
 

 

 
Abstract—The phase compensation method was proposed based 

on the concept of the damping torque analysis (DTA). It is a method 
for the design of a PSS (power system stabilizer) to suppress 
local-mode power oscillations in a single-machine infinite-bus power 
system. This paper presents the application of the phase compensation 
method for the design of a PSS in a multi-machine power system. The 
application is achieved by examining the direct damping contribution 
of the stabilizer to the power oscillations. By using linearized equal 
area criterion, a theoretical proof to the application for the PSS design 
is presented. Hence PSS design in the paper is an example of stable 
tending control by localized method. 
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I. INTRODUCTION 

OWER system oscillations threaten the safe operation of 
power systems. They were first observed in Northern 

American power network in Oct. 1964 during a trial 
interconnection of the Northwest Power Pool and the Southwest 
Power Pool [1]. Since then incidents of power system 
oscillations have been reported in power transmission networks 
in many countries. Over the last half century, many power 
system researchers and engineers have worked on and 
contributed to understanding and solution of the problem of 
power system oscillations. It is now well recognized that the 
cause of power system oscillations is lack of damping of the 
so-called “electromechanical oscillation modes” in a power 
system. To increase the damping of power system oscillations 
and improve system stability, the installation of supplementary 
excitation controller, power system stabilizer (PSS), is a simple 
and effective method. To date, most major electric power plants 
in many countries are equipped with PSS.  

For the design of a PSS, the technique of damping torque 
analysis (DTA) was firstly introduced in [2] for a 
single-machine infinite-bus power system to investigate the 
effect of excitation control on power system small-disturbance 
rotor angle stability. It is based on the linearized 
Philips-Heffron model of the single-machine infinite-bus power 
system [3]. The well-known method of phase compensation 
(PC) to design the PSS was proposed and developed on the 
basis of the DTA [4]. The PC method is considered as a 
milestone contribution to the field and has been used in power 

 
Dr. Wenjuan Du is with the State Key Laboratory of Alternate Electrical 

Power System with Renewable Energy Sources, North China Electric Power 
University, Changping, Beijing, China (e-mail: hfwang60@qq.com). 

industry for many decades to tune and set parameters of the 
PSS. 

Since 1980s, considerable effort has been spent on 
developing schemes to design the PSS installed in a complex 
multi-machine power system. Though attempt was made to 
extend the PC method to the case of the multi-machine power 
system [5-6], the modal analysis (MA) is a more popular 
method for the design of PSSs in the multi-machine power 
system. The normal procedure of the MA method is to establish 
the linearized model of the multi-machine power system firstly 
at a given operating condition of the power system. Then by use 
of the MA (computing the electromechanical oscillation modes 
of interests), various schemes of optimization can be developed 
to design PSSs. The objective of the design is to move the 
electromechanical oscillation modes of interests to the given 
positions in the complex plane such that the modes are of 
sufficient damping. Hence the basic idea to design the PSSs in 
fact is very similar to the pole assignment of control systems in 
control theory. Thus though a PSS is a decentralized controller 
as only local feedback signal is used to form the close-loop 
control system, its design has to be based on the model of 
whole power system in order to ensure global system stability. 
Hence the design is centralized, which contradicts the basic 
idea of decentralization of PSS application. The immediate 
problem coming from the contradiction is to obtain parameters 
of whole power system, which in practice may not always be 
readily available and are difficult to be validated when the 
system is large and complex. 

It has been well accepted that to set a decentralized local 
PSS or several of them to guarantee global stability of a large 
complex power system may be possible. The price to pay for 
this is that the model of whole power system must be used. 
This paper proposes to investigate the option to change the 
regime of PSS design from ensuring global system stability to a 
looser condition of design to just achieve a “stable tending” 
control. If a PSS is designed to ensure making the power 
system more stable instead of globally stable, the design may 
not need to be based on the model of the whole power system. 
Hence the change of the regime could mean much simpler 
procedure of PSS design in practical applications.  

In fact, the objective of installing a PSS in the power system 
is to provide extra damping to the electromechanical 
oscillation modes of interests. It does not really have to be set 
for achieving exact assignment of relevant electromechanical 
oscillation modes ti given positions in the complex plane. 
Hence the strategy of PSS design is changed to providing more 
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positive damping to the modes to achieve stable tending 
control, i.e., making the system more stable, fits the practical 
requirement of PSS installation as well. 

In order to demonstrate the possibility to develop theory of 
stable tending control for complex power system, this paper 
examines the scheme proposed by Gurrala and Sen in [7] as an 
example where a localized Phillips-Heffron model in a 
multi-machine power system is established for the design of 
the PSS. In [7] it is shown that when the secondary bus voltage 
of generators step-up transformer is used to derive the 
Phillips-Heffron model, only parameters locally available at 
the synchronous generator on which the PSS is installed are 
needed for the design of the PSS. Several numerical examples 
are presented in [7] which demonstrate the success of applying 
the PC method to design the PSS. Hence method proposed in [7] 
for the PSS design does not need to establish the model of the 
whole power system. Instead, it is based on a localized model. 
Only locally available information at the place where the PSS 
is installed is needed to derive the localized model. However, 
[7] does not provide any theoretical explanation on why the 
localized model can be used for the successful design of PSS.  

In this paper, by using linearized equal area criterion, a 
theoretical proof to the localized method of PSS design 
proposed in [7] is presented. The paper demonstrates that 
localized design in [7] can ensure provision of extra positive 
damping by the PSS to the low-frequency power oscillation 
associated with the machine where the PSS is installed. Hence 
in fact it is an example of stable tending control. 

II. THE EXAMPLE OF LOCALIZED DESIGN OF PSS 

t tV

qE '

t tR jX

tP

s sV  

Fig. 1 Single machine in a complex multi-machine power system 
 

Fig. 1 shows the configuration of a single-machine 
connected to a complex multi-machine power system, where 

t tR jX  denotes the impedance of the transformer, t tV   

and s sV   the voltage at the primary and secondary side of 

the transformer respectively. For the design of PSS installed on 
the single machine to damp the low-frequency power 
oscillation along the transmission line connecting the machine 
to the system, there are two types of linearized models to be 
used. The first one is the linearized model of the whole 
multi-machine power system, based on which a MA method 
can be used to set the parameters of the PSS. This involves the 
procedure to obtain and validate parameters and information of 
the whole complex multi-machine power system, obviously 
complicated if not impossible. The second is the linearized 
model of a single-machine infinite-bus power system where 
the PC method can be used to design the PSS. This has to find a 
suitable “infinite busbar” inside the complex multi-machine 
power system as the reference, which also needs information of 

external multi-machine power system and is not a 
straightforward work. 

It is proposed in [7] that by simply taking the secondary side 
of the transformer as the reference busbar to replace the 
“infinite busbar” to be used and s sV   as the reference 

voltage, a similar Phillips-Heffron model to that for a 
single-machine infinite-bus power system can be established as 
shown in Fig. 2. In Fig. 2, prefix   denotes the small 
increment of a variable, PSS (s)  and pssV the transfer 

function and stabilizing control signal of the PSS respectively. 
Because the reference voltage  s sV   is not a constant, there 

are three extra blocks,  v1G , v2G and v3G , as compared to 

the conventional Phillips-Heffron model of the single-machine 
infinite-bus power system.  
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Fig. 2 Phillips-Heffron model proposed in [7] 
 

It is proposed in [7] that simply to derive the transfer 
function of the forward path of the stabilizing control signal of 
the PSS GEP(s) as shown by Fig. 3, the conventional PC 
method is used to design the PSS. As the establishment of the 
linearized model in Fig. 2 does not need any external 
information of the complex multi-machine power system, the 
method proposed in [7] is indeed localized and very simple. 
However, as shown in Fig. 3, the variable involved in the 
electromechanical oscillation loop in the proposed 
Phillips-Heffron is s s     , no longer only the angular 

position of the machine. It cannot be seen clearly if positive 
damping torque contribution by the PSS to the machine can 
suppress the low-frequency power oscillation because s  is 

variable. In [7] three numerical examples are presented to 
demonstrate that the PC method can be used to design the PSS 
to damp the low-frequency power oscillation, though no 
theoretical explanation is provided in [7] about why the PSS 
can be successful designed as proposed. 

In the following section, a theoretical explanation by use of 
linearized equal area criterion  is presented that proves indeed 
the localized PCM proposed [7] can always provide extra 
positive damping to the low-frequency power oscillation 
associated with the machine. Hence, though it is still unknown 
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if the localized method proposed in [7] can guarantee the 
global stability of the whole power system or not, the scheme 
proposed in [7] is a truly example of stable tending control.  
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Fig. 3 Forward path of the PSS proposed in [7] 

III. THEORETICAL EXPLANATION FOR THE EXAMPLE  

The linearized model of Fig. 2 can be written in the form of 
state-space representation as ( m refT 0,  E 0    ). 

 

 pss pss

pss pss

b V

d V

E E

I E E

X = A X + b Δ Z +

Δ Z = C X + d Δ Z +






               

    

  

(1) 
 
where 
 

s t

q s t

fd

V V
, ,

E '

E '

E IX ΔZ ΔZ =
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0 0
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Eb ， 

tV  is the input signal to AVR. Hence, from Fig. 2 it can 

have: 
 

t 5 s 6 q v3 sV G ( ) G E ' G V        
              

(2) 

In the common coordinate system, terminal voltage of the 
generator can be expressed to be ((19) in [7]): 
 

q t q t d s s

d t d t q s s

V R i X i V cos

V R i X i V sin

   

   
                             

 (3) 
 
By using (3) above and linearizing 1 d

t
q

V
arctan

V
 

  
it can have: 

 

t 7 s 8 q 9 sG ( ) G E ' G V                            

 (4) 
 
where 7 8 9G ,G ,G are constant. Hence, from (3) and (4) the 

following is obtained for (1): 
 

5 6 v3 5
pss

7 8 9 7

G 0 G 0 G G
, ,d 0

G 0 G 0 G GEC d
   

               
(5) 

 
Power oscillation along the transmission line connecting the 

machine and system as shown in Fig. 1 can be expressed as: 
  

t s t s
t t s ts

t t

V V V V
P sin( ) sin

X X
       

 
Linearization of above equation gives: 

 

    
t t t s s ts t s

s ts t ts

P C V C V C ( )

C C C CE I

E E I I

Z Z

C Z + C Z

       

  



                   

 (6) 
 
where 
  

s0 t0
t ts0 s ts0

t t

t0 s0
ts ts0

t

V V
C sin ,C sin ,

X X

V V
C cos

X

   

   

 
From (1) it can be obtained that:  

 
1

1
pss pss pss

pss

[ (s ) ]

[ (s ) b d ] V

(s) (s) V

I E E E

E E PSS

ΔZ = C I A b + d ΔZ

C I A +

F ΔZ F





 

 

  

                  

   (7) 
 

Substituting (7) into (6) gives: 
 

t pssP [ (s) ] (s) VI E E E I PSSC F C ΔZ C F                    

(8) 
 

Denote: 
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tP ( ) [ (s) ] (s)E I E E E EΔZ C F C ΔZ F ΔZ                
    

 (9) 

t pss pss pss pssP ( V ) (s) u f (s) VI PSSC F       

 

and decompose tP ( )EΔZ  under ts ts   coordinate as ( ts  
is the time derivative of ts ): 

t e ts e tsP ( ) C DEΔZ                           

    (10) 
 
where eC  and eD  are constant. Thus by use of (9) and (10), 

(8) can be written as: 
 

t e ts e ts pss pssP C D f (s) V             

              (11)
  

 (11) shows that low-frequency power oscillation tP
 
is 

only affected by the PSS through the part, pss pssf (s) V  in tP .  

This part is the direct contribution from the PSS to the power 
oscillation (variation). The following is a main conclusion 
about the damping of low-frequency power oscillation as 
affected by this part of PSS stabilizing control. 

Main Conclusion: If the PSS is designed to ensure 

pss pssf (s) V  to be proportional to the time derivative of tP , 

that is: 
 

t pss pss pss pss t pssP ( V ) f (s) V D P (D 0)              
   

  
(12) 

 
The PSS will supply positive damping to suppress the power 

oscillation tP . In (12) tP   denotes the time derivative of 

tP  .  

The above main conclusion can be proved by using the 
graphical explanation based on the linearized P  curve and 
equal-area criterion as follows.  

Fig. 4 shows the linearized t tsP    curve where ts0 t0,  P  

is the steady-state operating point of the power system.  It is 
assumed that the small-signal oscillation of tP  starts from 

point ‘a’ in Fig. 4 with the operating point moving down. 
Without affecting the result of discussion, it is assumed that 

0eD in (11). When there is no PSS installed, 

pss pssf (s) V 0   and (11) becomes: 

 

t e ts e tsP C D               

                               (13) 
 

t e tsP C  
 
is a line shown in Fig. 4. When the operating 

point moves down, ts 0  , e tsD 0   is added on the line, 

Hence, (13) is expressed as the dashed curve in Fig. 4. When 
the operating point arrives at point ‘f’ and stops moving, 

e tsD 0  . Hence the operating point should be on the line at 

point ‘f’, t e tsP C   as shown in Fig. 4. According to the 

equal area criterion, area ‘ade’ is equal to that of ‘dgf’.  
Consider the case that the PSS is installed and the stabilizing 

control is added. If the PSS is set to ensure (12) standing, 

pss t pssD P 0  (D 0)    is added on the dashed curve 

t e ts e tsP C D      when the operating point moves down. 

Hence the operating point should move below the dashed curve 
along the highlighted trajectory as shown in Fig. 4. When the 
operating point stops moving, it should arrive on the line, 

t e tsP C   . According to the equal area criterion, area 1A  

must be equal to area 2A  at point ‘c’. It is apparent that 

addition of the part from the PSS stabilizing control with (12) 
standing, area 1A  is reduced which results in a smaller area 2A .  

Obviously it can have ts1 ts0 ts0 ts2      , which indicates 

extra positive damping provision from the stabilizing control to 
the power oscillation. A similar analysis can be carried out to 
examine the case when the operating point moves up from 
point ‘c’.  

From (1), (5), (7)-(9) it is easy to prove pssf (s)
 
defined by (9) 

is GEP(s)  in Figs. 2 and 3. In fact, according to the principle of 

superimposition of linear systems, from Fig. 2 it can obtain 
directly:  

 

 
t 1 s 2 s pss

1 2 pss

P f (s) V f (s) GEP(s) V

f (s) f (s) GEP(s) VEΔZ

      

                       

(14) 
 

Comparing (14) with (8) and (9) it can have 

pssf (s) GEP(s) . Hence if the PCM is used to ensure a 

positive damping torque is provided, that is: 
 
 

pss d dGEP(s) V D ,  D 0                           

     (15) 
 

It can have: 
 

pss pss pss d

d t d t d t

GEP(s) V f (s) V D

D (2Hs D) P 2HD P DD P

    

      
          

    

  (16) 
 

 

A positive damping part, d t d2HD P ,  2HD 0  , is provided 

by the PSS to help the suppression of low-frequency power 
oscillation. This explains why the localized design method 
proposed in [7] for the design of PSS can supply positive 
damping to low-frequency power oscillation.  

IV. CONCLUSIONS AND FURTHER COMMENTS 

Installation of PSS is an effective way to suppress 
low-frequency oscillations in a power system to enhance 
system stability. So far, majority of schemes proposed to 
design PSS is based on the linearized model of the whole 
power system, as those schemes are developed to ensure 
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system global stability. This is very much the idea of 
decentralized stabilization of closed-loop control systems in 
control theory. However, validation of parameters and 
information of whole power system may be difficult in practice 
when the system is large and complex. Furthermore, objective 
of installing a PSS often is to supply extra damping to 
low-frequency power oscillation. It neither has to meet the 
strict condition of guaranteeing system global stability nor to 
assign the electromechanical oscillation modes of interests to 
given positions in a complex plane. 

 

 Fig. 4 Illustration of analysis based on the linearized t tsP   curve 

 
This paper proposes the investigation of PSS design to meet 

a looser condition of making the system more stable, named as 
“stable tending control” in the paper. With the stable tending 
control, PSS design may not need to be based on the model of 
whole power system. Thus the difficulty to validate the 
parameters and information of a complex multi-machine power 
system may be avoided. To demonstrate the feasibility of the 
proposed idea of stable tending control of PSS, this paper 
presents an example scheme of localized design of PSS   
proposed in [7] where only a localized model of a 
multi-machine power system is needed to design a PSS. The 
establishment of the localized model only needs information 
locally available at the machine on which the PSS is installed 
without having to validate the parameters of the whole power 
system. This paper has demonstrated that the scheme proposed 
in [7] is a type of stable tending control, as the PSS designed 
can ensure provision of extra damping to the low-frequency 
oscillation associated with the machine where the PSS is 
installed. Hence the stable tending control is possible and 
indeed much simpler as global issues of complex power system 
may be avoided for the design of a local decentralized PSS. 

With the localized design of stable tending control of PSS, 
enhancement of robustness of PSS to variations of power 
system operating conditions could also become a simple issue. 
By on-line gathering of local information to update the 
localized model, PSS parameters can be set in real time to 

always provide positive damping to the low-frequency 
oscillation of interests. Based on the same principle, plug-in 
PSS can also be designed. Localization could make intelligent 
stability control of power systems simpler and hence feasible. 

ACKNOWLEDGMENT 

This work is supported by the National Basic Research 
Program of China (973 Program) (2012CB215204) and key 
project of Natural Science Foundation of China (513111122). 

 

REFERENCES 

[1] F. R. Schleif and J. H. White, “Damping for the northwest-southwest 
tieline oscillations – an analogue study”, IEEE Trans. Power Appar. Syst., 
Vol. 85, No.12, 1966, pp1239-1247 

[2] F. P. deMello and C. Concordia, “Concepts of synchronous machine 
stability as affected by excitation control”, IEEE Trans. on Power App. 
Syst., Vol. PAS-88, No.3, 1969, pp316-329 

[3] W. G. Heffron and R. A. Phillips, “Effect of modern amplidyne voltage 
regulators on underexcited operation of large turbine generators,” AIEE 
Trans. (Power Apparatus and Systems), Vol. 71, 1952, pp 692-697 

[4] E. V. Larsen and D. A. Swann, “Applying power system stabilizers Part 
I-III”, IEEE Trans. Power App. Syst., Vol. 100, No. 6, 1981, 
pp3017-3046 

[5] M. J. Gibbard, “Co-ordinated design of multimachine power system 
stabilisers based on damping torque concepts”, IEE Proc. Part C, Vol. 
135, No.4, 1988, pp276-284 

[6] H. F. Wang and F. J. Swift, “Multiple stabilizer setting in multi-machine 
power systems by the phase compensation method”, Int. J. of Electrical 
Power and Energy Systems, No. 4, 1998, pp241-246 

[7] G. Gurrala and I. Sen, “Power system stabilizers design for 
interconnected power systems”, IEEE Trans. on Power Systems, Vol. 25, 
No. 2, 2010, pp1042-1051. 

 
 
 
Dr. Wenjuan Du obtained her PhD at the University of Bath, UK, in 2009 and 
is a full professor at the North China Electric Power University, Beijing, China. 
Her main research interests are power system stability analysis and control, 
including energy storage systems, FACTS and renewable power generation. 
Her contact e-mail address is ddwenjuan@qub.ac.uk 
 

 

World Academy of Science, Engineering and Technology
International Journal of Energy and Power Engineering

 Vol:9, No:3, 2015 

404International Scholarly and Scientific Research & Innovation 9(3) 2015 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 E
ne

rg
y 

an
d 

Po
w

er
 E

ng
in

ee
ri

ng
 V

ol
:9

, N
o:

3,
 2

01
5 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
05

22
5.

pd
f


