
 

 

 
Abstract—This numerical study investigates the travelling 

wave’s appearance and the behavior of Poiseuille-Rayleigh-Benard 
(PRB) flow induced in 3D thermosolutale mixed convection (TSMC) 
in horizontal rectangular channels. The governing equations are 
discretized by using a control volume method with third order Quick 
scheme in approximating the advection terms. Simpler algorithm is 
used to handle coupling between the momentum and continuity 
equations. To avoid the excessively high computer time, full 
approximation storage (FAS) with full multigrid (FMG) method is 
used to solve the problem. For a broad range of dimensionless 
controlling parameters, the contribution of this work is to analyzing 
the flow regimes of the steady longitudinal thermoconvective rolls 
(noted R//) for both thermal and mass transfer (TSMC). The 
transition from the opposed volume forces to cooperating ones, 
considerably affects the birth and the development of the longitudinal 
rolls. The heat and mass transfers distribution are also examined. 

 
Keywords—Heat and mass transfer, mixed convection, 

Poiseuille-Rayleigh-Benard flow, rectangular duct. 

I. INTRODUCTION 

N this work, a mixed double diffusive convection in 
rectangular channels uniformly heated from below and 

cooled from above has been studied in relation to numerous 
transport processes where simultaneous heat and mass transfer 
occur, and which can be encountered in several nature and 
industrial applications, as cooling of the electronic equipment 
[1], [2], chemicalvapor deposition (CVD) [3], [4], plastics 
manufacturing, building sciences [5], [6], moisture transfer 
and atmospheric flows [7].  

In 3D open flows uniformly heated from below so-called 
PRB configuration, the flow results from superposition of two 
convective sources: horizontal pressure gradient that causes 
the main flow within the duct, and a vertical temperature 
gradient, which is the cause of thermoconvective structures 
formation. Under the heating effect, when the stability limit is 
broken, i.e. the Rayleigh Number value is greater than the 
critical one (Ra>Rac) several types of thermoconvective rolls 
may appear, according to the inertial and viscous forces ratio 
characterized by to the Reynolds number. Indeed, the unstable 
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PRB system is constrained to choose a form of 
thermoconvective rolls either 3D longitudinal (mono or multi 
spiral flow) symbolized by (R) or 2D/3D transversal rolls 
symbolized by (R), A combination of transversal and 
longitudinal rolls can also be observed. 

The pioneer experiments about PRB flows are mainly 
concerned with the meteorological applications [8]. After 
1960, the PRB flow studies were mainly based on 2D linear 
stability analysis and an exhaustive bibliographical review on 
the PRB flows was exposed by Nicolas [9]. With the 
combined buoyancy effects, the heat and mass transfer in 
horizontal square duct was discussed by [10]; a uniform 
temperature and concentration was assumed at the bottom 
wall. The authors have found that the buoyancy forces 
significantly affect the transfers. In addition, under such ducts 
inclination [11], the results showed that the distributions of 
local Nusselt (Sherwood) number are characterized by a decay 
near the inlet in which the forced-convection entrance effect 
dominates; but the decay is attenuated by the onset of 
buoyancy-driven secondary flow. At low Reynolds number 
(Re ≤ 50) air flow through a bottom heated horizontal plane 
channel, [12] has shown that the vortex flow pattern changes 
from longitudinal to transverse rolls when the Reynolds 
number is lowered or when the Rayleigh number is raised for 
Re around 10. At a very low Reynolds number, the entire duct 
is filled with the transverse rolls. Laminar flow of moist air in 
a 3D rectangular duct with combined heat and mass transfer 
was investigated [13]. In this numerical and experimental 
work, the main conclusions founded are that introducing heat 
gain/loss at the water surface could produce negative heat and 
mass coefficients and the effects of buoyancy forces were 
found to be negligible. 

In the present work, we focus on the flow structures 
induced by the additive mass transfer effects, characterized by 
the coupled thermosolutal buoyancy forces (TSMC), on the 
heat and mass transfer and its influence on the entrance and 
fully developed regions.  

II. PROBLEM STATEMENT 

The geometry of the PRB system considered is a horizontal 
rectangular duct as schematically shown in Fig. 1. The fluid is 
assumed incompressible and Newtonian; the laminar flow is 
governed by 3D incompressible Navier-Stokes model under 
the Boussinesq assumption.  

The duct is heated from the bottom and cooled from the top 
and constant but different concentrations were imposed on the 
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(see Fig. 5 (a)). This remark also applies to the position where 
the steady longitudinal rolls R// are fully developed, 
corresponding to the beginning of stabilization of the Nusselt 
number represented by the asymptotic values.  

 

 

(a) 
 

 

(b) 

Fig. 5 Effects of the buoyancy ration on the longitudinal profiles of 
Nusselt and Sherwood numbers. (a) Nusselt number , (b) Sherwood 

number 
 

Overall, the evolution of the local Sherwood shows the 
same variation as the Nusselt number. In addition, we can 
quote that the installation of convection effects due to 
Rayleigh-Benard effects will play a role in stabilizing the mass 
transfer before taking over the effect of forced Poiseuille flow. 
This is due to the choice of the value of the Lewis number 
where the Prandlt number is higher than the Schmidt number 
and the thermal boundary layer develops slower than the 
concentration boundary layer (Fig. 5 (b)) and as a result, Nu is 
higher than Sh; but in general, the exchanges will be promoted 
with increasing N. 

The result obtained in Fig. 5 is confirmed in Fig. 6, where it 
is clearly stated that the onset of mixed convection occurs at 
distances much closer to the entrance as the buoyancy 
thermosolutal ratio is high. The increase in Reynolds number 
promotes the dominance of the forced convective flow. To 
defeat this flow, we need a greater entrance length. 
Furthermore, the decrease of parameters Re and Ay, promotes 
the reduction of the entrance zone. 

Dimensional analysis of the boundary layer thickness in the 
entrance zone, is controlled by the nature of the fluid and by 
the interaction between the mixed convection effects, 
characterized by the Richardson number (Ri= Ra/Re2), and the 
edge effects related to the elongation Ay. However, under the 
fixed Rayleigh and Prandtl numbers (Ra = 5x103, Pr = 0.7), 
the analysis carried out from results in Fig. 6, allowed us to 
predict the position of the onset of the secondary driven flow 
(ie: mixed convection) based on the parameters N, Re and Ay. 
For the range of parameters chosen, we propose the following 
correlation:  

 
XSFNReAy1/2 

 
 

Fig. 6 Effect of buoyancy ratio on the onset of the secondary 
convective flow 

 
As for the birth of convection, the axial location of the fully 

developed rolls is linked to the buoyancy effect. Indeed, 
moving from a state of opposing forces to cooperating forces, 
the axial location of the fully developed rolls is much closer to 
the entrance. This reduces the surface area of the triangle 
entrance region, representing the forced convection dominance 
zone as shown in Fig. 7. Indeed, the positions shown on the 
visualizations of temperature fields at selected cross-sections 
(X,Y,0.5) for different N values, are confirmed in the 
streamtraces represented at (X,5,Z) at the core of the duct. It is 
clear that the beginning of the streamtrace deviation, initially 
unidirectional in the entrance zone, corresponds exactly to the 
position of the fully developed longitudinal rolls. The 
streamtraces spend from a unidirectional motion (forced 
convection, Poiseuille flow) to a helical motion generated by 
the added Rayleigh-Benard (RB) effects to the forced 
convection effects. 
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TABLE I  
NOMENCLATURE 

Symbol Quantity 

A’ Entrance aspect ratio 

Ax Longitudinal aspect ratio L/H 

Ay Transversal aspect ratio l/H 

C Transversal aspect ratio l/H 

C Transversal aspect ratio l/H concentration 

g gravitational acceleration 

H height of the domain 

Kc wave number 

L length of the domain 

l width of the domain 

Nu Nusselt number 

N buoyancy forces ratio 

Pe Peclet number, Pe = Re Pr 

Pr Prandtl number, ܲݎ ൌ ߥ ⁄ߙ  
RaT thermal Rayleigh number, ்ܴܽ ൌ ଷܪΔ்ܶߚ݃ ሺߙߥሻ⁄  
Rac critical Rayleigh number 

Re Reynolds number, Re = Umean H /ߥ 
T dimensionless temperature 

T0 reference temperature 

T characteristic temperature difference 

C characteristic concentration difference 

S dimensionless concentration 

Sc Schmidt number 

Sh Sherwood number 

U,V,W dimensionless velocity components 

ሬܸԦ velocity vector 

X,Y,Z dimensionless coordinates system  

α
 

thermal diffusivity k/(C)
 

 fluid density 

 volumetric expansion coefficient

 dynamic viscosity

 fluid kinematics viscosity  

 dimensionless temperature

 dependent variables

Subscripts

b bottom 

c cold 

eff effective 

f fluid 

h hot/height 

l low 

max maximum 

mean average value on vertical transversal plan

Pois Poiseuille

ref reference value

SF secondary flow 

t top 

 transversal 

 longitudinal
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