

Abstract—This paper presents an efficient VLSI architecture

design to achieve real time video processing using Full-Search Block
Matching (FSBM) algorithm. The design employs parallel bank
architecture with minimum latency, maximum throughput, and full
hardware utilization. We use nine parallel processors in our
architecture and each controlled by a state machine. State machine
control implementation makes the design very simple and cost
effective. The design is implemented using VHDL and the
programming techniques we incorporated makes the design
completely programmable in the sense that the search ranges and the
block sizes can be varied to suit any given requirements. The design
can operate at frequencies up to 36 MHz and it can function in QCIF
and CIF video resolution at 1.46 MHz and 5.86 MHz, respectively.

Keywords—Video Coding, Motion Estimation, Full-Search,
Block-Matching, VLSI Architecture.

I. INTRODUCTION
ITH the growing need of real-time video applications,
video compression plays a vital role in achieving

bandwidth efficiency for both transmission and storage and
efficient motion estimation is a key factor for achieving
enhanced compression ratio. However, motion estimation
involves high computational complexity, causing bottleneck in
the real-time applications. To meet real-time processing needs,
several motion vector search strategies and hardware designs
have been proposed. These primarily focus on reducing the
number of Sum-of-Absolute-Difference (SAD) operations at
the cost of controller complexity. One of the main design
goals is to reduce the computational complexity and power
consumptions, without sacrificing image quality. Some
algorithms and architectures succeeded in reducing power
consumption and satisfied the required performance.

The simplest and most effective method of motion
estimation is to exhaustively compare each NxN macro block
of the current frame with all the candidate blocks in the search
window defined with in the previous processed frame and find

Manuscript received January 8, 2007. This work was supported in part by
the World Bank Project under Grant for TEQIP.

Vustikayala Sivakumar Reddy is with the Sreenidhi Institute of Science
and Technology, JNT University, Hyderabad, 501301, India (phone: 91-8415-
223001; e-mail: vskreddy2003@yahoo.com).

Somnath Sengupta is with the Department of Electronics and Electrical
Communication Engineering, Indian Institute of Technology, Kharagpur,
721302, India (phone: 91-3222-255321; e-mail: ssg@ece.iitkgp.ernet.in).

Y. Madhavee Latha is with the G. Narayanamma Institute of Technology
and Science, JNT University, Hyderabad, 500008, India (phone: 91-40-
23565648; e-mail: madhuvsk2003@yahoo.co.in).

the best matching position with the lowest distortion. This is
called Full Search Block Matching algorithm (FSBM)
algorithm. A full search block matching process with a search
range p has a search window of size (2p+N) x (2p+N) pixels
and a total of (2p+1)2 candidate blocks in the reference frame
for each block of the current frame. The distortion values are
computed for each of the candidate blocks and its minimum
value is found from the set of (2p+1)2 candidate blocks. The
distortion measure is Sum of Absolute Difference for its
simplicity, in which the candidate block with minimum
amount of distortion is considered as the best-match.

To achieve a best trade-off between the computational
complexity of FSBM and degraded PSNR of motion
compensated frame using faster algorithms, recently some
researchers have investigated reduction of computational
complexities of FSBM [1]-[5]. All these algorithms are not
optimal in the sense that instead of exhaustive search, only
some fixed positions are searched, based on the predictions of
motion. Any error in motion prediction may lead to wrong
motion vectors, resulting in poor peak signal-to-noise ratio
(PSNR) of the motion-compensated frame.

The computationally intensive nature of FSBM and the
demand of real-time processing render the VLSI
implementation of FSBM is a necessity. Due to the repetitive
nature of the algorithm and demand for high throughput,
several VLSI architectures of FSBM were implemented [6]-
[10], but most of them are based on dataflow management and
not suitable for good throughput/area efficiency and low
power VLSI implementations. The main draw back of these
architectures is that considerable extra hardware is required
estimating the motion vector. Luc De Vos&M.Schobinger
[11] and others [12]-[13], suggested processor based
architectures, offering high flexibility and programmability,
but compared to ASICs [14]; it offers higher power
consumption and lower throughput. In this paper we propose
efficient and low power VLSI architecture, which has been
developed to meet the speed requirement of the current video
coding system.

In this paper we propose a programmable, low power, high
throughput and efficient architecture that outperform the state
of the art, making practical implementation of FSBM in
multimedia terminals feasible. The rest of the paper is
organized as follows. Section II Presents the proposed parallel
bank architecture and blocks description. Computational
Complexity and Clock Rate Requirements is presented in
Section III. Section IV concludes the paper with directions for

New VLSI Architecture for Motion Estimation
Algorithm

V. S. K. Reddy, S. Sengupta, and Y. M. Latha

W

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:12, 2007

3799International Scholarly and Scientific Research & Innovation 1(12) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

12
, 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

47
18

.p
df

future work.

II. PROPOSED PARALLEL BANK ARCHITECTURE
We propose our general motion estimation VLSI

architecture. It is divided into four parts, i.e., computation
core, address generator, on-chip buffer, and off-chip memory,
as shown in Fig. 1. The computation core consists of many
processing elements (PE), which are connected into 1D array.
The address generator and data mapper unit is a bridge
between data path and off-chip memories. It generates the
address for the data which will be needed in the next search
step, then accesses the memories and fetches them into the on-
chip buffers or directly loads them into the processing
elements.

Fig. 1 Block diagram of the motion estimation architecture

We present a flexible, simple and yet a very efficient

architecture for Motion Estimation based on partial search
algorithm. We use nine parallel processors is employed each
controlled by a state machine. The state machine employed is
a Moore model Finite State Machine (FSM) and it makes the
design very simple and cost effective. The execution of all the
9 processors in parallel makes it a faster approach. The design
is implemented in VHDL and the programming techniques we
incorporated makes the design completely programmable in
the sense that the search ranges and the block sizes can be
varied to suit any given requirements. The blocks occupying 9
parallel processors as shown in Fig.2 and each processor
perform computations on different set of data in parallel. The
basic approach is as follows:

The 176x144 frame is divided into 99 blocks of each 16x16
size. These 99 blocks can be arranged in 11x9 block matrix.
Each row of 11 blocks is given to each processor for MV
computation as shown in Fig. 2. Thus, there are 9 processors
working in parallel with each processing 11 blocks
individually. A unique number called the Index identifies each
block, thus block index number that we use frequently in our
project description refers to the starting number of the block.

Fig. 2 Parallel Processor Architecture

Each processor internally contains four modules: Search
and Block loader, SAD Generator, Comparator and a State
Machine controlling all the three modules. The
interconnection between the modules is shown in Fig. 3.

Fig. 3 Proposed Architecture

A. Search and Load Module
This module outputs the index numbers of the blocks of the

previous frame that have to be compared with each of the
current frame blocks with candidate blocks based within the
search range. The state machine module enables this module
immediately after the idle state.

For each current frame block there are (2p+1)2 candidate
blocks within its search area range, all these block indexes are
generated. The outputs indicate the current block index
number and previous frame block index.

LOADER

ST M/C 9 SAD GEN9 LOADER COMP 9

 COMP 1 ST M/C 1 SAD GEN1

Sad En

MV

EnableReset Clock

State Machine

MV
SAD

Search Pos

Current Pos

Load over
Load Enable

Sad-over

Com-over

Com-En

Search Block
SAD

Computation Search
Block

Add.Generator/
Data Mapper

Current MB

Hardware Core

off-chip mem Current/
Ref.Frame

Video Stream

Search Area

on-chip. mem

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:12, 2007

3800International Scholarly and Scientific Research & Innovation 1(12) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

12
, 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

47
18

.p
df

Fig. 4 Block Diagram of Search and Load Module

• Clock : Clock Signal
• Reset : Reset signal for the module
• Load-En : Enable signal for this module
• Pre-MB : Signal Indicates the block index number

of previous frame
• Cur-MB : This signal indicates the block index

number of current frame

B. Search and Load Module
This module gets its inputs from Search and Loader module

and gives outputs to Comparator module. It is activated or
enabled by the State Machine module. The inputs indicate the
block indices and this module calculates the sum of absolute
difference of these two blocks by obtaining the pixel values
from the memory. This module finally outputs the SAD of the
two blocks along with the block indices.

Fig. 5 Block Diagram of SAD Generator Module

• SADEn : Enable signal for this module.
• Pre-MB : This signal indicates the block index

number of previous frame.
• Cur-MB : Signal indicates the block index number

of current frame.
• Pnum : Index number of the block of previous

frame generated the SAD.
• Cnum : Index number of the block of current

frame.
• SAD : SAD value that is generated by two

blocks with index numbers Pnum and Cnum.
• SAD-over : Signal that indicates the control logic

that operation of the block is completed.

C. Comparator Module
This module gets its inputs from SAD Generator module

and outputs are the final outputs. It is activated or enabled by
the State Machine module. It collects all the SADs
corresponding to one current block and finds minimum value
and outputs the block indexes that generated this SAD.

Fig. 6 Block Diagram of Comparator Module

• Com-En : Enable signal for this module
• Pnum : Index number of the block of the

previous frame
• Cnum : This is the index number of the block

of current frame which comes from the SAD
Generator.

• SAD-in : This is the SAD value that is generated
by two blocks with index numbers Pnum and Cnum
coming from the SAD generator block.

• Pre-index : This signal indicates the block index
number of previous frame that has given the least
SAD on comparison with all the SAD inputs.

• Cur-index : This signal indicates the block index
number of current frame that has given the least SAD
on comparison with all the SAD inputs.

• Com-over : This signal indicates the control logic
that operation of the block is completed.

D. State Machine
State machine module is the main module that controls all

the modules. There are four states: Idle state, Block loader
state, SAD Generator state and Comparator states.

Idle-state: This is the initial state on reset.
Block loader state: This state is the immediate state after the

idle state. The enable signal for the Block loader state is
asserted.

SAD Generator state: This state is after the Block loader
state and the enable signal for the SAD Generator state is
asserted.

Comparator state: This state is entered after the SAD
Generator state. Here the enable signal for the Comparator
state signal is asserted.

Fig. 7 Block Diagram of Search and Load Module

Search
Module

Clock
Reset

Load-En

LoadOver

 Pre-MB

Cur-MB

Sad Generator

Pre-MB

SAD-En

Pnum
 Cnum
SAD

Cur-MB

SAD-over

Com-En
SAD-

Pnum
Cnum

Pre-index

Cur-

Comp-

Comparator

 State Machine

Com-En

Load-over
LoadEn

SADEn
Com-over

Clock

SAD-over

Reset
Enable

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:12, 2007

3801International Scholarly and Scientific Research & Innovation 1(12) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

12
, 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

47
18

.p
df

• Clock : Input is the clock signal for this module
• Reset : Reset signal for the module
• Enable : Enable signal for this module
• Load-over : Handshaking signal from Search and

Loader module.
• SAD-over : Handshaking signal from SAD-

Generator module.
• Com-over : Handshaking signal from Comparator

module.
• LoadEn : Handshaking signal from Search and

Loader module that enables the block.
• SADEn : Handshaking signal from SAD Generator

module that enables the block.
• Com-En : Handshaking signal from Comparator

module that enables the block.

III. COMPUTATIONAL COMPLEXITY AND CLOCK- RATE
REQUIREMENTS

The QCIF frame of 176x144 pixels accessed from memory
and processed by the individual modules. The search and
loader module extracts the blocks that are within the search
range of (2P+1) x (2P+1), where search range P is taken 7.
Then the SAD Generator module computes the Sum of
Absolute Difference between the blocks of one frame with the
other. The Comparator gets the SAD value from the SAD
Generator module and compares the SADs and selects the least
SAD and the blocks that generated the minimum SAD are the
blocks that are given as output so that the prediction error can
be computed from the blocks.

To analyze the clock frequency of the architecture, we
define the following quantities:
Size of the frame: vh NN ×

No. of frames per second: fsN

Size of the block: NN ×

Full search range: ± p pixels

Number of blocks per frame: B= 2N
NN vh ×

No. of candidate blocks to be matched for one current block:
()22 pNc =

No. of blocks to be matched per frame: ()22 pB×
No. of pairs of blocks required to be matched per second:

() fsNpB ×× 22

No. of computations required to be performed per second:
() 222 Bfs NNpB ×××

Total number of clocks required per second:
() 222 Bfs NNpB ×××

No. of process elements used in the architecture: PEN

Therefore, the minimum clock frequency cf is expressed as

=cf
()

PE

fsB

N
NNpB ××× 222

IV. CONCLUSION

A low cost VLSI architecture to compute the motion vectors
required by the H.264 video coding standard is presented in
this paper. The current implementation uses fixed size
windows for the small and large motion regions. In the future
decreasing the search range can further reduce the
computations. The design can operate at frequencies up to 36
MHz and it can function in QCIF and CIF video resolution at
1.46 MHz and 5.86 MHz respectively. The proposed
architecture is easily scalable and parallel implementations
can be efficiently realized to obtain higher speed with a
reasonable increase in hardware resources requirement.

REFERENCES
[1] Kuo-Liang Chung and Lung-Chun Chang, “A New Predictive Search

Area Approach for Fast Block Motion Estimation”, IEEE Transactions
on Image Processing, vol. 12, no. 6, June 2003.

[2] Michael Brunig and Wolfgang Niehsen, “Fast Full-Search Block
Matching”, IEEE Transactions on Circuits and Systems for Video
Technology, vol. 11, No. 2, Feb. 2001.

[3] J. R. Jain and A. K. Jain, “Displacement measurement and its application
in inter-frame image coding,” IEEE Transactions on Communications,
vol. 29, pp. 799-808, Dec. 1981.

[4] Vasily G. Moshnyaga “A New Computationally Adaptive Formulation
of Block-Matching Motion Estimation” IEEE Transactions on Circuits
and Systems for Video Technology, vol. 11, no. 1, Jan. 2001.

[5] L.M. Po and W.C. Ma, “A novel four-step search algorithm for fast
motion estimation,” IEEE Transactions on Circuits and Systems for
Video Tech., pp.313-317, June 1996.

[6] C. H. Hsieh and T. Lin, “VLSI architecture for block-matching motion
estimation algorithm”, IEEE Transactions on Circuits and Systems for
Video Technology, vol. 2, pp. 169-175, June 1992

[7] T. Komarek, and P. Pirsch, “Array architectures for Block-Matching
Algorithms,” IEEE Transactions on Circuits and Systems, vol. 36, pp.
1301-1308, Oct. 1989

[8] L. Do. K. Yun, “A Low-Power VLSI Architecture for Full-Search
Block-Matching Motion Estimation,” IEEE Transactions on Circuits and
Systems for Video Technology, vol. 8, pp. 393-398, Aug 1998

[9] K.M. Yang and L. Wu, “A Family of VLSI Design for the motion
compensation Block-Matching Algorithm”, IEEE Transactions on
Circuits and Systems, vol. 36, no. 10, pp. 1317-1325, Oct. 1989

[10] Seung Hyun Nam and Moon Key Lee, “Flexible VLSI architecture of
motion estimator for video image application,” IEEE Transactions on
Circuits and Systems-II, vol. 43, no. 6, pp.467-470, June 1996

[11] Luc de Vos & M. Schobinger, “ VLSI Architecture for a Flexible Block
Mathing Processor”, IEEE transactions on Circuits and Systems for
Video Technology, vol. 5 no. 5 pp. 417-428. Oct. 1995.

[12] Rizzo D and Colavin O, “A video compression case study on a
reconfigurable VLIW architecture, Europe Conference and Exhibition in
Design, Automation and Test, P. 540 -546, Mar. 2002

[13] Gao R, Xu D and Bentley J.P, “Reconfigurable hardware
implementation of an improved parallel architecture for MPEG-4 motion
estimation in mobile applications”, IEEE Transactions on Consumer
Electronics, Vol. 49, P.1383-1390, Nov. 2003

[14] H. Fujiwara et al. “An All-ASIC Implementation of Low Bit-Rate Video
Decoder,” IEEE Transactions on Circuits and Systems, June 1992

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:12, 2007

3802International Scholarly and Scientific Research & Innovation 1(12) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

12
, 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

47
18

.p
df

