Search results for: Electric double layer
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1902

Search results for: Electric double layer

672 The Layered Transition Metal Dichalcogenides as Materials for Storage Clean Energy: Ab initio Investigations

Authors: S. Meziane, H. I. Faraoun, C. Esling

Abstract:

Transition metal dichalcogenides have potential applications in power generation devices that convert waste heat into electric current by the so-called Seebeck and Hall effects thus providing an alternative energy technology to reduce the dependence on traditional fossil fuels. In this study, the thermoelectric properties of 1T and 2HTaX2 (X= S or Se) dichalcogenide superconductors have been computed using the semi-classical Boltzmann theory. Technologically, the task is to fabricate suitable materials with high efficiency. It is found that 2HTaS2 possesses the largest value of figure of merit ZT= 1.27 at 175 K. From a scientific point of view, we aim to model the underlying materials properties and in particular the transport phenomena as mediated by electrons and lattice vibrations responsible for superconductivity, Charge Density Waves (CDW) and metal/insulator transitions as function of temperature. The goal of the present work is to develop an understanding of the superconductivity of these selected materials using the transport properties at the fundamental level.

Keywords: Ab initio, high efficiency, power generation devices, transition metal dichalcogenides.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1785
671 Stability of Functionally Graded Beams with Piezoelectric Layers Based on the First Order Shear Deformation Theory

Authors: M. Karami Khorramabadi, A. R. Nezamabadi

Abstract:

Stability of functionally graded beams with piezoelectric layers subjected to axial compressive load that is simply supported at both ends is studied in this paper. The displacement field of beam is assumed based on first order shear deformation beam theory. Applying the Hamilton's principle, the governing equation is established. The influences of applied voltage, dimensionless geometrical parameter, functionally graded index and piezoelectric thickness on the critical buckling load of beam are presented. To investigate the accuracy of the present analysis, a compression study is carried out with a known data.

Keywords: Stability, Functionally graded beam, First order shear deformation theory, Piezoelectric layer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1672
670 Fault Detection via Stability Analysis for the Hybrid Control Unit of HEVs

Authors: Kyogun Chang, Yoon Bok Lee

Abstract:

Fault detection determines faultexistence and detecting time. This paper discusses two layered fault detection methods to enhance the reliability and safety. Two layered fault detection methods consist of fault detection methods of component level controllers and system level controllers. Component level controllers detect faults by using limit checking, model-based detection, and data-driven detection and system level controllers execute detection by stability analysis which can detect unknown changes. System level controllers compare detection results via stability with fault signals from lower level controllers. This paper addresses fault detection methods via stability and suggests fault detection criteria in nonlinear systems. The fault detection method applies tothe hybrid control unit of a military hybrid electric vehicleso that the hybrid control unit can detect faults of the traction motor.

Keywords: Two Layered Fault Detection, Stability Analysis, Fault-Tolerant Control

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1711
669 Performance Evaluation of Distributed and Co-Located MIMO LTE Physical Layer Using Wireless Open-Access Research Platform

Authors: Ishak Suleiman, Ahmad Kamsani Samingan, Yeoh Chun Yeow, Abdul Aziz Bin Abdul Rahman

Abstract:

In this paper, we evaluate the benefits of distributed 4x4 MIMO LTE downlink systems compared to that of the co-located 4x4 MIMO LTE downlink system. The performance evaluation was carried out experimentally by using Wireless Open-Access Research Platform (WARP), where the comparison between the 4x4 MIMO LTE transmission downlink system in distributed and co-located techniques was examined. The measured Error Vector Magnitude (EVM) results showed that the distributed technique achieved better system performance compared to the co-located arrangement.

Keywords: Multiple-input-multiple-output, MIMO, distributed MIMO, co-located MIMO, LTE.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1850
668 Vibration Control of a Cantilever Beam Using a Tunable Vibration Absorber Embedded with ER Fluids

Authors: Chih-Jer Lin, Chun-Ying Lee, Chiang-Ho Cheng, Geng-Fung Chen

Abstract:

This paper investigates experimental studies on vibration suppression for a cantilever beam using an Electro-Rheological (ER) sandwich shock absorber. ER fluid (ERF) is a class of smart materials that can undergo significant reversible changes immediately in its rheological and mechanical properties under the influence of an applied electric field. Firstly, an ER sandwich beam is fabricated by inserting a starch-based ERF into a hollow composite beam. At the same time, experimental investigations are focused on the frequency response of the ERF sandwich beam. Second, the ERF sandwich beam is attached to a cantilever beam to become as a shock absorber. Finally, a fuzzy semi-active vibration control is designed to suppress the vibration of the cantilever beam via the ERF sandwich shock absorber. To check the consistency of the proposed fuzzy controller, the real-time implementation validated the performance of the controller.

Keywords: Electro-Rheological Fluid, Semi-active vibration control, shock absorber, fuzzy control, Real-time control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3228
667 Applying the Crystal Model Approach on Light Nuclei for Calculating Radii and Density Distribution

Authors: A. Amar

Abstract:

A new model namely, the crystal model, has been modified to calculate radius and density distribution of light nuclei up to 8Be. The crystal model has been modified according to solid state physics which uses the analogy between nucleon distribution and atoms distribution in the crystal. The model has analytical analysis to calculate the radius where the density distribution of light nuclei has been obtained from the analogy of crystal lattice. The distribution of nucleons over crystal has been discussed in general form. The equation used to calculate binding energy was taken from the solid-state model of repulsive and attractive force. The numbers of the protons were taken to control repulsive force where the atomic number was responsible for the attractive force. The parameter has been calculated from the crystal model was found to be proportional to the radius of the nucleus. The density distribution of light nuclei was taken as a summation of two clusters distribution as in 6Li=alpha+deuteron configuration. A test has been done on the data obtained for radius and density distribution using double folding for d+6,7Li with M3Y nucleon-nucleon interaction. Good agreement has been obtained for both radius and density distribution of light nuclei. The model failed to calculate the radius of 9Be, so modifications should be done to overcome discrepancy.

Keywords: nuclear lattice, crystal model, light nuclei, nuclear density distributions

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 430
666 Synthesis of Wavelet Filters using Wavelet Neural Networks

Authors: Wajdi Bellil, Chokri Ben Amar, Adel M. Alimi

Abstract:

An application of Beta wavelet networks to synthesize pass-high and pass-low wavelet filters is investigated in this work. A Beta wavelet network is constructed using a parametric function called Beta function in order to resolve some nonlinear approximation problem. We combine the filter design theory with wavelet network approximation to synthesize perfect filter reconstruction. The order filter is given by the number of neurons in the hidden layer of the neural network. In this paper we use only the first derivative of Beta function to illustrate the proposed design procedures and exhibit its performance.

Keywords: Beta wavelets, Wavenet, multiresolution analysis, perfect filter reconstruction, salient point detect, repeatability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1664
665 FITTER - A Framework for Integrating Activity Tracking Technologies into Electric Recreation for Children and Adolescents

Authors: R. Altamimi, G. Skinner, K. Nesbitt

Abstract:

Encouraging physical activity amongst children and adolescents is becoming an increasingly relevant issue in modern society. Studies have shown that involving children and adolescents in physical activity is essential for their physical, mental and social development. However, with technology playing an increasingly important role in reducing physical work it is becoming more critical to incorporate adequate physical activities into our lives. One way to overcome this problem is to harness technology so that it promotes physical activities, for example, by motivating children and adolescents to exercise more. This paper describes a promising solution to the question of how to increase levels of physical activity in children and adolescents by combining gaming technologies with exercise tracking goals. This research describes a framework called FITTER (Framework for Integrating activity Tracking Technologies for Electronic Recreation) that combines video game play with more traditional, non-computer physical activities.

Keywords: Exergames, Home-based eHealth, Human-computer Interaction, Natural User Interfaces, Wearable Health Informatics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2447
664 Real Time Remote Monitoring and Fault Detection in Wind Turbine

Authors: Saad Chakkor, Mostafa Baghouri, Abderrahmane Hajraoui

Abstract:

In new energy development, wind power has boomed. It is due to the proliferation of wind parks and their operation in supplying the national electric grid with low cost and clean resources. Hence, there is an increased need to establish a proactive maintenance for wind turbine machines based on remote control and monitoring. That is necessary with a real-time wireless connection in offshore or inaccessible locations while the wired method has many flaws. The objective of this strategy is to prolong wind turbine lifetime and to increase productivity. The hardware of a remote control and monitoring system for wind turbine parks is designed. It takes advantage of GPRS or Wi-Max wireless module to collect data measurements from different wind machine sensors through IP based multi-hop communication. Computer simulations with Proteus ISIS and OPNET software tools have been conducted to evaluate the performance of the studied system. Study findings show that the designed device is suitable for application in a wind park.

Keywords: Embedded System, Monitoring, Wind Turbine, Faults Diagnosis, TCP/IP Protocol, Real Time, Web.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3977
663 Determine of Constant Coefficients to RelateTotal Dissolved Solids to Electrical Conductivity

Authors: M. Siosemarde, F. Kave, E. Pazira, H. Sedghi, S. J. Ghaderi

Abstract:

Salinity is a measure of the amount of salts in the water. Total Dissolved Solids (TDS) as salinity parameter are often determined using laborious and time consuming laboratory tests, but it may be more appropriate and economical to develop a method which uses a more simple soil salinity index. Because dissolved ions increase salinity as well as conductivity, the two measures are related. The aim of this research was determine of constant coefficients for predicting of Total Dissolved Solids (TDS) based on Electrical Conductivity (EC) with Statistics of Correlation coefficient, Root mean square error, Maximum error, Mean Bias error, Mean absolute error, Relative error and Coefficient of residual mass. For this purpose, two experimental areas (S1, S2) of Khuzestan province-IRAN were selected and four treatments with three replications by series of double rings were applied. The treatments were included 25cm, 50cm, 75cm and 100cm water application. The results showed the values 16.3 & 12.4 were the best constant coefficients for predicting of Total Dissolved Solids (TDS) based on EC in Pilot S1 and S2 with correlation coefficient 0.977 & 0.997 and 191.1 & 106.1 Root mean square errors (RMSE) respectively.

Keywords: constant coefficients, electrical conductivity, Khuzestan plain and total dissolved solids.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3904
662 System Security Impact on the Dynamic Characteristics of Measurement Sensors in Smart Grids

Authors: Yiyang Su, Jörg Neumann, Jan Wetzlich, Florian Thiel

Abstract:

Smart grid is a term used to describe the next generation power grid. New challenges such as integration of renewable and decentralized energy sources, the requirement for continuous grid estimation and optimization, as well as the use of two-way flows of energy have been brought to the power gird. In order to achieve efficient, reliable, sustainable, as well as secure delivery of electric power more and more information and communication technologies are used for the monitoring and the control of power grids. Consequently, the need for cybersecurity is dramatically increased and has converged into several standards which will be presented here. These standards for the smart grid must be designed to satisfy both performance and reliability requirements. An in depth investigation of the effect of retrospectively embedded security in existing grids on it’s dynamic behavior is required. Therefore, a retrofitting plan for existing meters is offered, and it’s performance in a test low voltage microgrid is investigated. As a result of this, integration of security measures into measurement architectures of smart grids at the design phase is strongly recommended.

Keywords: Cyber security, performance, protocols, security standards, smart grid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 884
661 Evaluation of As-Cast U-Mo Alloys Processed in Graphite Crucible Coated with Boron Nitride

Authors: Kleiner Marques Marra, Tércio Pedrosa

Abstract:

This paper reports the production of uranium-molybdenum alloys, which have been considered promising fuel for test and research nuclear reactors. U-Mo alloys were produced in three molybdenum contents: 5 wt.%, 7 wt.%, and 10 wt.%, using an electric vacuum induction furnace. A boron nitride-coated graphite crucible was employed in the production of the alloys and, after melting, the material was immediately poured into a boron nitride-coated graphite mold. The incorporation of carbon was observed, but it happened in a lower intensity than in the case of the non-coated crucible/mold. It is observed that the carbon incorporation increased and alloys density decreased with Mo addition. It was also noticed that the increase in the carbon or molybdenum content did not seem to change the as-cast structure in terms of granulation. The three alloys presented body-centered cubic crystal structure (g phase), after solidification, besides a seeming negative microsegregation of molybdenum, from the center to the periphery of the grains. There were signs of macrosegregation, from the base to the top of the ingots.

Keywords: Incorporation of carbon, macrosegregation and microsegregation, solidification, uranium-molybdenum alloys.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 614
660 Analysis of Three-Dimensional Longitudinal Rolls Induced by Double Diffusive Poiseuille-Rayleigh-Benard Flows in Rectangular Channels

Authors: O. Rahli, N. Mimouni, R. Bennacer, K. Bouhadef

Abstract:

This numerical study investigates the travelling wave’s appearance and the behavior of Poiseuille-Rayleigh-Benard (PRB) flow induced in 3D thermosolutale mixed convection (TSMC) in horizontal rectangular channels. The governing equations are discretized by using a control volume method with third order Quick scheme in approximating the advection terms. Simpler algorithm is used to handle coupling between the momentum and continuity equations. To avoid the excessively high computer time, full approximation storage (FAS) with full multigrid (FMG) method is used to solve the problem. For a broad range of dimensionless controlling parameters, the contribution of this work is to analyzing the flow regimes of the steady longitudinal thermoconvective rolls (noted R//) for both thermal and mass transfer (TSMC). The transition from the opposed volume forces to cooperating ones, considerably affects the birth and the development of the longitudinal rolls. The heat and mass transfers distribution are also examined.

Keywords: Heat and mass transfer, mixed convection, Poiseuille-Rayleigh-Benard flow, rectangular duct.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1087
659 Modeling and Simulation of Utility Interfaced PV/Hydro Hybrid Electric Power System

Authors: P. V. V. Rama Rao, B. Kali Prasanna, Y. T. R. Palleswari

Abstract:

Renewable energy is derived from natural processes that are replenished constantly. Included in the definition is electricity and heat generated from solar, wind, ocean, hydropower, biomass, geothermal resources, and bio-fuels and hydrogen derived from renewable resources. Each of these sources has unique characteristics which influence how and where they are used. This paper presents the modeling the simulation of solar and hydro hybrid energy sources in MATLAB/SIMULINK environment. It simulates all quantities of Hybrid Electrical Power system (HEPS) such as AC output current of the inverter that injected to the load/grid, load current, grid current. It also simulates power output from PV and Hydraulic Turbine Generator (HTG), power delivered to or from grid and finally power factor of the inverter for PV, HTG and grid. The proposed circuit uses instantaneous p-q (real-imaginary) power theory.

Keywords: Photovoltaic Array, Hydraulic Turbine Generator, Electrical Utility (EU), Hybrid Electrical Power Supply.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3488
658 Study of Tower Grounding Resistance Effected Back Flashover to 500 kV Transmission Line in Thailand by using ATP/EMTP

Authors: B. Marungsri, S. Boonpoke, A. Rawangpai, A. Oonsivilai, C. Kritayakornupong

Abstract:

This study describes analysis of tower grounding resistance effected the back flashover voltage across insulator string in a transmission system. This paper studies the 500 kV transmission lines from Mae Moh, Lampang to Nong Chok, Bangkok, Thailand, which is double circuit in the same steel tower with two overhead ground wires. The factor of this study includes magnitude of lightning stroke, and front time of lightning stroke. Steel tower uses multistory tower model. The assumption of studies based on the return stroke current ranged 1-200 kA, front time of lightning stroke between 1 μs to 3 μs. The simulations study the effect of varying tower grounding resistance that affect the lightning current. Simulation results are analyzed lightning over voltage that causes back flashover at insulator strings. This study helps to know causes of problems of back flashover the transmission line system, and also be as a guideline solving the problem for 500 kV transmission line systems, as well.

Keywords: Tower grounding resistance, back flashover, multistory tower model, lightning stroke current.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4341
657 Environmentally Adaptive Acoustic Echo Suppression for Barge-in Speech Recognition

Authors: Jong Han Joo, Jeong Hun Lee, Young Sun Kim, Jae Young Kang, Seung Ho Choi

Abstract:

In this study, we propose a novel technique for acoustic echo suppression (AES) during speech recognition under barge-in conditions. Conventional AES methods based on spectral subtraction apply fixed weights to the estimated echo path transfer function (EPTF) at the current signal segment and to the EPTF estimated until the previous time interval. However, the effects of echo path changes should be considered for eliminating the undesired echoes. We describe a new approach that adaptively updates weight parameters in response to abrupt changes in the acoustic environment due to background noises or double-talk. Furthermore, we devised a voice activity detector and an initial time-delay estimator for barge-in speech recognition in communication networks. The initial time delay is estimated using log-spectral distance measure, as well as cross-correlation coefficients. The experimental results show that the developed techniques can be successfully applied in barge-in speech recognition systems.

Keywords: Acoustic echo suppression, barge-in, speech recognition, echo path transfer function, initial delay estimator, voice activity detector.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2317
656 The Effect of Sowing Time on Phytopathogenic Characteristics and Yield of Sunflower Hybrids

Authors: Adrienn Novák

Abstract:

The field research was carried out at the Látókép AGTC KIT research area of the University of Debrecen in Eastern-Hungary, on the area of the aeolain loess of the Hajdúság. We examined the effects of the sowing time on the phytopathogenic characteristics and yield production by applying various fertilizer treatments on two different sunflower genotypes (NK Ferti, PR64H42) in 2012 and 2013. We applied three different sowing times (early, optimal, late) and two different treatment levels of fungicides (control = no fungicides applied, double fungicide protection).

During our investigations, the studied cropyears were of different sowing time optimum in terms of yield amount (2012: early, 2013: average). By Pearson’s correlation analysis, we have found that delaying the sowing time pronouncedly decreased the extent of infection in both crop years (Diaporthe: r=0.663**, r=0.681**, Sclerotinia: r=0.465**, r=0.622**). The fungicide treatment not only decreased the extent of infection, but had yield increasing effect too (2012: r=0.498**, 2013: r=0.603**). In 2012, delaying of the sowing time increased (r=0.600**), but in 2013, it decreased (r= 0.356*) the yield amount.

Keywords: Fungicide treatment, genotypes, sowing time, yield, sunflower.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1827
655 InAlGaN Quaternary Multi-Quantum Wells UVLaser Diode Performance and Characterization

Authors: S. M. Thahab, H. Abu Hassan, Z. Hassan

Abstract:

The InAlGaN alloy has only recently began receiving serious attention into its growth and application. High quality InGaN films have led to the development of light emitting diodes (LEDs) and blue laser diodes (LDs). The quaternary InAlGaN however, represents a more versatile material since the bandgap and lattice constant can be independently varied. We report an ultraviolet (UV) quaternary InAlGaN multi-quantum wells (MQWs) LD study by using the simulation program of Integrated System Engineering (ISE TCAD). Advanced physical models of semiconductor properties were used in order to obtain an optimized structure. The device performance which is affected by piezoelectric and thermal effects was studied via drift-diffusion model for carrier transport, optical gain and loss. The optical performance of the UV LD with different numbers of quantum wells was numerically investigated. The main peak of the emission wavelength for double quantum wells (DQWs) was shifted from 358 to 355.8 nm when the forward current was increased. Preliminary simulated results indicated that better output performance and lower threshold current could be obtained when the quantum number is four, with output power of 130 mW and threshold current of 140 mA.

Keywords: Nitride semiconductors, InAlGaN quaternary, UVLD, numerical simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1936
654 An Algorithm for Preventing the Irregular Operation Modes of the Drive Synchronous Motor Providing the Ore Grinding

Authors: Baghdasaryan Marinka

Abstract:

The current scientific and engineering interest concerning the problems of preventing the emergency manifestations of drive synchronous motors, ensuring the ore grinding technological process has been justified. The analysis of the known works devoted to the abnormal operation modes of synchronous motors and possibilities of protection against them, has shown that their application is inexpedient for preventing the impermissible displays arising in the electrical drive synchronous motors ensuring the ore-grinding process. The main energy and technological factors affecting the technical condition of synchronous motors are evaluated. An algorithm for preventing the irregular operation modes of the electrical drive synchronous motor applied in the ore-grinding technological process has been developed and proposed for further application which gives an opportunity to provide smart solutions, ensuring the safe operation of the drive synchronous motor by a comprehensive consideration of the energy and technological factors.

Keywords: Synchronous motor, abnormal operating mode, electric drive, algorithm, energy factor, technological factor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 562
653 Impact of Masonry Joints on Detection of Humidity Distribution in Aerated Concrete Masonry Constructions by Electric Impedance Spectrometry Measurements

Authors: Sanita Rubene, Martins Vilnitis, Juris Noviks

Abstract:

Aerated concrete is a load bearing construction material, which has high heat insulation parameters. Walls can be erected from aerated concrete masonry constructions and in perfect circumstances additional heat insulation is not required. The most common problem in aerated concrete heat insulation properties is the humidity distribution throughout the cross section of the masonry elements as well as proper and conducted drying process of the aerated concrete construction because only dry aerated concrete masonry constructions can reach high heat insulation parameters. In order to monitor drying process of the masonry and detect humidity distribution throughout the cross section of aerated concrete masonry construction application of electrical impedance spectrometry is applied. Further test results and methodology of this non-destructive testing method is described in this paper.

Keywords: Aerated concrete, electrical impedance spectrometry, humidity distribution, non-destructive testing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2118
652 Power MOSFET Models Including Quasi-Saturation Effect

Authors: Abdelghafour Galadi

Abstract:

In this paper, accurate power MOSFET models including quasi-saturation effect are presented. These models have no internal node voltages determined by the circuit simulator and use one JFET or one depletion mode MOSFET transistors controlled by an “effective” gate voltage taking into account the quasi-saturation effect. The proposed models achieve accurate simulation results with an average error percentage less than 9%, which is an improvement of 21 percentage points compared to the commonly used standard power MOSFET model. In addition, the models can be integrated in any available commercial circuit simulators by using their analytical equations. A description of the models will be provided along with the parameter extraction procedure.

Keywords: Power MOSFET, drift layer, quasi-saturation effect, SPICE model, circuit simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2027
651 Energy Efficient Resource Allocation and Scheduling in Cloud Computing Platform

Authors: Shuen-Tai Wang, Ying-Chuan Chen, Yu-Ching Lin

Abstract:

There has been renewal of interest in the relation between Green IT and cloud computing in recent years. Cloud computing has to be a highly elastic environment which provides stable services to users. The growing use of cloud computing facilities has caused marked energy consumption, putting negative pressure on electricity cost of computing center or data center. Each year more and more network devices, storages and computers are purchased and put to use, but it is not just the number of computers that is driving energy consumption upward. We could foresee that the power consumption of cloud computing facilities will double, triple, or even more in the next decade. This paper aims at resource allocation and scheduling technologies that are short of or have not well developed yet to reduce energy utilization in cloud computing platform. In particular, our approach relies on recalling services dynamically onto appropriate amount of the machines according to user’s requirement and temporarily shutting down the machines after finish in order to conserve energy. We present initial work on integration of resource and power management system that focuses on reducing power consumption such that they suffice for meeting the minimizing quality of service required by the cloud computing platform.

Keywords: Cloud computing, energy utilization, power consumption, resource allocation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1442
650 Online Partial Discharge Source Localization and Characterization Using Non-Conventional Method

Authors: Ammar Anwar Khan, Nissar R. Wani, Nazar Malik, Abdulrehman Al-Arainy, and Saad Alghuwainem

Abstract:

Power cables are vulnerable to failure due to aging or defects that occur with the passage of time under continuous operation and loading stresses. PD detection and characterization provide information on the location, nature, form and extent of the degradation. As a result, PD monitoring has become an important part of condition based maintenance (CBM) program among power utilities. Online partial discharge (PD) localization of defect sources in power cable system is possible using the time of flight method. The information regarding the time difference between the main and reflected pulses and cable length can help in locating the partial discharge source along the cable length. However, if the length of the cable is not known and the defect source is located at the extreme ends of the cable or in the middle of the cable, then double ended measurement is required to indicate the location of PD source. Use of multiple sensors can also help in discriminating the cable PD or local/ external PD. This paper presents the experience and results from online partial discharge measurements conducted in the laboratory and the challenges in partial discharge source localization.

Keywords: Power cables, partial discharge localization, HFCT, condition based monitoring.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2826
649 Two-dimensional Analytical Drain Current Model for Multilayered-Gate Material Engineered Trapezoidal Recessed Channel(MLGME-TRC) MOSFET: a Novel Design

Authors: Priyanka Malik A, Rishu Chaujar B, Mridula Gupta C, R.S. Gupta D

Abstract:

In this paper, for the first time, a two-dimensional (2D) analytical drain current model for sub-100 nm multi-layered gate material engineered trapezoidal recessed channel (MLGMETRC) MOSFET: a novel design is presented and investigated using ATLAS and DEVEDIT device simulators, to mitigate the large gate leakages and increased standby power consumption that arise due to continued scaling of SiO2-based gate dielectrics. The twodimensional (2D) analytical model based on solution of Poisson-s equation in cylindrical coordinates, utilizing the cylindrical approximation, has been developed which evaluate the surface potential, electric field, drain current, switching metric: ION/IOFF ratio and transconductance for the proposed design. A good agreement between the model predictions and device simulation results is obtained, verifying the accuracy of the proposed analytical model.

Keywords: ATLAS, DEVEDIT, NJD, MLGME- TRCMOSFET.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1692
648 The Effect of Gender and Resources on Entrepreneurial Activity

Authors: Frederick Wedzerai Nyakudya

Abstract:

In this paper, we examine the relationship between human capital, personal wealth and social capital to explain the differences in start-up rates between female and male entrepreneurs. Since our dependent variable is dichotomous, we examine the determinants of these using a maximum likelihood logit estimator. We used the Global Entrepreneurship Monitor database covering the period 2006 to 2009 with 421 usable cases drawn from the Lower Layer Super Output Areas in East Midlands in the United Kingdom. We found evidence indicating that a female positively moderates the positive relationships between indicators of human capital and personal wealth with start-up activity. The findings have implications for programs, policies, and practices to encourage more females to engage in start-up activity.

Keywords: Entrepreneurship, Global Entrepreneurship Monitor, gender gap, women's entrepreneurship.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 457
647 Study of Natural Convection in a Triangular Cavity Filled with Water: Application of the Lattice Boltzmann Method

Authors: Imen Mejri, Ahmed Mahmoudi, Mohamed A. Abbassi, Ahmed Omri

Abstract:

The Lattice Boltzmann Method (LBM) with double populations is applied to solve the steady-state laminar natural convective heat transfer in a triangular cavity filled with water. The bottom wall is heated, the vertical wall is cooled, and the inclined wall is kept adiabatic. The buoyancy effect was modeled by applying the Boussinesq approximation to the momentum equation. The fluid velocity is determined by D2Q9 LBM and the energy equation is discritized by D2Q4 LBM to compute the temperature field. Comparisons with previously published work are performed and found to be in excellent agreement. Numerical results are obtained for a wide range of parameters: the Rayleigh number from  to  and the inclination angle from 0° to 360°. Flow and thermal fields were exhibited by means of streamlines and isotherms. It is observed that inclination angle can be used as a relevant parameter to control heat transfer in right-angled triangular enclosures.

 

Keywords: Heat transfer, inclination angle, Lattice Boltzmann Method, Nusselt number, Natural convection, Rayleigh number.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2757
646 Coordinated Voltage Control using Multiple Regulators in Distribution System with Distributed Generators

Authors: R. Shivarudraswamy, D. N. Gaonkar

Abstract:

The continued interest in the use of distributed generation in recent years is leading to the growth in number of distributed generators connected to distribution networks. Steady state voltage rise resulting from the connection of these generators can be a major obstacle to their connection at lower voltage levels. The present electric distribution network is designed to keep the customer voltage within tolerance limit. This may require a reduction in connectable generation capacity, under utilization of appropriate generation sites. Thus distribution network operators need a proper voltage regulation method to allow the significant integration of distributed generation systems to existing network. In this work a voltage rise problem in a typical distribution system has been studied. A method for voltage regulation of distribution system with multiple DG system by coordinated operation distributed generator, capacitor and OLTC has been developed. A sensitivity based analysis has been carried out to determine the priority for individual generators in multiple DG environment. The effectiveness of the developed method has been evaluated under various cases through simulation results.

Keywords: Distributed generation, voltage control, sensitivity factor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2576
645 Characteristics of Maximum Gliding Endurance Path for High-Altitude Solar UAVs

Authors: Gao Xian-Zhong, Hou Zhong-xi, Guo Zheng, Liu Jian-xia

Abstract:

Gliding during night without electric power is an efficient method to enhance endurance performance of solar aircrafts. The properties of maximum gliding endurance path are studied in this paper. The problem is formulated as an optimization problem about maximum endurance can be sustained by certain potential energy storage with dynamic equations and aerodynamic parameter constrains. The optimal gliding path is generated based on gauss pseudo-spectral method. In order to analyse relationship between altitude, velocity of solar UAVs and its endurance performance, the lift coefficient in interval of [0.4, 1.2] and flight envelopes between 0~30km are investigated. Results show that broad range of lift coefficient can improve solar aircrafts- long endurance performance, and it is possible for a solar aircraft to achieve the aim of long endurance during whole night just by potential energy storage.

Keywords: Solar UAVs, Gliding Endurance, gauss pseudo-spectral method, optimization problem

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2925
644 A New Approach to Face Recognition Using Dual Dimension Reduction

Authors: M. Almas Anjum, M. Younus Javed, A. Basit

Abstract:

In this paper a new approach to face recognition is presented that achieves double dimension reduction, making the system computationally efficient with better recognition results and out perform common DCT technique of face recognition. In pattern recognition techniques, discriminative information of image increases with increase in resolution to a certain extent, consequently face recognition results change with change in face image resolution and provide optimal results when arriving at a certain resolution level. In the proposed model of face recognition, initially image decimation algorithm is applied on face image for dimension reduction to a certain resolution level which provides best recognition results. Due to increased computational speed and feature extraction potential of Discrete Cosine Transform (DCT), it is applied on face image. A subset of coefficients of DCT from low to mid frequencies that represent the face adequately and provides best recognition results is retained. A tradeoff between decimation factor, number of DCT coefficients retained and recognition rate with minimum computation is obtained. Preprocessing of the image is carried out to increase its robustness against variations in poses and illumination level. This new model has been tested on different databases which include ORL , Yale and EME color database.

Keywords: Biometrics, DCT, Face Recognition, Illumination, Computation, Feature extraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1686
643 Computational Model for Predicting Effective siRNA Sequences Using Whole Stacking Energy (% G) for Gene Silencing

Authors: Reena Murali, David Peter S.

Abstract:

The small interfering RNA (siRNA) alters the regulatory role of mRNA during gene expression by translational inhibition. Recent studies show that upregulation of mRNA because serious diseases like cancer. So designing effective siRNA with good knockdown effects plays an important role in gene silencing. Various siRNA design tools had been developed earlier. In this work, we are trying to analyze the existing good scoring second generation siRNA predicting tools and to optimize the efficiency of siRNA prediction by designing a computational model using Artificial Neural Network and whole stacking energy (%G), which may help in gene silencing and drug design in cancer therapy. Our model is trained and tested against a large data set of siRNA sequences. Validation of our results is done by finding correlation coefficient of experimental versus observed inhibition efficacy of siRNA. We achieved a correlation coefficient of 0.727 in our previous computational model and we could improve the correlation coefficient up to 0.753 when the threshold of whole tacking energy is greater than or equal to -32.5 kcal/mol.

Keywords: Artificial Neural Network, Double Stranded RNA, RNA Interference, Short Interfering RNA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2666