Search results for: linear statistical model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9308

Search results for: linear statistical model

8108 Method of Parameter Calibration for Error Term in Stochastic User Equilibrium Traffic Assignment Model

Authors: Xiang Zhang, David Rey, S. Travis Waller

Abstract:

Stochastic User Equilibrium (SUE) model is a widely used traffic assignment model in transportation planning, which is regarded more advanced than Deterministic User Equilibrium (DUE) model. However, a problem exists that the performance of the SUE model depends on its error term parameter. The objective of this paper is to propose a systematic method of determining the appropriate error term parameter value for the SUE model. First, the significance of the parameter is explored through a numerical example. Second, the parameter calibration method is developed based on the Logit-based route choice model. The calibration process is realized through multiple nonlinear regression, using sequential quadratic programming combined with least square method. Finally, case analysis is conducted to demonstrate the application of the calibration process and validate the better performance of the SUE model calibrated by the proposed method compared to the SUE models under other parameter values and the DUE model.

Keywords: Parameter calibration, sequential quadratic programming, Stochastic User Equilibrium, traffic assignment, transportation planning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2128
8107 Model of Multi-Criteria Evaluation for Railway Lines

Authors: Juraj Camaj, Martin Kendra, Jaroslav Masek

Abstract:

The paper is focused to the evaluation railway tracks in the Slovakia by using Multi-Criteria method. Evaluation of railway tracks has important impacts for the assessment of investment in technical equipment. Evaluation of railway tracks also has an important impact for the allocation of marshalling yards. Marshalling yards are in transport model as centers for the operation assigned catchment area. This model is one of the effective ways to meet the development strategy of the European Community's railways. By applying this model in practice, a transport company can guarantee a higher quality of service and then expect an increase in performance. The model is also applicable to other rail networks. This model supplements a theoretical problem of train formation problem of new ways of looking at evaluation of factors affecting the organization of wagon flows.

Keywords: Railway track, multi-criteria methods, evaluation, transportation model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2212
8106 Unsupervised Texture Segmentation via Applying Geodesic Active Regions to Gaborian Feature Space

Authors: Yuan He, Yupin Luo, Dongcheng Hu

Abstract:

In this paper, we propose a novel variational method for unsupervised texture segmentation. We use a Gabor filter bank to extract texture features. Some of the filtered channels form a multidimensional Gaborian feature space. To avoid deforming contours directly in a vector-valued space we use a Gaussian mixture model to describe the statistical distribution of this space and get the boundary and region probabilities. Then a framework of geodesic active regions is applied based on them. In the end, experimental results are presented, and show that this method can obtain satisfied boundaries between different texture regions.

Keywords: Texture segmentation, Gabor filter, snakes, Geodesicactive regions

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1773
8105 Complex-Valued Neural Networks for Blind Equalization of Time-Varying Channels

Authors: Rajoo Pandey

Abstract:

Most of the commonly used blind equalization algorithms are based on the minimization of a nonconvex and nonlinear cost function and a neural network gives smaller residual error as compared to a linear structure. The efficacy of complex valued feedforward neural networks for blind equalization of linear and nonlinear communication channels has been confirmed by many studies. In this paper we present two neural network models for blind equalization of time-varying channels, for M-ary QAM and PSK signals. The complex valued activation functions, suitable for these signal constellations in time-varying environment, are introduced and the learning algorithms based on the CMA cost function are derived. The improved performance of the proposed models is confirmed through computer simulations.

Keywords: Blind Equalization, Neural Networks, Constant Modulus Algorithm, Time-varying channels.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1891
8104 Analysis of Explosive Shock Wave and its Application in Snow Avalanche Release

Authors: Mahmoud Zarrini, R. N. Pralhad

Abstract:

Avalanche velocity (from start to track zone) has been estimated in the present model for an avalanche which is triggered artificially by an explosive devise. The initial development of the model has been from the concept of micro-continuum theories [1], underwater explosions [2] and from fracture mechanics [3] with appropriate changes to the present model. The model has been computed for different slab depth R, slope angle θ, snow density ¤ü, viscosity μ, eddy viscosity η*and couple stress parameter η. The applicability of the present model in the avalanche forecasting has been highlighted.

Keywords: Snow avalanche velocity, avalanche zones, shockwave, couple stress fluids.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1683
8103 A Molding Surface Auto-Inspection System

Authors: Ssu-Han Chen, Der-Baau Perng

Abstract:

Molding process in IC manufacturing secures chips against the harms done by hot, moisture or other external forces. While a chip was being molded,defects like cracks, dilapidation, or voids may be embedding on the molding surface. The molding surfaces the study poises to treat and the ones on the market, though, differ in the surface where texture similar to defects is everywhere. Manual inspection usually passes over low-contrast cracks or voids; hence an automatic optical inspection system for molding surface is necessary. The proposed system is consisted of a CCD, a coaxial light, a back light as well as a motion control unit. Based on the property of statistical textures of the molding surface, a series of digital image processing and classification procedure is carried out. After training of the parameter associated with above algorithm, result of the experiment suggests that the accuracy rate is up to 93.75%, contributing to the inspection quality of IC molding surface.

Keywords: Molding surface, machine vision, statistical texture, discrete Fourier transformation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2745
8102 Solitons in Nonlinear Optical Lattices

Authors: Tapas Kumar Sinha, Joseph Mathew

Abstract:

Based on the Lagrangian for the Gross –Pitaevskii equation as derived by H. Sakaguchi and B.A Malomed [5] we have derived a double well model for the nonlinear optical lattice. This model explains the various features of nonlinear optical lattices. Further, from this model we obtain and simulate the probability for tunneling from one well to another which agrees with experimental results [4].

Keywords: Double well model, nonlinear optical lattice, Solitons, tunneling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1520
8101 A Performance Evaluation of Oscillation Based Test in Continuous Time Filters

Authors: Eduardo Romero, Marcelo Costamagna, Gabriela Peretti, Carlos Marqués

Abstract:

This work evaluates the ability of OBT for detecting parametric faults in continuous-time filters. To this end, we adopt two filters with quite different topologies as cases of study and a previously reported statistical fault model. In addition, we explore the behavior of the test schemes when a particular test condition is changed. The new data reported here, obtained from a fault simulation process, reveal a lower performance of OBT not observed in previous work using single-deviation faults, even under the change in the test condition.

Keywords: Testing, analog fault simulation, analog filter test, oscillation based test.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1444
8100 Calculation of Masses and Magnetic Moment of the Nucleon using the MIT Bag Model

Authors: Mahvash Zandy Navgaran, Maryam Momeni Feili

Abstract:

The bag radius of the nucleon can be determined by MIT bag model based on electric and magnetic form factors of the nucleon. Also we determined the masses and magnetic moment of the nucleon with MIT bag model, using bag radius and compared with other results, suggests a suitable compatibility.

Keywords: MIT bag model, masses and magnetic moment of thenucleon, bag radius of the nucleon.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1412
8099 Correlation and Prediction of Biodiesel Density

Authors: Nieves M. C. Talavera-Prieto, Abel G. M. Ferreira, António T. G. Portugal, Rui J. Moreira, Jaime B. Santos

Abstract:

The knowledge of biodiesel density over large ranges of temperature and pressure is important for predicting the behavior of fuel injection and combustion systems in diesel engines, and for the optimization of such systems. In this study, cottonseed oil was transesterified into biodiesel and its density was measured at temperatures between 288 K and 358 K and pressures between 0.1 MPa and 30 MPa, with expanded uncertainty estimated as ±1.6 kg⋅m- 3. Experimental pressure-volume-temperature (pVT) cottonseed data was used along with literature data relative to other 18 biodiesels, in order to build a database used to test the correlation of density with temperarure and pressure using the Goharshadi–Morsali–Abbaspour equation of state (GMA EoS). To our knowledge, this is the first that density measurements are presented for cottonseed biodiesel under such high pressures, and the GMA EoS used to model biodiesel density. The new tested EoS allowed correlations within 0.2 kg·m-3 corresponding to average relative deviations within 0.02%. The built database was used to develop and test a new full predictive model derived from the observed linear relation between density and degree of unsaturation (DU), which depended from biodiesel FAMEs profile. The average density deviation of this method was only about 3 kg.m-3 within the temperature and pressure limits of application. These results represent appreciable improvements in the context of density prediction at high pressure when compared with other equations of state.

Keywords: Biodiesel, Correlation, Density, Equation of state, Prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3511
8098 Reduction of Rotor-Bearing-Support Finite Element Model through Substructuring

Authors: Abdur Rosyid, Mohamed El-Madany, Mohanad Alata

Abstract:

Due to simplicity and low cost, rotordynamic system is often modeled by using lumped parameters. Recently, finite elements have been used to model rotordynamic system as it offers higher accuracy. However, it involves high degrees of freedom. In some applications such as control design, this requires higher cost. For this reason, various model reduction methods have been proposed. This work demonstrates the quality of model reduction of rotor-bearing-support system through substructuring. The quality of the model reduction is evaluated by comparing some first natural frequencies, modal damping ratio, critical speeds, and response of both the full system and the reduced system. The simulation shows that the substructuring is proven adequate to reduce finite element rotor model in the frequency range of interest as long as the number and the location of master nodes are determined appropriately. However, the reduction is less accurate in an unstable or nearly-unstable system.

Keywords: Finite element model, rotordynamic system, model reduction, substructuring.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4072
8097 Validation of a Fluid-Structure Interaction Model of an Aortic Dissection versus a Bench Top Model

Authors: K. Khanafer

Abstract:

The aim of this investigation was to validate the fluid-structure interaction (FSI) model of type B aortic dissection with our experimental results from a bench-top-model. Another objective was to study the relationship between the size of a septectomy that increases the outflow of the false lumen and its effect on the values of the differential of pressure between true lumen and false lumen. FSI analysis based on Galerkin’s formulation was used in this investigation to study flow pattern and hemodynamics within a flexible type B aortic dissection model using boundary conditions from our experimental data. The numerical results of our model were verified against the experimental data for various tear size and location. Thus, CFD tools have a potential role in evaluating different scenarios and aortic dissection configurations.

Keywords: Aortic dissection, fluid-structure interaction, in vitro model, numerical.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 945
8096 Neuro-fuzzy Model and Regression Model a Comparison Study of MRR in Electrical Discharge Machining of D2 Tool Steel

Authors: M. K. Pradhan, C. K. Biswas,

Abstract:

In the current research, neuro-fuzzy model and regression model was developed to predict Material Removal Rate in Electrical Discharge Machining process for AISI D2 tool steel with copper electrode. Extensive experiments were conducted with various levels of discharge current, pulse duration and duty cycle. The experimental data are split into two sets, one for training and the other for validation of the model. The training data were used to develop the above models and the test data, which was not used earlier to develop these models were used for validation the models. Subsequently, the models are compared. It was found that the predicted and experimental results were in good agreement and the coefficients of correlation were found to be 0.999 and 0.974 for neuro fuzzy and regression model respectively

Keywords: Electrical discharge machining, material removal rate, neuro-fuzzy model, regression model, mountain clustering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1389
8095 Markov Chain Monte Carlo Model Composition Search Strategy for Quantitative Trait Loci in a Bayesian Hierarchical Model

Authors: Susan J. Simmons, Fang Fang, Qijun Fang, Karl Ricanek

Abstract:

Quantitative trait loci (QTL) experiments have yielded important biological and biochemical information necessary for understanding the relationship between genetic markers and quantitative traits. For many years, most QTL algorithms only allowed one observation per genotype. Recently, there has been an increasing demand for QTL algorithms that can accommodate more than one observation per genotypic distribution. The Bayesian hierarchical model is very flexible and can easily incorporate this information into the model. Herein a methodology is presented that uses a Bayesian hierarchical model to capture the complexity of the data. Furthermore, the Markov chain Monte Carlo model composition (MC3) algorithm is used to search and identify important markers. An extensive simulation study illustrates that the method captures the true QTL, even under nonnormal noise and up to 6 QTL.

Keywords: Bayesian hierarchical model, Markov chain MonteCarlo model composition, quantitative trait loci.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1962
8094 Investigation of the Effect of Cavitator Angle and Dimensions for a Supercavitating Vehicle

Authors: Sri Raman A., A.K.Ghosh

Abstract:

At very high speeds, bubbles form in the underwater vehicles because of sharp trailing edges or of places where the local pressure is lower than the vapor pressure. These bubbles are called cavities and the size of the cavities grows as the velocity increases. A properly designed cavitator can induce the formation of a single big cavity all over the vehicle. Such a vehicle travelling in the vaporous cavity is called a supercavitating vehicle and the present research work mainly focuses on the dynamic modeling of such vehicles. Cavitation of the fins is also accounted and the effect of the same on trajectory is well explained. The entire dynamics has been developed using the state space approach and emphasis is given on the effect of size and angle of attack of the cavitator. Control law has been established for the motion of the vehicle using Non-linear Dynamic Inverse (NDI) with cavitator as the control surface.

Keywords: High speed underwater vehicle, Non-Linear Dynamic Inverse (NDI), six-dof modeling, Supercavitation, Torpedo.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 71586
8093 Structural Optimization Method for 3D Reinforced Concrete Building Structure with Shear Wall

Authors: H. Nikzad, S. Yoshitomi

Abstract:

In this paper, an optimization procedure is applied for 3D Reinforced concrete building structure with shear wall.  In the optimization problem, cross sections of beams, columns and shear wall dimensions are considered as design variables and the optimal cross sections can be derived to minimize the total cost of the structure. As for final design application, the most suitable sections are selected to satisfy ACI 318-14 code provision based on static linear analysis. The validity of the method is examined through numerical example of 15 storied 3D RC building with shear wall.  This optimization method is expected to assist in providing a useful reference in design early stage, and to be an effective and powerful tool for structural design of RC shear wall structures.

Keywords: Structural optimization, linear static analysis, ETABS, MATLAB, RC moment frame, RC shear wall structures.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1344
8092 Model Reference Adaptive Approach for Power System Stabilizer for Damping of Power Oscillations

Authors: Jožef Ritonja, Bojan Grčar, Boštjan Polajžer

Abstract:

In recent years, electricity trade between neighboring countries has become increasingly intense. Increasing power transmission over long distances has resulted in an increase in the oscillations of the transmitted power. The damping of the oscillations can be carried out with the reconfiguration of the network or the replacement of generators, but such solution is not economically reasonable. The only cost-effective solution to improve the damping of power oscillations is to use power system stabilizers. Power system stabilizer represents a part of synchronous generator control system. It utilizes semiconductor’s excitation system connected to the rotor field excitation winding to increase the damping of the power system. The majority of the synchronous generators are equipped with the conventional power system stabilizers with fixed parameters. The control structure of the conventional power system stabilizers and the tuning procedure are based on the linear control theory. Conventional power system stabilizers are simple to realize, but they show non-sufficient damping improvement in the entire operating conditions. This is the reason that advanced control theories are used for development of better power system stabilizers. In this paper, the adaptive control theory for power system stabilizers design and synthesis is studied. The presented work is focused on the use of model reference adaptive control approach. Control signal, which assures that the controlled plant output will follow the reference model output, is generated by the adaptive algorithm. Adaptive gains are obtained as a combination of the "proportional" term and with the σ-term extended "integral" term. The σ-term is introduced to avoid divergence of the integral gains. The necessary condition for asymptotic tracking is derived by means of hyperstability theory. The benefits of the proposed model reference adaptive power system stabilizer were evaluated as objectively as possible by means of a theoretical analysis, numerical simulations and laboratory realizations. Damping of the synchronous generator oscillations in the entire operating range was investigated. Obtained results show the improved damping in the entire operating area and the increase of the power system stability. The results of the presented work will help by the development of the model reference power system stabilizer which should be able to replace the conventional stabilizers in power systems.

Keywords: Power system, stability, oscillations, power system stabilizer, model reference adaptive control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 629
8091 Multi Objective Micro Genetic Algorithm for Combine and Reroute Problem

Authors: Soottipoom Yaowiwat, Manoj Lohatepanont, Proadpran Punyabukkana

Abstract:

Several approaches such as linear programming, network modeling, greedy heuristic and decision support system are well-known approaches in solving irregular airline operation problem. This paper presents an alternative approach based on Multi Objective Micro Genetic Algorithm. The aim of this research is to introduce the concept of Multi Objective Micro Genetic Algorithm as a tool to solve irregular airline operation, combine and reroute problem. The experiment result indicated that the model could obtain optimal solutions within a few second.

Keywords: Irregular Airline Operation, Combine and RerouteRoutine, Genetic Algorithm, Micro Genetic Algorithm, Multi ObjectiveOptimization, Evolutionary Algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1643
8090 Optimal Network of Secondary Warehouses for Production-Distribution Inventory Model

Authors: G. M. Arun Prasath, N. Arthi

Abstract:

This work proposed a multi-objective mathematical programming approach to select the appropriate supply network elements. The multi-item multi-objective production-distribution inventory model is formulated with possible constraints under fuzzy environment. The unit cost has taken under fuzzy environment. The inventory model and warehouse location model has combined to formulate the production-distribution inventory model. Warehouse location is important in supply chain network. Particularly, if a company maintains more selling stores it cannot maintain individual secondary warehouse near to each selling store. Hence, maintaining the optimum number of secondary warehouses is important. Hence, the combined mathematical model is formulated to reduce the total expenditure of the organization by arranging the network of minimum number of secondary warehouses. Numerical example has been taken to illustrate the proposed model.

Keywords: Fuzzy inventory model, warehouse location model, triangular fuzzy number, secondary warehouse, LINGO software.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1238
8089 An SVM based Classification Method for Cancer Data using Minimum Microarray Gene Expressions

Authors: R. Mallika, V. Saravanan

Abstract:

This paper gives a novel method for improving classification performance for cancer classification with very few microarray Gene expression data. The method employs classification with individual gene ranking and gene subset ranking. For selection and classification, the proposed method uses the same classifier. The method is applied to three publicly available cancer gene expression datasets from Lymphoma, Liver and Leukaemia datasets. Three different classifiers namely Support vector machines-one against all (SVM-OAA), K nearest neighbour (KNN) and Linear Discriminant analysis (LDA) were tested and the results indicate the improvement in performance of SVM-OAA classifier with satisfactory results on all the three datasets when compared with the other two classifiers.

Keywords: Support vector machines-one against all, cancerclassification, Linear Discriminant analysis, K nearest neighbour, microarray gene expression, gene pair ranking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2562
8088 A Simulation-Optimization Approach to Control Production, Subcontracting and Maintenance Decisions for a Deteriorating Production System

Authors: Héctor Rivera-Gómez, Eva Selene Hernández-Gress, Oscar Montaño-Arango, Jose Ramon Corona-Armenta

Abstract:

This research studies the joint production, maintenance and subcontracting control policy for an unreliable deteriorating manufacturing system. Production activities are controlled by a derivation of the Hedging Point Policy, and given that the system is subject to deterioration, it reduces progressively its capacity to satisfy product demand. Multiple deterioration effects are considered, reflected mainly in the quality of the parts produced and the reliability of the machine. Subcontracting is available as support to satisfy product demand; also, overhaul maintenance can be conducted to reduce the effects of deterioration. The main objective of the research is to determine simultaneously the production, maintenance and subcontracting rate, which minimize the total, incurred cost. A stochastic dynamic programming model is developed and solved through a simulation-based approach composed of statistical analysis and optimization with the response surface methodology. The obtained results highlight the strong interactions between production, deterioration and quality, which justify the development of an integrated model. A numerical example and a sensitivity analysis are presented to validate our results.

Keywords: Deterioration, simulation, subcontracting, production planning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1901
8087 Forecasting Materials Demand from Multi-Source Ordering

Authors: Hui Hsin Huang

Abstract:

The downstream manufactures will order their materials from different upstream suppliers to maintain a certain level of the demand. This paper proposes a bivariate model to portray this phenomenon of material demand. We use empirical data to estimate the parameters of model and evaluate the RMSD of model calibration. The results show that the model has better fitness.

Keywords: Farlie-Gumbel-Morgenstern family of bivariate distributions, multi-source ordering, materials demand quantity, recency, ordering time.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 947
8086 Framework of TAZ_OPT Model for Ambulance Location and Allocation Problem

Authors: Adibah Shuib, Zati Aqmar Zaharudin

Abstract:

Our study is concerned with the development of an Emergency Medical Services (EMS) ambulance location and allocation model called the Time-based Ambulance Zoning Optimization Model (TAZ_OPT). This paper presents the framework of the study. The model is formulated using the goal programming (GP), where the goals are to determine the satellite locations of ambulances and the number of ambulances to be allocated at these locations. The model aims at maximizing the expected demand coverage based on probability of reaching the emergency location within targetted time, and minimizing the ambulance busyness likelihood value. Among the benefits of the model is the increased accessibility and availability of ambulances, thus, enhanced quality of the EMS ambulance services.

Keywords: Optimization, Ambulance Location, Location facilities.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2173
8085 SiC Merged PiN and Schottky (MPS) Power Diodes Electrothermal Modeling in SPICE

Authors: A. Lakrim, D. Tahri

Abstract:

This paper sets out a behavioral macro-model of a Merged PiN and Schottky (MPS) diode based on silicon carbide (SiC). This model holds good for both static and dynamic electrothermal simulations for industrial applications. Its parameters have been worked out from datasheets curves by drawing on the optimization method: Simulated Annealing (SA) for the SiC MPS diodes made available in the industry. The model also adopts the Analog Behavioral Model (ABM) of PSPICE in which it has been implemented. The thermal behavior of the devices was also taken into consideration by making use of Foster’ canonical network as figured out from electro-thermal measurement provided by the manufacturer of the device.

Keywords: SiC MPS Diode, electro-thermal, SPICE Model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1959
8084 Gas Detection via Machine Learning

Authors: Walaa Khalaf, Calogero Pace, Manlio Gaudioso

Abstract:

We present an Electronic Nose (ENose), which is aimed at identifying the presence of one out of two gases, possibly detecting the presence of a mixture of the two. Estimation of the concentrations of the components is also performed for a volatile organic compound (VOC) constituted by methanol and acetone, for the ranges 40-400 and 22-220 ppm (parts-per-million), respectively. Our system contains 8 sensors, 5 of them being gas sensors (of the class TGS from FIGARO USA, INC., whose sensing element is a tin dioxide (SnO2) semiconductor), the remaining being a temperature sensor (LM35 from National Semiconductor Corporation), a humidity sensor (HIH–3610 from Honeywell), and a pressure sensor (XFAM from Fujikura Ltd.). Our integrated hardware–software system uses some machine learning principles and least square regression principle to identify at first a new gas sample, or a mixture, and then to estimate the concentrations. In particular we adopt a training model using the Support Vector Machine (SVM) approach with linear kernel to teach the system how discriminate among different gases. Then we apply another training model using the least square regression, to predict the concentrations. The experimental results demonstrate that the proposed multiclassification and regression scheme is effective in the identification of the tested VOCs of methanol and acetone with 96.61% correctness. The concentration prediction is obtained with 0.979 and 0.964 correlation coefficient for the predicted versus real concentrations of methanol and acetone, respectively.

Keywords: Electronic nose, Least square regression, Mixture ofgases, Support Vector Machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2539
8083 Influence of Fermentation Conditions on Humic Acids Production by Trichoderma viride Using an Oil Palm Empty Fruit Bunch as the Substrate

Authors: F. L. Motta, M. H. A. Santana

Abstract:

Humic acids (HA) were produced by a Trichoderma viride strain under submerged fermentation in a medium based on the oil palm empty fruit bunch (EFB) and the main variables of the process were optimized by using response surface methodology. A temperature of 40°C and concentrations of 50g/L EFB, 5.7g/L potato peptone and 0.11g/L (NH4)2SO4 were the optimum levels of the variables that maximize the HA production, within the physicochemical and biological limits of the process. The optimized conditions led to an experimental HA concentration of 428.4±17.5 mg/L, which validated the prediction from the statistical model of 412.0mg/L. This optimization increased about 7–fold the HA production previously reported in the literature. Additionally, the time profiles of HA production and fungal growth confirmed our previous findings that HA production preferably occurs during fungal sporulation. The present study demonstrated that T. viride successfully produced HA via the submerged fermentation of EFB and the process parameters were successfully optimized using a statistics-based response surface model. To the best of our knowledge, the present work is the first report on the optimization of HA production from EFB by a biotechnological process, whose feasibility was only pointed out in previous works.

Keywords: Empty fruit bunch, humic acids, submerged fermentation, Trichoderma viride.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2165
8082 A New Weighted LDA Method in Comparison to Some Versions of LDA

Authors: Delaram Jarchi, Reza Boostani

Abstract:

Linear Discrimination Analysis (LDA) is a linear solution for classification of two classes. In this paper, we propose a variant LDA method for multi-class problem which redefines the between class and within class scatter matrices by incorporating a weight function into each of them. The aim is to separate classes as much as possible in a situation that one class is well separated from other classes, incidentally, that class must have a little influence on classification. It has been suggested to alleviate influence of classes that are well separated by adding a weight into between class scatter matrix and within class scatter matrix. To obtain a simple and effective weight function, ordinary LDA between every two classes has been used in order to find Fisher discrimination value and passed it as an input into two weight functions and redefined between class and within class scatter matrices. Experimental results showed that our new LDA method improved classification rate, on glass, iris and wine datasets, in comparison to different versions of LDA.

Keywords: Discriminant vectors, weighted LDA, uncorrelation, principle components, Fisher-face method, Bootstarp method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1523
8081 Stability Analysis for a Multicriteria Problem with Linear Criteria and Parameterized Principle of Optimality “from Lexicographic to Slater“

Authors: Yury Nikulin

Abstract:

A multicriteria linear programming problem with integer variables and parameterized optimality principle "from lexicographic to Slater" is considered. A situation in which initial coefficients of penalty cost functions are not fixed but may be potentially a subject to variations is studied. For any efficient solution, appropriate measures of the quality are introduced which incorporate information about variations of penalty cost function coefficients. These measures correspond to the so-called stability and accuracy functions defined earlier for efficient solutions of a generic multicriteria combinatorial optimization problem with Pareto and lexicographic optimality principles. Various properties of such functions are studied and maximum norms of perturbations for which an efficient solution preserves the property of being efficient are calculated.

Keywords: Stability and accuracy, multicriteria optimization, lexicographic optimality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1040
8080 Assessment Tool for Social Responsibility Performance According to the ISO 26000

Authors: W. Fethallah, L. Chraibi, N. Sefiani

Abstract:

The present paper is concerned with a statistical approach involving latent and manifest variables applied in order to assess the organization's social responsibility performance. The main idea is to develop an assessment tool and a measurement of the Social Responsibility Performance, enabling the company to characterize her performance regarding to the ISO 26000 standard's seven core subjects. For this, we conceptualize a structural equation modeling (SEM) which describes various causal connections between the Social Responsibility’s components. The SEM’s resolution is based on the Partial Least squares (PLS) method and the implementation is running in the XLSTAT software.

Keywords: Corporate social responsibility, latent and manifest variable, partial least squares, structural equation model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1224
8079 Parametric Study of Vertical Diffusion Still for Water Desalination

Authors: A. Seleem, M. Mortada, M. El Morsi, M. Younan

Abstract:

Diffusion stills have been effective in water desalination. The present work represents a model of the distillation process by using vertical single-effect diffusion stills. A semianalytical model has been developed to model the process. A software computer code using Engineering Equation Solver EES software has been developed to solve the equations of the developed model. An experimental setup has been constructed, and used for the validation of the model. The model is also validated against former literature results. The results obtained from the present experimental test rig, and the data from the literature, have been compared with the results of the code to find its best range of validity. In addition, a parametric analysis of the system has been developed using the model to determine the effect of operating conditions on the system's performance. The dominant parameters that affect the productivity of the still are the hot plate temperature that ranges from (55- 90°C) and feed flow rate in range of (0.00694-0.0211 kg/m2-s).

Keywords: Analytical Model, Solar Distillation, Sustainable Water Systems, Vertical Diffusion Still.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2399