Search results for: neural machine translation
1216 Cognition of Driving Context for Driving Assistance
Authors: Manolo Dulva Hina, Clement Thierry, Assia Soukane, Amar Ramdane-Cherif
Abstract:
In this paper, we presented our innovative way of determining the driving context for a driving assistance system. We invoke the fusion of all parameters that describe the context of the environment, the vehicle and the driver to obtain the driving context. We created a training set that stores driving situation patterns and from which the system consults to determine the driving situation. A machine-learning algorithm predicts the driving situation. The driving situation is an input to the fission process that yields the action that must be implemented when the driver needs to be informed or assisted from the given the driving situation. The action may be directed towards the driver, the vehicle or both. This is an ongoing work whose goal is to offer an alternative driving assistance system for safe driving, green driving and comfortable driving. Here, ontologies are used for knowledge representation.Keywords: Cognitive driving, intelligent transportation system, multimodal system, ontology, machine learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14661215 Global Electricity Consumption Estimation Using Particle Swarm Optimization (PSO)
Authors: E.Assareh, M.A. Behrang, R. Assareh, N. Hedayat
Abstract:
An integrated Artificial Neural Network- Particle Swarm Optimization (PSO) is presented for analyzing global electricity consumption. To aim this purpose, following steps are done: STEP 1: in the first step, PSO is applied in order to determine world-s oil, natural gas, coal and primary energy demand equations based on socio-economic indicators. World-s population, Gross domestic product (GDP), oil trade movement and natural gas trade movement are used as socio-economic indicators in this study. For each socio-economic indicator, a feed-forward back propagation artificial neural network is trained and projected for future time domain. STEP 2: in the second step, global electricity consumption is projected based on the oil, natural gas, coal and primary energy consumption using PSO. global electricity consumption is forecasted up to year 2040.
Keywords: Particle Swarm Optimization, Artificial NeuralNetworks, Fossil Fuels, Electricity, Forecasting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15151214 Experimental Investigation of a Novel Reaction in Reduction of Sulfates by Natural Gas as a Reducing Agent
Authors: Ali Ghiaseddin , Akram Nemati
Abstract:
In a pilot plant scale of a fluidized bed reactor, a reduction reaction of sodium sulfate by natural gas has been investigated. Natural gas is applied in this study as a reductant. Feed density, feed mass flow rate, natural gas and air flow rate (independent parameters)and temperature of bed and CO concentration in inlet and outlet of reactor (dependent parameters) were monitored and recorded at steady state. The residence time was adjusted close to value of traditional reaction [1]. An artificial neural network (ANN) was established to study dependency of yield and carbon gradient on operating parameters. Resultant 97% accuracy of applied ANN is a good prove that natural gas can be used as a reducing agent. Predicted ANN model for relation between other sources carbon gradient (accuracy 74%) indicates there is not a meaningful relation between other sources carbon variation and reduction process which means carbon in granule does not have significant effect on the reaction yield.Keywords: reduction by natural gas, fluidized bed, sulfate, sulfide, artificial neural network
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15321213 Robust Heart Sounds Segmentation Based on the Variation of the Phonocardiogram Curve Length
Authors: Mecheri Zeid Belmecheri, Maamar Ahfir, Izzet Kale
Abstract:
Automatic cardiac auscultation is still a subject of research in order to establish an objective diagnosis. Recorded heart sounds as Phonocardiogram (PCG) signals can be used for automatic segmentation into components that have clinical meanings. These are the first sound, S1, the second sound, S2, and the systolic and diastolic components, respectively. In this paper, an automatic method is proposed for the robust segmentation of heart sounds. This method is based on calculating an intermediate sawtooth-shaped signal from the length variation of the recorded PCG signal in the time domain and, using its positive derivative function that is a binary signal in training a Recurrent Neural Network (RNN). Results obtained in the context of a large database of recorded PCGs with their simultaneously recorded Electrocardiograms (ECGs) from different patients in clinical settings, including normal and abnormal subjects, show on average a segmentation testing performance average of 76% sensitivity and 94% specificity.
Keywords: Heart sounds, PCG segmentation, event detection, Recurrent Neural Networks, PCG curve length.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3391212 Forecasting Electricity Spot Price with Generalized Long Memory Modeling: Wavelet and Neural Network
Authors: Souhir Ben Amor, Heni Boubaker, Lotfi Belkacem
Abstract:
This aims of this paper is to forecast the electricity spot prices. First, we focus on modeling the conditional mean of the series so we adopt a generalized fractional -factor Gegenbauer process (k-factor GARMA). Secondly, the residual from the -factor GARMA model has used as a proxy for the conditional variance; these residuals were predicted using two different approaches. In the first approach, a local linear wavelet neural network model (LLWNN) has developed to predict the conditional variance using the Back Propagation learning algorithms. In the second approach, the Gegenbauer generalized autoregressive conditional heteroscedasticity process (G-GARCH) has adopted, and the parameters of the k-factor GARMA-G-GARCH model has estimated using the wavelet methodology based on the discrete wavelet packet transform (DWPT) approach. The empirical results have shown that the k-factor GARMA-G-GARCH model outperform the hybrid k-factor GARMA-LLWNN model, and find it is more appropriate for forecasts.Keywords: k-factor, GARMA, LLWNN, G-GARCH, electricity price, forecasting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10031211 Evaluation of New Product Development Projects using Artificial Intelligence and Fuzzy Logic
Authors: Orhan Feyzioğlu, Gülçin Büyüközkan
Abstract:
As a vital activity for companies, new product development (NPD) is also a very risky process due to the high uncertainty degree encountered at every development stage and the inevitable dependence on how previous steps are successfully accomplished. Hence, there is an apparent need to evaluate new product initiatives systematically and make accurate decisions under uncertainty. Another major concern is the time pressure to launch a significant number of new products to preserve and increase the competitive power of the company. In this work, we propose an integrated decision-making framework based on neural networks and fuzzy logic to make appropriate decisions and accelerate the evaluation process. We are especially interested in the two initial stages where new product ideas are selected (go/no go decision) and the implementation order of the corresponding projects are determined. We show that this two-staged intelligent approach allows practitioners to roughly and quickly separate good and bad product ideas by making use of previous experiences, and then, analyze a more shortened list rigorously.Keywords: Decision Making, Neural Networks, Fuzzy Theory and Systems, Choquet Integral, New Product Development.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28451210 Evaluation of the ANN Based Nonlinear System Models in the MSE and CRLB Senses
Authors: M.V Rajesh, Archana R, A Unnikrishnan, R Gopikakumari, Jeevamma Jacob
Abstract:
The System Identification problem looks for a suitably parameterized model, representing a given process. The parameters of the model are adjusted to optimize a performance function based on error between the given process output and identified process output. The linear system identification field is well established with many classical approaches whereas most of those methods cannot be applied for nonlinear systems. The problem becomes tougher if the system is completely unknown with only the output time series is available. It has been reported that the capability of Artificial Neural Network to approximate all linear and nonlinear input-output maps makes it predominantly suitable for the identification of nonlinear systems, where only the output time series is available. [1][2][4][5]. The work reported here is an attempt to implement few of the well known algorithms in the context of modeling of nonlinear systems, and to make a performance comparison to establish the relative merits and demerits.Keywords: Multilayer neural networks, Radial Basis Functions, Clustering algorithm, Back Propagation training, Extended Kalmanfiltering, Mean Square Error, Nonlinear Modeling, Cramer RaoLower Bound.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16561209 GSM-Based Approach for Indoor Localization
Authors: M.Stella, M. Russo, D. Begušić
Abstract:
Ability of accurate and reliable location estimation in indoor environment is the key issue in developing great number of context aware applications and Location Based Services (LBS). Today, the most viable solution for localization is the Received Signal Strength (RSS) fingerprinting based approach using wireless local area network (WLAN). This paper presents two RSS fingerprinting based approaches – first we employ widely used WLAN based positioning as a reference system and then investigate the possibility of using GSM signals for positioning. To compare them, we developed a positioning system in real world environment, where realistic RSS measurements were collected. Multi-Layer Perceptron (MLP) neural network was used as the approximation function that maps RSS fingerprints and locations. Experimental results indicate advantage of WLAN based approach in the sense of lower localization error compared to GSM based approach, but GSM signal coverage by far outreaches WLAN coverage and for some LBS services requiring less precise accuracy our results indicate that GSM positioning can also be a viable solution.Keywords: Indoor positioning, WLAN, GSM, RSS, location fingerprints, neural network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27551208 Artificial Neural Network Modeling of a Closed Loop Pulsating Heat Pipe
Authors: Vipul M. Patel, Hemantkumar B. Mehta
Abstract:
Technological innovations in electronic world demand novel, compact, simple in design, less costly and effective heat transfer devices. Closed Loop Pulsating Heat Pipe (CLPHP) is a passive phase change heat transfer device and has potential to transfer heat quickly and efficiently from source to sink. Thermal performance of a CLPHP is governed by various parameters such as number of U-turns, orientations, input heat, working fluids and filling ratio. The present paper is an attempt to predict the thermal performance of a CLPHP using Artificial Neural Network (ANN). Filling ratio and heat input are considered as input parameters while thermal resistance is set as target parameter. Types of neural networks considered in the present paper are radial basis, generalized regression, linear layer, cascade forward back propagation, feed forward back propagation; feed forward distributed time delay, layer recurrent and Elman back propagation. Linear, logistic sigmoid, tangent sigmoid and Radial Basis Gaussian Function are used as transfer functions. Prediction accuracy is measured based on the experimental data reported by the researchers in open literature as a function of Mean Absolute Relative Deviation (MARD). The prediction of a generalized regression ANN model with spread constant of 4.8 is found in agreement with the experimental data for MARD in the range of ±1.81%.
Keywords: ANN models, CLPHP, filling ratio, generalized regression, spread constant.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11901207 Effectiveness Evaluation of a Machine Design Process Based on the Computation of the Specific Output
Authors: Barenten Suciu
Abstract:
In this paper, effectiveness of a machine design process is evaluated on the basis of the specific output calculus. Concretely, a screw-worm gear mechanical transmission is designed by using the classical and the 3D-CAD methods. Strength analysis and drawing of the designed parts is substantially aided by employing the SolidWorks software. Quality of the design process is assessed by manufacturing (printing) the parts, and by computing the efficiency, specific load, as well as the specific output (work) of the mechanical transmission. Influence of the stroke, travelling velocity and load on the mechanical output, is emphasized. Optimal design of the mechanical transmission becomes possible by the appropriate usage of the acquired results.
Keywords: Mechanical transmission, design, screw, worm-gear, efficiency, specific output, 3D-printing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9441206 Hand Controlled Mobile Robot Applied in Virtual Environment
Authors: Jozsef Katona, Attila Kovari, Tibor Ujbanyi, Gergely Sziladi
Abstract:
By the development of IT systems, human-computer interaction is also developing even faster and newer communication methods become available in human-machine interaction. In this article, the application of a hand gesture controlled human-computer interface is being introduced through the example of a mobile robot. The control of the mobile robot is implemented in a realistic virtual environment that is advantageous regarding the aspect of different tests, parallel examinations, so the purchase of expensive equipment is unnecessary. The usability of the implemented hand gesture control has been evaluated by test subjects. According to the opinion of the testing subjects, the system can be well used, and its application would be recommended on other application fields too.
Keywords: Human-machine interface, hand control, mobile robot, virtual environment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10161205 Optimal Current Control of Externally Excited Synchronous Machines in Automotive Traction Drive Applications
Authors: Oliver Haala, Bernhard Wagner, Maximilian Hofmann, Martin Marz
Abstract:
The excellent suitability of the externally excited synchronous machine (EESM) in automotive traction drive applications is justified by its high efficiency over the whole operation range and the high availability of materials. Usually, maximum efficiency is obtained by modelling each single loss and minimizing the sum of all losses. As a result, the quality of the optimization highly depends on the precision of the model. Moreover, it requires accurate knowledge of the saturation dependent machine inductances. Therefore, the present contribution proposes a method to minimize the overall losses of a salient pole EESM and its inverter in steady state operation based on measurement data only. Since this method does not require any manufacturer data, it is well suited for an automated measurement data evaluation and inverter parametrization. The field oriented control (FOC) of an EESM provides three current components resp. three degrees of freedom (DOF). An analytic minimization of the copper losses in the stator and the rotor (assuming constant inductances) is performed and serves as a first approximation of how to choose the optimal current reference values. After a numeric offline minimization of the overall losses based on measurement data the results are compared to a control strategy that satisfies cos (ϕ) = 1.
Keywords: Current control, efficiency, externally excited synchronous machine, optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 44271204 A Survey in Techniques for Imbalanced Intrusion Detection System Datasets
Authors: Najmeh Abedzadeh, Matthew Jacobs
Abstract:
An intrusion detection system (IDS) is a software application that monitors malicious activities and generates alerts if any are detected. However, most network activities in IDS datasets are normal, and the relatively few numbers of attacks make the available data imbalanced. Consequently, cyber-attacks can hide inside a large number of normal activities, and machine learning algorithms have difficulty learning and classifying the data correctly. In this paper, a comprehensive literature review is conducted on different types of algorithms for both implementing the IDS and methods in correcting the imbalanced IDS dataset. The most famous algorithms are machine learning (ML), deep learning (DL), synthetic minority over-sampling technique (SMOTE), and reinforcement learning (RL). Most of the research use the CSE-CIC-IDS2017, CSE-CIC-IDS2018, and NSL-KDD datasets for evaluating their algorithms.
Keywords: IDS, intrusion detection system, imbalanced datasets, sampling algorithms, big data.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11461203 Machine Learning Methods for Network Intrusion Detection
Authors: Mouhammad Alkasassbeh, Mohammad Almseidin
Abstract:
Network security engineers work to keep services available all the time by handling intruder attacks. Intrusion Detection System (IDS) is one of the obtainable mechanisms that is used to sense and classify any abnormal actions. Therefore, the IDS must be always up to date with the latest intruder attacks signatures to preserve confidentiality, integrity, and availability of the services. The speed of the IDS is a very important issue as well learning the new attacks. This research work illustrates how the Knowledge Discovery and Data Mining (or Knowledge Discovery in Databases) KDD dataset is very handy for testing and evaluating different Machine Learning Techniques. It mainly focuses on the KDD preprocess part in order to prepare a decent and fair experimental data set. The J48, MLP, and Bayes Network classifiers have been chosen for this study. It has been proven that the J48 classifier has achieved the highest accuracy rate for detecting and classifying all KDD dataset attacks, which are of type DOS, R2L, U2R, and PROBE.
Keywords: IDS, DDoS, MLP, KDD.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7371202 Intelligent Modeling of the Electrical Activity of the Human Heart
Authors: Lambros V. Skarlas, Grigorios N. Beligiannis, Efstratios F. Georgopoulos, Adam V. Adamopoulos
Abstract:
The aim of this contribution is to present a new approach in modeling the electrical activity of the human heart. A recurrent artificial neural network is being used in order to exhibit a subset of the dynamics of the electrical behavior of the human heart. The proposed model can also be used, when integrated, as a diagnostic tool of the human heart system. What makes this approach unique is the fact that every model is being developed from physiological measurements of an individual. This kind of approach is very difficult to apply successfully in many modeling problems, because of the complexity and entropy of the free variables describing the complex system. Differences between the modeled variables and the variables of an individual, measured at specific moments, can be used for diagnostic purposes. The sensor fusion used in order to optimize the utilization of biomedical sensors is another point that this paper focuses on. Sensor fusion has been known for its advantages in applications such as control and diagnostics of mechanical and chemical processes.Keywords: Artificial Neural Networks, Diagnostic System, Health Condition Modeling Tool, Heart Diagnostics Model, Heart Electricity Model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18381201 Coordinated Q–V Controller for Multi-machine Steam Power Plant: Design and Validation
Authors: Jasna Dragosavac, Žarko Janda, J.V. Milanović, Dušan Arnautović
Abstract:
This paper discusses coordinated reactive power - voltage (Q-V) control in a multi machine steam power plant. The drawbacks of manual Q-V control are briefly listed, and the design requirements for coordinated Q-V controller are specified. Theoretical background and mathematical model of the new controller are presented next followed by validation of developed Matlab/Simulink model through comparison with recorded responses in real steam power plant and description of practical realisation of the controller. Finally, the performance of commissioned controller is illustrated on several examples of coordinated Q-V control in real steam power plant and compared with manual control.Keywords: Coordinated Voltage Control, Power Plant Control, Reactive Power Control, Sensitivity Matrix
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21941200 Transient Thermal Modeling of an Axial Flux Permanent Magnet (AFPM) Machine Using a Hybrid Thermal Model
Authors: J. Hey, D. A. Howey, R. Martinez-Botas, M. Lamperth
Abstract:
This paper presents the development of a hybrid thermal model for the EVO Electric AFM 140 Axial Flux Permanent Magnet (AFPM) machine as used in hybrid and electric vehicles. The adopted approach is based on a hybrid lumped parameter and finite difference method. The proposed method divides each motor component into regular elements which are connected together in a thermal resistance network representing all the physical connections in all three dimensions. The element shape and size are chosen according to the component geometry to ensure consistency. The fluid domain is lumped into one region with averaged heat transfer parameters connecting it to the solid domain. Some model parameters are obtained from Computation Fluid Dynamic (CFD) simulation and empirical data. The hybrid thermal model is described by a set of coupled linear first order differential equations which is discretised and solved iteratively to obtain the temperature profile. The computation involved is low and thus the model is suitable for transient temperature predictions. The maximum error in temperature prediction is 3.4% and the mean error is consistently lower than the mean error due to uncertainty in measurements. The details of the model development, temperature predictions and suggestions for design improvements are presented in this paper.Keywords: Electric vehicle, hybrid thermal model, transient temperature prediction, Axial Flux Permanent Magnet machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21651199 Machine Learning Based Approach for Measuring Promotion Effectiveness in Multiple Parallel Promotions’ Scenarios
Authors: Revoti Prasad Bora, Nikita Katyal
Abstract:
Promotion is a key element in the retail business. Thus, analysis of promotions to quantify their effectiveness in terms of Revenue and/or Margin is an essential activity in the retail industry. However, measuring the sales/revenue uplift is based on estimations, as the actual sales/revenue without the promotion is not present. Further, the presence of Halo and Cannibalization in a multiple parallel promotions’ scenario complicates the problem. Calculating Baseline by considering inter-brand/competitor items or using Halo and Cannibalization's impact on Revenue calculations by considering Baseline as an interpretation of items’ unit sales in neighboring nonpromotional weeks individually may not capture the overall Revenue uplift in the case of multiple parallel promotions. Hence, this paper proposes a Machine Learning based method for calculating the Revenue uplift by considering the Halo and Cannibalization impact on the Baseline and the Revenue. In the first section of the proposed methodology, Baseline of an item is calculated by incorporating the impact of the promotions on its related items. In the later section, the Revenue of an item is calculated by considering both Halo and Cannibalization impacts. Hence, this methodology enables correct calculation of the overall Revenue uplift due a given promotion.
Keywords: Halo, cannibalization, promotion, baseline, temporary price reduction, retail, elasticity, cross price elasticity, machine learning, random forest, linear regression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13451198 A Medical Resource Forecasting Model for Emergency Room Patients with Acute Hepatitis
Authors: R. J. Kuo, W. C. Cheng, W. C. Lien, T. J. Yang
Abstract:
Taiwan is a hyper endemic area for the Hepatitis B virus (HBV). The estimated total number of HBsAg carriers in the general population who are more than 20 years old is more than 3 million. Therefore, a case record review is conducted from January 2003 to June 2007 for all patients with a diagnosis of acute hepatitis who were admitted to the Emergency Department (ED) of a well-known teaching hospital. The cost for the use of medical resources is defined as the total medical fee. In this study, principal component analysis (PCA) is firstly employed to reduce the number of dimensions. Support vector regression (SVR) and artificial neural network (ANN) are then used to develop the forecasting model. A total of 117 patients meet the inclusion criteria. 61% patients involved in this study are hepatitis B related. The computational result shows that the proposed PCA-SVR model has superior performance than other compared algorithms. In conclusion, the Child-Pugh score and echogram can both be used to predict the cost of medical resources for patients with acute hepatitis in the ED.
Keywords: Acute hepatitis, Medical resource cost, Artificial neural network, Support vector regression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19231197 Design, Fabrication and Performance Evaluation of Mobile Engine-Driven Pneumatic Paddy Collector
Authors: Sony P. Aquino, Helen F. Gavino, Victorino T. Taylan, Teresito G. Aguinaldo
Abstract:
A simple mobile engine-driven pneumatic paddy collector made of locally available materials using local manufacturing technology was designed, fabricated, and tested for collecting and bagging of paddy dried on concrete pavement. The pneumatic paddy collector had the following major components: radial flat bladed type centrifugal fan, power transmission system, bagging area, frame and the conveyance system. Results showed significant differences on the collecting capacity, noise level, and fuel consumption when rotational speed of the air mover shaft was varied. Other parameters such as collecting efficiency, air velocity, augmented cracked grain percentage, and germination rate were not significantly affected by varying rotational speed of the air mover shaft. The pneumatic paddy collector had a collecting efficiency of 99.33 % with a collecting capacity of 2685.00 kg/h at maximum rotational speed of centrifugal fan shaft of about 4200 rpm. The machine entailed an investment cost of P 62,829.25. The break-even weight of paddy was 510,606.75 kg/yr at a collecting cost of 0.11 P/kg of paddy. Utilizing the machine for 400 hours per year generated an income of P 23,887.73. The projected time needed to recover cost of the machine based on 2685 kg/h collecting capacity was 2.63 year.
Keywords: Mobile engine-driven pneumatic paddy collector, collecting capacity and efficiency, simple cost analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 55471196 Agent-Based Simulation of Simulating Anticipatory Systems – Classification
Authors: Eugene Kindler
Abstract:
The present paper is oriented to classification and application of agent technique in simulation of anticipatory systems, namely those that use simulation models for the aid of anticipation. The main ideas root in the fact that the best way for description of computer simulation models is the technique of describing the simulated system itself (and the translation into the computer code is provided as automatic), and that the anticipation itself is often nested.
Keywords: Agents, Anticipatory systems, Discrete eventsimulation, Simula, Taxonomy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15671195 The Role of Planning and Memory in the Navigational Ability
Authors: Greeshma Sharma, Sushil Chandra, Vijander Singh, Alok Prakash Mittal
Abstract:
Navigational ability requires spatial representation, planning, and memory. It covers three interdependent domains, i.e. cognitive and perceptual factors, neural information processing, and variability in brain microstructure. Many attempts have been made to see the role of spatial representation in the navigational ability, and the individual differences have been identified in the neural substrate. But, there is also a need to address the influence of planning, memory on navigational ability. The present study aims to evaluate relations of aforementioned factors in the navigational ability. Total 30 participants volunteered in the study of a virtual shopping complex and subsequently were classified into good and bad navigators based on their performances. The result showed that planning ability was the most correlated factor for the navigational ability and also the discriminating factor between the good and bad navigators. There was also found the correlations between spatial memory recall and navigational ability. However, non-verbal episodic memory and spatial memory recall were also found to be correlated with the learning variable. This study attempts to identify differences between people with more and less navigational ability on the basis of planning and memory.
Keywords: Memory, planning navigational ability, virtual reality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14471194 Web Pages Aesthetic Evaluation Using Low-Level Visual Features
Authors: Maryam Mirdehghani, S. Amirhassan Monadjemi
Abstract:
Web sites are rapidly becoming the preferred media choice for our daily works such as information search, company presentation, shopping, and so on. At the same time, we live in a period where visual appearances play an increasingly important role in our daily life. In spite of designers- effort to develop a web site which be both user-friendly and attractive, it would be difficult to ensure the outcome-s aesthetic quality, since the visual appearance is a matter of an individual self perception and opinion. In this study, it is attempted to develop an automatic system for web pages aesthetic evaluation which are the building blocks of web sites. Based on the image processing techniques and artificial neural networks, the proposed method would be able to categorize the input web page according to its visual appearance and aesthetic quality. The employed features are multiscale/multidirectional textural and perceptual color properties of the web pages, fed to perceptron ANN which has been trained as the evaluator. The method is tested using university web sites and the results suggested that it would perform well in the web page aesthetic evaluation tasks with around 90% correct categorization.Keywords: Web Page Design, Web Page Aesthetic, Color Spaces, Texture, Neural Networks
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16481193 Stable Tending Control of Complex Power Systems: An Example of Localized Design of Power System Stabilizers
Authors: Wenjuan Du
Abstract:
The phase compensation method was proposed based on the concept of the damping torque analysis (DTA). It is a method for the design of a PSS (power system stabilizer) to suppress local-mode power oscillations in a single-machine infinite-bus power system. This paper presents the application of the phase compensation method for the design of a PSS in a multi-machine power system. The application is achieved by examining the direct damping contribution of the stabilizer to the power oscillations. By using linearized equal area criterion, a theoretical proof to the application for the PSS design is presented. Hence PSS design in the paper is an example of stable tending control by localized method.
Keywords: Phase compensation method, power system small-signal stability, power system stabilizer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9881192 Vision-based Network System for Industrial Applications
Authors: Taweepol Suesut, Arjin Numsomran, Vittaya Tipsuwanporn
Abstract:
This paper presents the communication network for machine vision system to implement to control systems and logistics applications in industrial environment. The real-time distributed over the network is very important for communication among vision node, image processing and control as well as the distributed I/O node. A robust implementation both with respect to camera packaging and data transmission has been accounted. This network consists of a gigabit Ethernet network and a switch with integrated fire-wall is used to distribute the data and provide connection to the imaging control station and IEC-61131 conform signal integration comprising the Modbus TCP protocol. The real-time and delay time properties each part on the network were considered and worked out in this paper.Keywords: Distributed Real-Time Automation, Machine Visionand Ethernet.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16741191 New VLSI Architecture for Motion Estimation Algorithm
Authors: V. S. K. Reddy, S. Sengupta, Y. M. Latha
Abstract:
This paper presents an efficient VLSI architecture design to achieve real time video processing using Full-Search Block Matching (FSBM) algorithm. The design employs parallel bank architecture with minimum latency, maximum throughput, and full hardware utilization. We use nine parallel processors in our architecture and each controlled by a state machine. State machine control implementation makes the design very simple and cost effective. The design is implemented using VHDL and the programming techniques we incorporated makes the design completely programmable in the sense that the search ranges and the block sizes can be varied to suit any given requirements. The design can operate at frequencies up to 36 MHz and it can function in QCIF and CIF video resolution at 1.46 MHz and 5.86 MHz, respectively.Keywords: Video Coding, Motion Estimation, Full-Search, Block-Matching, VLSI Architecture.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18161190 Tongue Diagnosis System Based on PCA and SVM
Authors: Jin-Woong Park, Sun-Kyung Kang, Sung-Tae Jung
Abstract:
In this study, we propose a tongue diagnosis method which detects the tongue from face image and divides the tongue area into six areas, and finally generates tongue coating ratio of each area. To detect the tongue area from face image, we use ASM as one of the active shape models. Detected tongue area is divided into six areas widely used in the Korean traditional medicine and the distribution of tongue coating of the six areas is examined by SVM(Support Vector Machine). For SVM, we use a 3-dimensional vector calculated by PCA(Principal Component Analysis) from a 12-dimentional vector consisting of RGB, HIS, Lab, and Luv. As a result, we detected the tongue area stably using ASM and found that PCA and SVM helped raise the ratio of tongue coating detection.Keywords: Active Shape Model, Principal Component Analysis, Support Vector Machine, Tongue diagnosis
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18741189 Low cost Nano-membrane Fabrication and Electro-polishing System
Authors: Ajab Khan Kasi, Muhammad Waseem Ashraf, Jafar Khan Kasi, Shahzadi Tayyaba, NitinAfzulpurkar
Abstract:
This paper presents the development of low cost Nano membrane fabrication system. The system is specially designed for anodic aluminum oxide membrane. This system is capable to perform the processes such as anodization and electro-polishing. The designed machine was successfully tested for 'mild anodization' (MA) for 48 hours and 'hard anodization' (HA) for 3 hours at constant 0oC. The system is digitally controlled and guided for temperature maintenance during anodization and electro-polishing. The total cost of the developed machine is 20 times less than the multi-cooling systems available in the market which are generally used for this purpose.
Keywords: Anodic aluminum oxide, Nano-membrane, hardanodization, mild anodization, electro-polishing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21311188 Hybrid Approach for Software Defect Prediction Using Machine Learning with Optimization Technique
Authors: C. Manjula, Lilly Florence
Abstract:
Software technology is developing rapidly which leads to the growth of various industries. Now-a-days, software-based applications have been adopted widely for business purposes. For any software industry, development of reliable software is becoming a challenging task because a faulty software module may be harmful for the growth of industry and business. Hence there is a need to develop techniques which can be used for early prediction of software defects. Due to complexities in manual prediction, automated software defect prediction techniques have been introduced. These techniques are based on the pattern learning from the previous software versions and finding the defects in the current version. These techniques have attracted researchers due to their significant impact on industrial growth by identifying the bugs in software. Based on this, several researches have been carried out but achieving desirable defect prediction performance is still a challenging task. To address this issue, here we present a machine learning based hybrid technique for software defect prediction. First of all, Genetic Algorithm (GA) is presented where an improved fitness function is used for better optimization of features in data sets. Later, these features are processed through Decision Tree (DT) classification model. Finally, an experimental study is presented where results from the proposed GA-DT based hybrid approach is compared with those from the DT classification technique. The results show that the proposed hybrid approach achieves better classification accuracy.
Keywords: Decision tree, genetic algorithm, machine learning, software defect prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14751187 A Survey on Ambient Intelligence in Agricultural Technology
Abstract:
Despite the advances made in various new technologies, application of these technologies for agriculture still remains a formidable task, as it involves integration of diverse domains for monitoring the different process involved in agricultural management. Advances in ambient intelligence technology represents one of the most powerful technology for increasing the yield of agricultural crops and to mitigate the impact of water scarcity, climatic change and methods for managing pests, weeds and diseases. This paper proposes a GPS-assisted, machine to machine solutions that combine information collected by multiple sensors for the automated management of paddy crops. To maintain the economic viability of paddy cultivation, the various techniques used in agriculture are discussed and a novel system which uses ambient intelligence technique is proposed in this paper. The ambient intelligence based agricultural system gives a great scope.Keywords: Ambient Intelligence, Agricultural technology, smart agriculture, precise farming.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2213