Search results for: variable spinning speed washing machine.
2118 Characteristics of E-waste Recycling Systems in Japan and China
Authors: Bi Bo, Kayoko Yamamoto
Abstract:
This study aims to identify processes, current situations, and issues of recycling systems for four home appliances, namely, air conditioners, television receivers, refrigerators, and washing machines, among e-wastes in China and Japan for understanding and comparison of their characteristics. In accordance with results of a literature search, review of information disclosed online, and questionnaire survey conducted, conclusions of the study boil down to: (1)The results show that in Japan most of the home appliances mentioned above have been collected through home appliance recycling tickets, resulting in an issue of “requiring some effort" in treatment and recycling stages, and most plants have contracted out their e-waste recycling. (2)It is found out that advantages of the recycling system in Japan include easiness to monitor concrete data and thorough environmental friendliness ensured while its disadvantages include illegal dumping and export. It becomes apparent that advantages of the recycling system in China include a high reuse rate, low treatment cost, and fewer illegal dumping while its disadvantages include less safe reused products, environmental pollution caused by e-waste treatment, illegal import, and difficulty in obtaining data.Keywords: E-waste, Recycling Systems, Home Appliances, Japan and China.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 48322117 Investigating the Thermal Characteristics of Reclaimed Solid Waste from a Landfill Site Using Thermogravimetry
Authors: S. M. Al-Salem, G.A. Leeke, H. J. Karam, R. Al-Enzi, A. T. Al-Dhafeeri, J. Wang
Abstract:
Thermogravimetry has been popularized as a thermal characterization technique since the 1950s. It aims at investigating the weight loss against both reaction time and temperature, whilst being able to characterize the evolved gases from the volatile components of the organic material being tested using an appropriate hyphenated analytical technique. In an effort to characterize and identify the reclaimed waste from an unsanitary landfill site, this approach was initiated. Solid waste (SW) reclaimed from an active landfill site in the State of Kuwait was collected and prepared for characterization in accordance with international protocols. The SW was segregated and its major components were identified after washing and air drying. Shredding and cryomilling was conducted on the plastic solid waste (PSW) component to yield a material that is representative for further testing and characterization. The material was subjected to five heating rates (b) with minimal repeatable weight for high accuracy thermogravimetric analysis (TGA) following the recommendation of the International Confederation for Thermal Analysis and Calorimetry (ICTAC). The TGA yielded thermograms that showed an off-set from typical behavior of commercial grade resin which was attributed to contact of material with soil and thermal/photo-degradation.
Keywords: Polymer, TGA, Pollution, Landfill, Waste, Plastic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7042116 Knowledge Representation and Retrieval in Design Project Memory
Authors: Smain M. Bekhti, Nada T. Matta
Abstract:
Knowledge sharing in general and the contextual access to knowledge in particular, still represent a key challenge in the knowledge management framework. Researchers on semantic web and human machine interface study techniques to enhance this access. For instance, in semantic web, the information retrieval is based on domain ontology. In human machine interface, keeping track of user's activity provides some elements of the context that can guide the access to information. We suggest an approach based on these two key guidelines, whilst avoiding some of their weaknesses. The approach permits a representation of both the context and the design rationale of a project for an efficient access to knowledge. In fact, the method consists of an information retrieval environment that, in the one hand, can infer knowledge, modeled as a semantic network, and on the other hand, is based on the context and the objectives of a specific activity (the design). The environment we defined can also be used to gather similar project elements in order to build classifications of tasks, problems, arguments, etc. produced in a company. These classifications can show the evolution of design strategies in the company.Keywords: Project Memory, Knowledge re-use, Design rationale, Knowledge representation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16262115 A Neuron Model of Facial Recognition and Detection of an Authorized Entity Using Machine Learning System
Authors: J. K. Adedeji, M. O. Oyekanmi
Abstract:
This paper has critically examined the use of Machine Learning procedures in curbing unauthorized access into valuable areas of an organization. The use of passwords, pin codes, user’s identification in recent times has been partially successful in curbing crimes involving identities, hence the need for the design of a system which incorporates biometric characteristics such as DNA and pattern recognition of variations in facial expressions. The facial model used is the OpenCV library which is based on the use of certain physiological features, the Raspberry Pi 3 module is used to compile the OpenCV library, which extracts and stores the detected faces into the datasets directory through the use of camera. The model is trained with 50 epoch run in the database and recognized by the Local Binary Pattern Histogram (LBPH) recognizer contained in the OpenCV. The training algorithm used by the neural network is back propagation coded using python algorithmic language with 200 epoch runs to identify specific resemblance in the exclusive OR (XOR) output neurons. The research however confirmed that physiological parameters are better effective measures to curb crimes relating to identities.
Keywords: Biometric characters, facial recognition, neural network, OpenCV.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6952114 A Real-Time Specific Weed Recognition System Using Statistical Methods
Authors: Imran Ahmed, Muhammad Islam, Syed Inayat Ali Shah, Awais Adnan
Abstract:
The identification and classification of weeds are of major technical and economical importance in the agricultural industry. To automate these activities, like in shape, color and texture, weed control system is feasible. The goal of this paper is to build a real-time, machine vision weed control system that can detect weed locations. In order to accomplish this objective, a real-time robotic system is developed to identify and locate outdoor plants using machine vision technology and pattern recognition. The algorithm is developed to classify images into broad and narrow class for real-time selective herbicide application. The developed algorithm has been tested on weeds at various locations, which have shown that the algorithm to be very effectiveness in weed identification. Further the results show a very reliable performance on weeds under varying field conditions. The analysis of the results shows over 90 percent classification accuracy over 140 sample images (broad and narrow) with 70 samples from each category of weeds.Keywords: Weed detection, Image Processing, real-timerecognition, Standard Deviation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22652113 Quantitative Assessment of Different Formulations of Antimalarials in Sentinel Sites of India
Authors: Taruna Katyal Arora, Geeta Kumari, Hari Shankar, Neelima Mishra
Abstract:
Substandard and counterfeit antimalarials is a major problem in malaria endemic areas. The availability of counterfeit/ substandard medicines is not only decreasing the efficacy in patients, but it is also one of the contributing factors for developing antimalarial drug resistance. Owing to this, a pilot study was conducted to survey quality of drugs collected from different malaria endemic areas of India. Artesunate+Sulphadoxine-Pyrimethamine (AS+SP), Artemether-Lumefantrine (AL), Chloroquine (CQ) tablets were randomly picked from public health facilities in selected states of India. The quality of antimalarial drugs from these areas was assessed by using Global Pharma Health Fund Minilab test kit. This includes physical/visual inspection and disintegration test. Thin-layer chromatography (TLC) was carried out for semi-quantitative assessment of active pharmaceutical ingredients. A total of 45 brands, out of which 21 were for CQ, 14 for AL and 10 for AS+SP were tested from Uttar Pradesh (U.P.), Mizoram, Meghalaya and Gujrat states. One out of 45 samples showed variable disintegration and retension factor. The variable disintegration and retention factor which would have been due to substandard quality or other factors including storage. However, HPLC analysis confirms standard active pharmaceutical ingredient, but may be due to humid temperature and moisture in storage may account for the observed result.
Keywords: Antimalarial medicines, counterfeit, substandard, thin layer chromatography.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15232112 Empirical Process Monitoring Via Chemometric Analysis of Partially Unbalanced Data
Authors: Hyun-Woo Cho
Abstract:
Real-time or in-line process monitoring frameworks are designed to give early warnings for a fault along with meaningful identification of its assignable causes. In artificial intelligence and machine learning fields of pattern recognition various promising approaches have been proposed such as kernel-based nonlinear machine learning techniques. This work presents a kernel-based empirical monitoring scheme for batch type production processes with small sample size problem of partially unbalanced data. Measurement data of normal operations are easy to collect whilst special events or faults data are difficult to collect. In such situations, noise filtering techniques can be helpful in enhancing process monitoring performance. Furthermore, preprocessing of raw process data is used to get rid of unwanted variation of data. The performance of the monitoring scheme was demonstrated using three-dimensional batch data. The results showed that the monitoring performance was improved significantly in terms of detection success rate of process fault.
Keywords: Process Monitoring, kernel methods, multivariate filtering, data-driven techniques, quality improvement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17462111 Automated Heart Sound Classification from Unsegmented Phonocardiogram Signals Using Time Frequency Features
Authors: Nadia Masood Khan, Muhammad Salman Khan, Gul Muhammad Khan
Abstract:
Cardiologists perform cardiac auscultation to detect abnormalities in heart sounds. Since accurate auscultation is a crucial first step in screening patients with heart diseases, there is a need to develop computer-aided detection/diagnosis (CAD) systems to assist cardiologists in interpreting heart sounds and provide second opinions. In this paper different algorithms are implemented for automated heart sound classification using unsegmented phonocardiogram (PCG) signals. Support vector machine (SVM), artificial neural network (ANN) and cartesian genetic programming evolved artificial neural network (CGPANN) without the application of any segmentation algorithm has been explored in this study. The signals are first pre-processed to remove any unwanted frequencies. Both time and frequency domain features are then extracted for training the different models. The different algorithms are tested in multiple scenarios and their strengths and weaknesses are discussed. Results indicate that SVM outperforms the rest with an accuracy of 73.64%.Keywords: Pattern recognition, machine learning, computer aided diagnosis, heart sound classification, and feature extraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12832110 High-Speed Particle Image Velocimetry of the Flow around a Moving Train Model with Boundary Layer Control Elements
Authors: Alexander Buhr, Klaus Ehrenfried
Abstract:
Trackside induced airflow velocities, also known as slipstream velocities, are an important criterion for the design of high-speed trains. The maximum permitted values are given by the Technical Specifications for Interoperability (TSI) and have to be checked in the approval process. For train manufactures it is of great interest to know in advance, how new train geometries would perform in TSI tests. The Reynolds number in moving model experiments is lower compared to full-scale. Especially the limited model length leads to a thinner boundary layer at the rear end. The hypothesis is that the boundary layer rolls up to characteristic flow structures in the train wake, in which the maximum flow velocities can be observed. The idea is to enlarge the boundary layer using roughness elements at the train model head so that the ratio between the boundary layer thickness and the car width at the rear end is comparable to a full-scale train. This may lead to similar flow structures in the wake and better prediction accuracy for TSI tests. In this case, the design of the roughness elements is limited by the moving model rig. Small rectangular roughness shapes are used to get a sufficient effect on the boundary layer, while the elements are robust enough to withstand the high accelerating and decelerating forces during the test runs. For this investigation, High-Speed Particle Image Velocimetry (HS-PIV) measurements on an ICE3 train model have been realized in the moving model rig of the DLR in Göttingen, the so called tunnel simulation facility Göttingen (TSG). The flow velocities within the boundary layer are analysed in a plain parallel to the ground. The height of the plane corresponds to a test position in the EN standard (TSI). Three different shapes of roughness elements are tested. The boundary layer thickness and displacement thickness as well as the momentum thickness and the form factor are calculated along the train model. Conditional sampling is used to analyse the size and dynamics of the flow structures at the time of maximum velocity in the train wake behind the train. As expected, larger roughness elements increase the boundary layer thickness and lead to larger flow velocities in the boundary layer and in the wake flow structures. The boundary layer thickness, displacement thickness and momentum thickness are increased by using larger roughness especially when applied in the height close to the measuring plane. The roughness elements also cause high fluctuations in the form factors of the boundary layer. Behind the roughness elements, the form factors rapidly are approaching toward constant values. This indicates that the boundary layer, while growing slowly along the second half of the train model, has reached a state of equilibrium.Keywords: Boundary layer, high-speed PIV, ICE3, moving train model, roughness elements.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15282109 PUMA 560 Optimal Trajectory Control using Genetic Algorithm, Simulated Annealing and Generalized Pattern Search Techniques
Authors: Sufian Ashraf Mazhari, Surendra Kumar
Abstract:
Robot manipulators are highly coupled nonlinear systems, therefore real system and mathematical model of dynamics used for control system design are not same. Hence, fine-tuning of controller is always needed. For better tuning fast simulation speed is desired. Since, Matlab incorporates LAPACK to increase the speed and complexity of matrix computation, dynamics, forward and inverse kinematics of PUMA 560 is modeled on Matlab/Simulink in such a way that all operations are matrix based which give very less simulation time. This paper compares PID parameter tuning using Genetic Algorithm, Simulated Annealing, Generalized Pattern Search (GPS) and Hybrid Search techniques. Controller performances for all these methods are compared in terms of joint space ITSE and cartesian space ISE for tracking circular and butterfly trajectories. Disturbance signal is added to check robustness of controller. GAGPS hybrid search technique is showing best results for tuning PID controller parameters in terms of ITSE and robustness.Keywords: Controller Tuning, Genetic Algorithm, Pattern Search, Robotic Controller, Simulated Annealing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 37182108 Role of Process Parameters on Pocket Milling with Abrasive Water Jet Machining Technique
Authors: T. V. K. Gupta, J. Ramkumar, Puneet Tandon, N. S. Vyas
Abstract:
Abrasive Water Jet Machining is an unconventional machining process well known for machining hard to cut materials. The primary research focus on the process was for through cutting and a very limited literature is available on pocket milling using AWJM. The present work is an attempt to use this process for milling applications considering a set of various process parameters. Four different input parameters, which were considered by researchers for part separation, are selected for the above application, i.e., abrasive size, flow rate, standoff distance and traverse speed. Pockets of definite size are machined to investigate surface roughness, material removal rate and pocket depth. Based on the data available through experiments on SS304 material, it is observed that higher traverse speeds gives a better finish because of reduction in the particle energy density and lower depth is also observed. Increase in the standoff distance and abrasive flow rate reduces the rate of material removal as the jet loses its focus and occurrence of collisions within the particles. ANOVA for individual output parameter has been studied to know the significant process parameters.
Keywords: Abrasive flow rate, surface finish, abrasive size, standoff distance, traverse speed.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 42322107 Stock Price Forecast by Using Neuro-Fuzzy Inference System
Authors: Ebrahim Abbasi, Amir Abouec
Abstract:
In this research, the researchers have managed to design a model to investigate the current trend of stock price of the "IRAN KHODRO corporation" at Tehran Stock Exchange by utilizing an Adaptive Neuro - Fuzzy Inference system. For the Longterm Period, a Neuro-Fuzzy with two Triangular membership functions and four independent Variables including trade volume, Dividend Per Share (DPS), Price to Earning Ratio (P/E), and also closing Price and Stock Price fluctuation as an dependent variable are selected as an optimal model. For the short-term Period, a neureo – fuzzy model with two triangular membership functions for the first quarter of a year, two trapezoidal membership functions for the Second quarter of a year, two Gaussian combination membership functions for the third quarter of a year and two trapezoidal membership functions for the fourth quarter of a year were selected as an optimal model for the stock price forecasting. In addition, three independent variables including trade volume, price to earning ratio, closing Stock Price and a dependent variable of stock price fluctuation were selected as an optimal model. The findings of the research demonstrate that the trend of stock price could be forecasted with the lower level of error.Keywords: Stock Price forecast, membership functions, Adaptive Neuro-Fuzzy Inference System, trade volume, P/E, DPS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26142106 Low Jitter ADPLL based Clock Generator for High Speed SoC Applications
Authors: Moorthi S., Meganathan D., Janarthanan D., Praveen Kumar P., J. Raja paul perinbam
Abstract:
An efficient architecture for low jitter All Digital Phase Locked Loop (ADPLL) suitable for high speed SoC applications is presented in this paper. The ADPLL is designed using standard cells and described by Hardware Description Language (HDL). The ADPLL implemented in a 90 nm CMOS process can operate from 10 to 200 MHz and achieve worst case frequency acquisition in 14 reference clock cycles. The simulation result shows that PLL has cycle to cycle jitter of 164 ps and period jitter of 100 ps at 100MHz. Since the digitally controlled oscillator (DCO) can achieve both high resolution and wide frequency range, it can meet the demands of system-level integration. The proposed ADPLL can easily be ported to different processes in a short time. Thus, it can reduce the design time and design complexity of the ADPLL, making it very suitable for System-on-Chip (SoC) applications.Keywords: All Digital Phase Locked Loop (ADPLL), Systemon-Chip (SoC), Phase Locked Loop (PLL), Very High speedIntegrated Circuit (VHSIC) Hardware Description Language(VHDL), Digitally Controlled Oscillator (DCO), Phase frequencydetector (PFD) and Voltage Controlled Oscillator (VCO).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30692105 Scheduling Maintenance Actions for Gas Turbines Aircraft Engines
Authors: Anis Gharbi
Abstract:
This paper considers the problem of scheduling maintenance actions for identical aircraft gas turbine engines. Each one of the turbines consists of parts which frequently require replacement. A finite inventory of spare parts is available and all parts are ready for replacement at any time. The inventory consists of both new and refurbished parts. Hence, these parts have different field lives. The goal is to find a replacement part sequencing that maximizes the time that the aircraft will keep functioning before the inventory is replenished. The problem is formulated as an identical parallel machine scheduling problem where the minimum completion time has to be maximized. Two models have been developed. The first one is an optimization model which is based on a 0-1 linear programming formulation, while the second one is an approximate procedure which consists in decomposing the problem into several two-machine subproblems. Each subproblem is optimally solved using the first model. Both models have been implemented using Lingo and have been tested on two sets of randomly generated data with up to 150 parts and 10 turbines. Experimental results show that the optimization model is able to solve only instances with no more than 4 turbines, while the decomposition procedure often provides near-optimal solutions within a maximum CPU time of 3 seconds.
Keywords: Aircraft turbines, Scheduling, Identical parallel machines, 0-1 linear programming, Heuristic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20022104 Experimental Investigations on the Mechanism of Stratified Liquid Mixing in a Cylinder
Authors: Chai Mingming, Li Lei, Lu Xiaoxia
Abstract:
In this paper, the mechanism of stratified liquids’ mixing in a cylinder is investigated. It is focused on the effects of Rayleigh-Taylor Instability (RTI) and rotation of the cylinder on liquid interface mixing. For miscible liquids, Planar Laser Induced Fluorescence (PLIF) technique is applied to record the concentration field for one liquid. Intensity of Segregation (IOS) is used to describe the mixing status. For immiscible liquids, High Speed Camera is adopted to record the development of the interface. The experiment of RTI indicates that it plays a great role in the mixing process, and meanwhile the large-scale mixing is triggered, and subsequently the span of the stripes decreases, showing that the mesoscale mixing is coming into being. The rotation experiments show that the spin-down process has a great role in liquid mixing, during which the upper liquid falls down rapidly along the wall and crashes into the lower liquid. During this process, a lot of interface instabilities are excited. Liquids mix rapidly in the spin-down process. It can be concluded that no matter what ways have been adopted to speed up liquid mixing, the fundamental reason is the interface instabilities which increase the area of the interface between liquids and increase the relative velocity of the two liquids.
Keywords: Interface instability, liquid mixing, Rayleigh-Taylor Instability, spin-down process, spin-up process.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9262103 Exploiting Machine Learning Techniques for the Enhancement of Acceptance Sampling
Authors: Aikaterini Fountoulaki, Nikos Karacapilidis, Manolis Manatakis
Abstract:
This paper proposes an innovative methodology for Acceptance Sampling by Variables, which is a particular category of Statistical Quality Control dealing with the assurance of products quality. Our contribution lies in the exploitation of machine learning techniques to address the complexity and remedy the drawbacks of existing approaches. More specifically, the proposed methodology exploits Artificial Neural Networks (ANNs) to aid decision making about the acceptance or rejection of an inspected sample. For any type of inspection, ANNs are trained by data from corresponding tables of a standard-s sampling plan schemes. Once trained, ANNs can give closed-form solutions for any acceptance quality level and sample size, thus leading to an automation of the reading of the sampling plan tables, without any need of compromise with the values of the specific standard chosen each time. The proposed methodology provides enough flexibility to quality control engineers during the inspection of their samples, allowing the consideration of specific needs, while it also reduces the time and the cost required for these inspections. Its applicability and advantages are demonstrated through two numerical examples.Keywords: Acceptance Sampling, Neural Networks, Statistical Quality Control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16962102 Some Physical Fitness Values of Physical Education Department Students Engaged In Different Team Sport Branches
Authors: T. Atan, T. Ayyıldız, P. Akyol
Abstract:
The purpose of this study was to examine and compare physical fitness values of students engaged in different team sport branches Totally 60 female, and 60 male athletes, that 20 athletes in each branch which are volleyball, basketball and football participated the study as a volunteer. The mean ages of female and male athletes were 21.20 ±1.87 and 21.61 ± 1.61 respectively. Age, height, body weight, body mass index, flexibility, body fat percentage, 30m sprint, maximum oxygen consumption capacity (MaxVO2) and drop jump values were measured. As a result of measurements, significant differences were found in height, weight, MaxVO2, shuttle run speed between different sports branches in female athletes. In male athletes, height, body weight, flexibility, 30m split speed and drop jump values were found significantly different between sports branches. As a conclusion and as a literature, it can be said that structure of body has to be appropriate with the engaged sports branch. Physical fitness values that required the sports branches can be expressed clearly by increasing the number of subjects.Keywords: Volleyball, basketball, football, athletes, physical fitness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23282101 Evolutionary Approach for Automated Discovery of Censored Production Rules
Authors: Kamal K. Bharadwaj, Basheer M. Al-Maqaleh
Abstract:
In the recent past, there has been an increasing interest in applying evolutionary methods to Knowledge Discovery in Databases (KDD) and a number of successful applications of Genetic Algorithms (GA) and Genetic Programming (GP) to KDD have been demonstrated. The most predominant representation of the discovered knowledge is the standard Production Rules (PRs) in the form If P Then D. The PRs, however, are unable to handle exceptions and do not exhibit variable precision. The Censored Production Rules (CPRs), an extension of PRs, were proposed by Michalski & Winston that exhibit variable precision and supports an efficient mechanism for handling exceptions. A CPR is an augmented production rule of the form: If P Then D Unless C, where C (Censor) is an exception to the rule. Such rules are employed in situations, in which the conditional statement 'If P Then D' holds frequently and the assertion C holds rarely. By using a rule of this type we are free to ignore the exception conditions, when the resources needed to establish its presence are tight or there is simply no information available as to whether it holds or not. Thus, the 'If P Then D' part of the CPR expresses important information, while the Unless C part acts only as a switch and changes the polarity of D to ~D. This paper presents a classification algorithm based on evolutionary approach that discovers comprehensible rules with exceptions in the form of CPRs. The proposed approach has flexible chromosome encoding, where each chromosome corresponds to a CPR. Appropriate genetic operators are suggested and a fitness function is proposed that incorporates the basic constraints on CPRs. Experimental results are presented to demonstrate the performance of the proposed algorithm.Keywords: Censored Production Rule, Data Mining, MachineLearning, Evolutionary Algorithms.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18812100 Mixing Behaviors of Shear-Thinning Fluids in Serpentine-Channel Micromixers
Authors: Rei-Tang Tsai, Chih-Yang Wu, Chia-Yuan Chang, Ming-Ying Kuo
Abstract:
This study aims to investigate the mixing behaviors of deionized (DI) water and carboxymethyl cellulose (CMC) solutions in C-shaped serpentine micromixers over a wide range of flow conditions. The flow of CMC solutions exhibits shear-thinning behaviors. Numerical simulations are performed to investigate the effects of the mean flow speed, fluid properties and geometry parameters on flow and mixing in the micromixers with the serpentine channel of the same overall channel length. From the results, we can find the following trends. When convection dominates fluid mixing, the curvature-induced vortices enhance fluid mixing effectively. The mixing efficiency of a micromixer consisting of semicircular C-shaped repeating units with a smaller centerline radius is better than that of a micromixer consisting of major segment repeating units with a larger centerline radius. The viscosity of DI water is less than the overall average apparent viscosity of CMC solutions, and so the effect of curvature-induced vortices on fluid mixing in DI water is larger than that in CMC solutions for the cases with the same mean flow speed.Keywords: Microfluidics, mixing, non-Newtonian fluids, curved channel, vortex.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19362099 A Fast Neural Algorithm for Serial Code Detection in a Stream of Sequential Data
Authors: Hazem M. El-Bakry, Qiangfu Zhao
Abstract:
In recent years, fast neural networks for object/face detection have been introduced based on cross correlation in the frequency domain between the input matrix and the hidden weights of neural networks. In our previous papers [3,4], fast neural networks for certain code detection was introduced. It was proved in [10] that for fast neural networks to give the same correct results as conventional neural networks, both the weights of neural networks and the input matrix must be symmetric. This condition made those fast neural networks slower than conventional neural networks. Another symmetric form for the input matrix was introduced in [1-9] to speed up the operation of these fast neural networks. Here, corrections for the cross correlation equations (given in [13,15,16]) to compensate for the symmetry condition are presented. After these corrections, it is proved mathematically that the number of computation steps required for fast neural networks is less than that needed by classical neural networks. Furthermore, there is no need for converting the input data into symmetric form. Moreover, such new idea is applied to increase the speed of neural networks in case of processing complex values. Simulation results after these corrections using MATLAB confirm the theoretical computations.
Keywords: Fast Code/Data Detection, Neural Networks, Cross Correlation, real/complex values.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16282098 Improve Safety Performance of Un-Signalized Intersections in Oman
Authors: Siham G. Farag
Abstract:
The main objective of this paper is to provide a new methodology for road safety assessment in Oman through the development of suitable accident prediction models. GLM technique with Poisson or NBR using SAS package was carried out to develop these models. The paper utilized the accidents data of 31 un-signalized T-intersections during three years. Five goodness-of-fit measures were used to assess the overall quality of the developed models. Two types of models were developed separately; the flow-based models including only traffic exposure functions, and the full models containing both exposure functions and other significant geometry and traffic variables. The results show that, traffic exposure functions produced much better fit to the accident data. The most effective geometric variables were major-road mean speed, minor-road 85th percentile speed, major-road lane width, distance to the nearest junction, and right-turn curb radius. The developed models can be used for intersection treatment or upgrading and specify the appropriate design parameters of T-intersections. Finally, the models presented in this thesis reflect the intersection conditions in Oman and could represent the typical conditions in several countries in the middle east area, especially gulf countries.
Keywords: Accidents Prediction Models (APMs), Generalized Linear Model (GLM), T-intersections, Oman.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20662097 Study of Storms on the Javits Center Green Roof
Authors: A. Cho, H. Sanyal, J. Cataldo
Abstract:
A quantitative analysis of the different variables on both the South and North green roofs of the Jacob K. Javits Convention Center was taken to find mathematical relationships between net radiation and evapotranspiration (ET), average outside temperature, and the lysimeter weight. Groups of datasets were analyzed, and the relationships were plotted on linear and semi-log graphs to find consistent relationships. Antecedent conditions for each rainstorm were also recorded and plotted against the volumetric water difference within the lysimeter. The first relation was the inverse parabolic relationship between the lysimeter weight and the net radiation and ET. The peaks and valleys of the lysimeter weight corresponded to valleys and peaks in the net radiation and ET respectively, with the 8/22/15 and 1/22/16 datasets showing this trend. The U-shaped and inverse U-shaped plots of the two variables coincided, indicating an inverse relationship between the two variables. Cross variable relationships were examined through graphs with lysimeter weight as the dependent variable on the y-axis. 10 out of 16 of the plots of lysimeter weight vs. outside temperature plots had R² values > 0.9. Antecedent conditions were also recorded for rainstorms, categorized by the amount of precipitation accumulating during the storm. Plotted against the change in the volumetric water weight difference within the lysimeter, a logarithmic regression was found with large R² values. The datasets were compared using the Mann Whitney U-test to see if the datasets were statistically different, using a significance level of 5%; all datasets compared showed a U test statistic value, proving the null hypothesis of the datasets being different from being true.
Keywords: Green roof, green infrastructure, Javits Center, evapotranspiration, net radiation, lysimeter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3782096 Semisolid Structure and Parameters for A360 Aluminum Alloy Prepared by Mechanical Stirring
Authors: MM.Kaykha, A. Kamarei, M. Safari, V. Arbabi
Abstract:
Semisolid metal processing uses solid–liquid slurries containing fine and globular solid particles uniformly distributed in a liquid matrix, which can be handled as a solid and flow like a liquid. In the recent years, many methods have been introduced for the production of semisolid slurries since it is scientifically sound and industrially viable with such preferred microstructures called thixotropic microstructures as feedstock materials. One such process that needs very low equipment investment and running costs is the cooling slope. In this research by using a mechanical stirrer slurry maker constructed by the authors, the effects of mechanical stirring parameters such as: stirring time, stirring temperature and stirring Speed on micro-structure and mechanical properties of A360 aluminum alloy in semi-solid forming, are investigated. It is determined that mold temperature and holding time of part in temperature of 580ºC have a great effect on micro-structure and mechanical properties(stirring temperature of 585ºC, stirring time of 20 minutes and stirring speed of 425 RPM). By optimizing the forming parameters, dendrite microstructure changes to globular and mechanical properties improves. This is because of breaking and globularzing dendrites of primary α-AL.Keywords: Semi-Solid Forming, Mechanical properties, Shear Rate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21872095 Superior Performances of the Neural Network on the Masses Lesions Classification through Morphological Lesion Differences
Authors: U. Bottigli, R.Chiarucci, B. Golosio, G.L. Masala, P. Oliva, S.Stumbo, D.Cascio, F. Fauci, M. Glorioso, M. Iacomi, R. Magro, G. Raso
Abstract:
Purpose of this work is to develop an automatic classification system that could be useful for radiologists in the breast cancer investigation. The software has been designed in the framework of the MAGIC-5 collaboration. In an automatic classification system the suspicious regions with high probability to include a lesion are extracted from the image as regions of interest (ROIs). Each ROI is characterized by some features based generally on morphological lesion differences. A study in the space features representation is made and some classifiers are tested to distinguish the pathological regions from the healthy ones. The results provided in terms of sensitivity and specificity will be presented through the ROC (Receiver Operating Characteristic) curves. In particular the best performances are obtained with the Neural Networks in comparison with the K-Nearest Neighbours and the Support Vector Machine: The Radial Basis Function supply the best results with 0.89 ± 0.01 of area under ROC curve but similar results are obtained with the Probabilistic Neural Network and a Multi Layer Perceptron.
Keywords: Neural Networks, K-Nearest Neighbours, Support Vector Machine, Computer Aided Detection
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16162094 Studies on the Characterization and Machinability of Duplex Stainless Steel 2205 during Dry Turning
Authors: Gaurav D. Sonawane, Vikas G. Sargade
Abstract:
The present investigation is a study of the effect of advanced Physical Vapor Deposition (PVD) coatings on cutting temperature residual stresses and surface roughness during Duplex Stainless Steel (DSS) 2205 turning. Austenite stabilizers like nickel, manganese, and molybdenum reduced the cost of DSS. Surface Integrity (SI) plays an important role in determining corrosion resistance and fatigue life. Resistance to various types of corrosion makes DSS suitable for applications with critical environments like Heat exchangers, Desalination plants, Seawater pipes and Marine components. However, lower thermal conductivity, poor chip control and non-uniform tool wear make DSS very difficult to machine. Cemented carbide tools (M grade) were used to turn DSS in a dry environment. AlTiN and AlTiCrN coatings were deposited using advanced PVD High Pulse Impulse Magnetron Sputtering (HiPIMS) technique. Experiments were conducted with cutting speed of 100 m/min, 140 m/min and 180 m/min. A constant feed and depth of cut of 0.18 mm/rev and 0.8 mm were used, respectively. AlTiCrN coated tools followed by AlTiN coated tools outperformed uncoated tools due to properties like lower thermal conductivity, higher adhesion strength and hardness. Residual stresses were found to be compressive for all the tools used for dry turning, increasing the fatigue life of the machined component. Higher cutting temperatures were observed for coated tools due to its lower thermal conductivity, which results in very less tool wear than uncoated tools. Surface roughness with uncoated tools was found to be three times higher than coated tools due to lower coefficient of friction of coating used.Keywords: Cutting temperatures, DSS2205, dry turning, HiPIMS, surface integrity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8862093 Fabrication of Carbon Doped TiO2 Nanotubes via In-situ Anodization of Ti-foil in Acidic Medium
Authors: Asma M. Milad, Mohammad B. Kassim, Wan R. Daud
Abstract:
Highly ordered TiO2 nanotube (TNT) arrays were fabricated onto a pre-treated titanium foil by anodic oxidation with a voltage of 20V in phosphoric acid/sodium fluoride electrolyte. A pretreatment of titanium foil involved washing with acetone, isopropanol, ethanol and deionized water. Carbon doped TiO2 nanotubes (C-TNT) was fabricated 'in-situ' with the same method in the presence of polyvinyl alcohol and urea as carbon sources. The affects of polyvinyl alcohol concentration and oxidation time on the composition, morphology and structure of the C-TN were studied by FE-SEM, EDX and XRD techniques. FESEM images of the nanotubes showed uniform arrays of C-TNTs. The density and microstructures of the nanotubes were greatly affected by the content of PVA. The introduction of the polyvinyl alcohol into the electrolyte increases the amount of C content inside TiO2 nanotube arrays uniformly. The influence of carbon content on the photo-current of C-TNT was investigated and the I-V profiles of the nanotubes were established. The preliminary results indicated that the 'in-situ' doping technique produced a superior quality nanotubes compared to post doping techniques.Keywords: Anodization, photoelectrochemical cell, 'in-situ', post doping, thin film, and titania nanotube arrays.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26142092 Machining Parameters Optimization of Developed Yttria Stabilized Zirconia Toughened Alumina Ceramic Inserts While Machining AISI 4340 Steel
Authors: Nilrudra Mandal, B Doloi, B Mondal
Abstract:
An attempt has been made to investigate the machinability of zirconia toughened alumina (ZTA) inserts while turning AISI 4340 steel. The insert was prepared by powder metallurgy process route and the machining experiments were performed based on Response Surface Methodology (RSM) design called Central Composite Design (CCD). The mathematical model of flank wear, cutting force and surface roughness have been developed using second order regression analysis. The adequacy of model has been carried out based on Analysis of variance (ANOVA) techniques. It can be concluded that cutting speed and feed rate are the two most influential factor for flank wear and cutting force prediction. For surface roughness determination, the cutting speed & depth of cut both have significant contribution. Key parameters effect on each response has also been presented in graphical contours for choosing the operating parameter preciously. 83% desirability level has been achieved using this optimized condition.Keywords: Analysis of variance (ANOVA), Central Composite Design (CCD), Response Surface Methodology (RSM), Zirconia Toughened Alumina (ZTA).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27832091 Design and Control Strategy of Diffused Air Aeration System
Authors: Doaa M. Atia, Faten H. Fahmy, Ninet M. Ahmed, Hassen T. Dorrah
Abstract:
During the past decade, pond aeration systems have been developed which will sustain large quantities of fish and invertebrate biomass. Dissolved Oxygen (DO) is considered to be among the most important water quality parameters in fish culture. Fishponds in aquaculture farms are usually located in remote areas where grid lines are at far distance. Aeration of ponds is required to prevent mortality and to intensify production, especially when feeding is practical, and in warm regions. To increase pond production it is necessary to control dissolved oxygen. Artificial intelligence (AI) techniques are becoming useful as alternate approaches to conventional techniques or as components of integrated systems. They have been used to solve complicated practical problems in various areas and are becoming more and more popular nowadays. This paper presents a new design of diffused aeration system using fuel cell as a power source. Also fuzzy logic control Technique (FLC) is used for controlling the speed of air flow rate from the blower to air piping connected to the pond by adjusting blower speed. MATLAB SIMULINK results show high performance of fuzzy logic control (FLC).Keywords: aeration system, Fuel cell, Artificial intelligence (AI) techniques, fuzzy logic control
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35162090 Result Validation Analysis of Steel Testing Machines
Authors: Wasiu O. Ajagbe, Habeeb O. Hamzat, Waris A. Adebisi
Abstract:
Structural failures occur due to a number of reasons. These may include under design, poor workmanship, substandard materials, misleading laboratory tests and lots more. Reinforcing steel bar is an important construction material, hence its properties must be accurately known before being utilized in construction. Understanding this property involves carrying out mechanical tests prior to design and during construction to ascertain correlation using steel testing machine which is usually not readily available due to the location of project. This study was conducted to determine the reliability of reinforcing steel testing machines. Reconnaissance survey was conducted to identify laboratories where yield and ultimate tensile strengths tests can be carried out. Six laboratories were identified within Ibadan and environs. However, only four were functional at the time of the study. Three steel samples were tested for yield and tensile strengths, using a steel testing machine, at each of the four laboratories (LM, LO, LP and LS). The yield and tensile strength results obtained from the laboratories were compared with the manufacturer’s specification using a reliability analysis programme. Structured questionnaire was administered to the operators in each laboratory to consider their impact on the test results. The average value of manufacturers’ tensile strength and yield strength are 673.7 N/mm2 and 559.7 N/mm2 respectively. The tensile strength obtained from the four laboratories LM, LO, LP and LS are given as 579.4, 652.7, 646.0 and 649.9 N/mm2 respectively while their yield strengths respectively are 453.3, 597.0, 550.7 and 564.7 N/mm2. Minimum tensile to yield strength ratio is 1.08 for BS 4449: 2005 and 1.15 for ASTM A615. Tensile to yield strength ratio from the four laboratories are 1.28, 1.09, 1.17 and 1.15 for LM, LO, LP and LS respectively. The tensile to yield strength ratio shows that the result obtained from all the laboratories meet the code requirements used for the test. The result of the reliability test shows varying level of reliability between the manufacturers’ specification and the result obtained from the laboratories. Three of the laboratories; LO, LS and LP have high value of reliability with the manufacturer i.e. 0.798, 0.866 and 0.712 respectively. The fourth laboratory, LM has a reliability value of 0.100. Steel test should be carried out in a laboratory using the same code in which the structural design was carried out. More emphasis should be laid on the importance of code provisions.
Keywords: Reinforcing steel bars, reliability analysis, tensile strength, universal testing machine, yield strength.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7502089 Comparison of Deep Convolutional Neural Networks Models for Plant Disease Identification
Authors: Megha Gupta, Nupur Prakash
Abstract:
Identification of plant diseases has been performed using machine learning and deep learning models on the datasets containing images of healthy and diseased plant leaves. The current study carries out an evaluation of some of the deep learning models based on convolutional neural network architectures for identification of plant diseases. For this purpose, the publicly available New Plant Diseases Dataset, an augmented version of PlantVillage dataset, available on Kaggle platform, containing 87,900 images has been used. The dataset contained images of 26 diseases of 14 different plants and images of 12 healthy plants. The CNN models selected for the study presented in this paper are AlexNet, ZFNet, VGGNet (four models), GoogLeNet, and ResNet (three models). The selected models are trained using PyTorch, an open-source machine learning library, on Google Colaboratory. A comparative study has been carried out to analyze the high degree of accuracy achieved using these models. The highest test accuracy and F1-score of 99.59% and 0.996, respectively, were achieved by using GoogLeNet with Mini-batch momentum based gradient descent learning algorithm.
Keywords: comparative analysis, convolutional neural networks, deep learning, plant disease identification
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 638