (LES) in a square cavity which is filled by water has been investigated. The present results are validated by finds of other investigations which have been done with different numerical methods. Calculations were performed for high Rayleigh numbers of Ra=108 and 109. The results confirm that this method is in acceptable agreement with other verifications of such a flow. In this investigation is tried to present Large-eddy turbulence flow model by Lattice Boltzmann Method (LBM) with a clear and simple statement. Effects of increase in Rayleigh number are displayed on streamlines, isotherm counters and average Nusselt number. Result shows that the average Nusselt number enhances with growth of the Rayleigh numbers.Keywords: Turbulent natural convection, Large Eddy Simulation, Lattice Boltzmann Method
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20281293 Force Statistics and Wake Structure Mechanism of Flow around a Square Cylinder at Low Reynolds Numbers
Authors: Shams-Ul-Islam, Waqas Sarwar Abbasi, Hamid Rahman
Abstract:
Numerical investigation of flow around a square cylinder are presented using the multi-relaxation-time lattice Boltzmann methods at different Reynolds numbers. A detail analysis are given in terms of time-trace analysis of drag and lift coefficients, power spectra analysis of lift coefficient, vorticity contours visualizations, streamlines and phase diagrams. A number of physical quantities mean drag coefficient, drag coefficient, Strouhal number and root-mean-square values of drag and lift coefficients are calculated and compared with the well resolved experimental data and numerical results available in open literature. The Reynolds numbers affected the physical quantities.
Keywords: Code validation, Force statistics, Multi-relaxation-time lattice Boltzmann method, Reynolds numbers, Square cylinder.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31321292 Numerical Predictionon the Influence of Mixer on the Performance of Urea-SCR System
Authors: Kyoungwoo Park, Chol-Ho Hong, Sedoo Oh, Seongjoon Moon
Abstract:
Diesel vehicle should be equipped with emission after-treatment devices as NOx reduction catalyst and particulate filtersin order to meet more stringer diesel emission standard. Urea-SCR is being developed as the most efficient method of reducing NOx emissions in the after-treatment devices of diesel engines, and recent studies have begun to mount the Urea-SCR device for diesel passenger cars and light duty vehicles. In the present study, the effects of the mixer on the efficiency of urea-SCR System (i.e., NH3uni- formityindex (NH3 UI) is investigated by predicting the transport phenomena in the urea-SCR system. The three dimensional Eulerian-Lagrangian CFD simulationfor internal flow and spray characteristics in front of SCR is carried out by using STAR-CCM+ 7.06 code. In addition, the paper proposes a method to minimize the wall-wetting around the urea injector in order to prevent injector blocks caused by solid urea loading.
Keywords: Computational fluid dynamics, Multi-phase flow, NH3 uniformity index, Urea-SCR system, Urea-water-solution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 36471291 Simulations of Laminar Liquid Flows through Superhydrophobic Micro-Pipes
Authors: Mohamed E. Eleshaky
Abstract:
This paper investigates the dynamic behavior of laminar water flows inside superhydrophobic micro-pipes patterned with square micro-posts features under different operating conditions. It also investigates the effects of air fraction and Reynolds number on the frictional performance of these pipes. Rather than modeling the air-water interfaces of superhydrophobic as a flat inflexible surface, a transient, incompressible, three-dimensional, volume-of-fluid (VOF) methodology has been employed to continuously track the air–water interface shape inside micro-pipes. Also, the entrance effects on the flow field have been taken into consideration. The results revealed the strong dependency of the frictional performance on the air fractions and Reynolds number. The frictional resistance reduction becomes increasingly more significant at large air fractions and low Reynolds numbers. Increasing Reynolds number has an adverse effect on the frictional resistance reduction.
Keywords: Drag reduction, laminar flow in micropipes, numerical simulation, superhyrophobic surfaces, microposts.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19551290 Effect of Blade Number on a Straight-Bladed Vertical-Axis Darreius Wind Turbine
Authors: Marco Raciti Castelli, Stefano De Betta, Ernesto Benini
Abstract:
This paper presents a mean for reducing the torque variation during the revolution of a vertical-axis wind turbine (VAWT) by increasing the blade number. For this purpose, twodimensional CDF analysis have been performed on a straight-bladed Darreius-type rotor. After describing the computational model, a complete campaign of simulations based on full RANS unsteady calculations is proposed for a three, four and five-bladed rotor architecture characterized by a NACA 0025 airfoil. For each proposed rotor configuration, flow field characteristics are investigated at several values of tip speed ratio, allowing a quantification of the influence of blade number on flow geometric features and dynamic quantities, such as rotor torque and power. Finally, torque and power curves are compared for the analyzed architectures, achieving a quantification of the effect of blade number on overall rotor performance.Keywords: CFD, VAWT, NACA 0021, blade number
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 53581289 Unsteady 3D Post-Stall Aerodynamics Accounting for Effective Loss in Camber Due to Flow Separation
Authors: Aritras Roy, Rinku Mukherjee
Abstract:
The current study couples a quasi-steady Vortex Lattice Method and a camber correcting technique, ‘Decambering’ for unsteady post-stall flow prediction. The wake is force-free and discrete such that the wake lattices move with the free-stream once shed from the wing. It is observed that the time-averaged unsteady coefficient of lift sees a relative drop at post-stall angles of attack in comparison to its steady counterpart for some angles of attack. Multiple solutions occur at post-stall and three different algorithms to choose solutions in these regimes show both unsteadiness and non-convergence of the iterations. The distribution of coefficient of lift on the wing span also shows sawtooth. Distribution of vorticity changes both along span and in the direction of the free-stream as the wake develops over time with distinct roll-up, which increases with time.Keywords: Post-stall, unsteady, wing, aerodynamics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9991288 The Role of Nozzle-Exit Conditions on the Flow Field of a Plane Jet
Authors: Ravinesh C. Deo
Abstract:
This article reviews the role of nozzle-exit conditions on the flow field of a plane jet. The jet issuing from a sharp-edged orifice plate at a Reynolds number (Re=18000) with nozzle aspect ratio (AR=72) exhibits the greatest shear-layer instabilities, highest entrainment and jet-spreading rates compared to the radially contoured nozzle. The growth rate of the shear-layer is the highest for the orifice-jet although this property could be amplified for larger Re or AR. A local peak in turbulent energy is found at x»10h. The peak appears to be elevated for an orifice-jet with lower Re or AR. The far-field energy sustained by the orifice-jet exceeds the contoured case although a higher Re and AR may enhance this value. The spectra demonstrated the largest eddy structures for the contoured nozzle. However, the frequency of coherent eddies is higher for the orifice-jet, with a larger magnitude achievable for lower Re and AR.
Keywords: Plane jet, Reynolds number, nozzle-exit conditions, nozzle geometry, aspect ratio.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28311287 The Gasification of Acetone via Partial Oxidation in Supercritical Water
Authors: Shyh-Ming Chern, Kai-Ting Hsieh
Abstract:
Organic solvents find various applications in many industrial sectors and laboratories as dilution solvents, dispersion solvents, cleaners and even lubricants. Millions of tons of spent organic solvents (SOS) are generated each year worldwide, prompting the need for more efficient, cleaner and safer methods for the treatment and resource recovery of SOS. As a result, acetone, selected as a model compound for SOS, was gasified in supercritical water to assess the feasibility of resource recovery of SOS by means of supercritical water processes. Experiments were conducted with an autoclave reactor. Gaseous product is mainly consists of H2, CO, CO2 and CH4. The effects of three major operating parameters, the reaction temperature, from 673 to 773K, the dosage of oxidizing agent, from 0.3 to 0.5 stoichiometric oxygen, and the concentration of acetone in the feed, 0.1 and 0.2M, on the product gas composition, yield and heating value were evaluated with the water density fixed at about 0.188g/ml.
Keywords: Acetone, gasification, SCW, supercritical water.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2146