Search results for: Fuzzy CMeans (FCM) clustering
131 Research of Potential Cluster Development in Pannonian Croatia
Authors: Mirjana Radman-Funarić, Katarina Potnik Galić
Abstract:
The paper presents an analysis of linkages and structures of co-operation and their intensity like the potential for the establishment of clusters in the Central and Eastern (Pannonian) Croatian. Starting from the theoretical elaboration of the need for entrepreneurs to organize through the cluster model and the terms of their self-actualization, related to the importance of traditional values in terms of benefits, social capital and assess where the company now is, in order to prove the need to create their own identity in terms of clustering. The institutional dimensions of social capital where the public sector has the best role in creating the social structure of clusters, and social dimensions of social capital in terms of trust, cooperation and networking will be analyzed to what extent the trust and coherency are present between companies in the Brod posavina and Pozega slavonia County, expressed through the readiness of inclusion in clusters in the NUTS II region - Central and Eastern (Pannonian) Croatia, as a homogeneous economic entity, with emphasis on limiting factors that stand in the way of greater competitiveness.Keywords: Analysis of linkages, structures of co-operation, Cluster, Region
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1867130 Balancing and Synchronization Control of a Two Wheel Inverted Pendulum Vehicle
Authors: Shiuh-Jer Huang, Shin-Ham Lee, Sheam-Chyun Lin
Abstract:
A two wheel inverted pendulum (TWIP) vehicle is built with two hub DC motors for motion control evaluation. Arduino Nano micro-processor is chosen as the control kernel for this electric test plant. Accelerometer and gyroscope sensors are built in to measure the tilt angle and angular velocity of the inverted pendulum vehicle. Since the TWIP has significantly hub motor dead zone and nonlinear system dynamics characteristics, the vehicle system is difficult to control by traditional model based controller. The intelligent model-free fuzzy sliding mode controller (FSMC) was employed as the main control algorithm. Then, intelligent controllers are designed for TWIP balance control, and two wheels synchronization control purposes.Keywords: Balance control, synchronization control, two wheel inverted pendulum, TWIP.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1591129 Feature Selection with Kohonen Self Organizing Classification Algorithm
Authors: Francesco Maiorana
Abstract:
In this paper a one-dimension Self Organizing Map algorithm (SOM) to perform feature selection is presented. The algorithm is based on a first classification of the input dataset on a similarity space. From this classification for each class a set of positive and negative features is computed. This set of features is selected as result of the procedure. The procedure is evaluated on an in-house dataset from a Knowledge Discovery from Text (KDT) application and on a set of publicly available datasets used in international feature selection competitions. These datasets come from KDT applications, drug discovery as well as other applications. The knowledge of the correct classification available for the training and validation datasets is used to optimize the parameters for positive and negative feature extractions. The process becomes feasible for large and sparse datasets, as the ones obtained in KDT applications, by using both compression techniques to store the similarity matrix and speed up techniques of the Kohonen algorithm that take advantage of the sparsity of the input matrix. These improvements make it feasible, by using the grid, the application of the methodology to massive datasets.Keywords: Clustering algorithm, Data mining, Feature selection, Grid, Kohonen Self Organizing Map.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3052128 An Energy Efficient Cluster Formation Protocol with Low Latency In Wireless Sensor Networks
Authors: A. Allirani, M. Suganthi
Abstract:
Data gathering is an essential operation in wireless sensor network applications. So it requires energy efficiency techniques to increase the lifetime of the network. Similarly, clustering is also an effective technique to improve the energy efficiency and network lifetime of wireless sensor networks. In this paper, an energy efficient cluster formation protocol is proposed with the objective of achieving low energy dissipation and latency without sacrificing application specific quality. The objective is achieved by applying randomized, adaptive, self-configuring cluster formation and localized control for data transfers. It involves application - specific data processing, such as data aggregation or compression. The cluster formation algorithm allows each node to make independent decisions, so as to generate good clusters as the end. Simulation results show that the proposed protocol utilizes minimum energy and latency for cluster formation, there by reducing the overhead of the protocol.Keywords: Sensor networks, Low latency, Energy sorting protocol, data processing, Cluster formation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2741127 A New Hybrid RMN Image Segmentation Algorithm
Authors: Abdelouahab Moussaoui, Nabila Ferahta, Victor Chen
Abstract:
The development of aid's systems for the medical diagnosis is not easy thing because of presence of inhomogeneities in the MRI, the variability of the data from a sequence to the other as well as of other different source distortions that accentuate this difficulty. A new automatic, contextual, adaptive and robust segmentation procedure by MRI brain tissue classification is described in this article. A first phase consists in estimating the density of probability of the data by the Parzen-Rozenblatt method. The classification procedure is completely automatic and doesn't make any assumptions nor on the clusters number nor on the prototypes of these clusters since these last are detected in an automatic manner by an operator of mathematical morphology called skeleton by influence zones detection (SKIZ). The problem of initialization of the prototypes as well as their number is transformed in an optimization problem; in more the procedure is adaptive since it takes in consideration the contextual information presents in every voxel by an adaptive and robust non parametric model by the Markov fields (MF). The number of bad classifications is reduced by the use of the criteria of MPM minimization (Maximum Posterior Marginal).Keywords: Clustering, Automatic Classification, SKIZ, MarkovFields, Image segmentation, Maximum Posterior Marginal (MPM).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1412126 A New Hybrid K-Mean-Quick Reduct Algorithm for Gene Selection
Authors: E. N. Sathishkumar, K. Thangavel, T. Chandrasekhar
Abstract:
Feature selection is a process to select features which are more informative. It is one of the important steps in knowledge discovery. The problem is that all genes are not important in gene expression data. Some of the genes may be redundant, and others may be irrelevant and noisy. Here a novel approach is proposed Hybrid K-Mean-Quick Reduct (KMQR) algorithm for gene selection from gene expression data. In this study, the entire dataset is divided into clusters by applying K-Means algorithm. Each cluster contains similar genes. The high class discriminated genes has been selected based on their degree of dependence by applying Quick Reduct algorithm to all the clusters. Average Correlation Value (ACV) is calculated for the high class discriminated genes. The clusters which have the ACV value as 1 is determined as significant clusters, whose classification accuracy will be equal or high when comparing to the accuracy of the entire dataset. The proposed algorithm is evaluated using WEKA classifiers and compared. The proposed work shows that the high classification accuracy.
Keywords: Clustering, Gene Selection, K-Mean-Quick Reduct, Rough Sets.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2298125 A Preliminary Study for Design of Automatic Block Reallocation Algorithm with Genetic Algorithm Method in the Land Consolidation Projects
Authors: Tayfun Çay, Yaşar İnceyol, Abdurrahman Özbeyaz
Abstract:
Land reallocation is one of the most important steps in land consolidation projects. Many different models were proposed for land reallocation in the literature such as Fuzzy Logic, block priority based land reallocation and Spatial Decision Support Systems. A model including four parts is considered for automatic block reallocation with genetic algorithm method in land consolidation projects. These stages are preparing data tables for a project land, determining conditions and constraints of land reallocation, designing command steps and logical flow chart of reallocation algorithm and finally writing program codes of Genetic Algorithm respectively. In this study, we designed the first three steps of the considered model comprising four steps.Keywords: Genetic algorithm, land consolidation, landholding, land reallocation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1907124 Semi-automatic Construction of Ontology-based CBR System for Knowledge Integration
Authors: Junjie Gao, Guishi Deng
Abstract:
In order to integrate knowledge in heterogeneous case-based reasoning (CBR) systems, ontology-based CBR system has become a hot topic. To solve the facing problems of ontology-based CBR system, for example, its architecture is nonstandard, reusing knowledge in legacy CBR is deficient, ontology construction is difficult, etc, we propose a novel approach for semi-automatically construct ontology-based CBR system whose architecture is based on two-layer ontology. Domain knowledge implied in legacy case bases can be mapped from relational database schema and knowledge items to relevant OWL local ontology automatically by a mapping algorithm with low time-complexity. By concept clustering based on formal concept analysis, computing concept equation measure and concept inclusion measure, some suggestions about enriching or amending concept hierarchy of OWL local ontologies are made automatically that can aid designers to achieve semi-automatic construction of OWL domain ontology. Validation of the approach is done by an application example.Keywords: OWL ontology, Case-based Reasoning, FormalConcept Analysis, Knowledge Integration
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2011123 Evaluating New Service Development Performance Based on Multigranular Linguistic Assessment
Authors: Wen-Pai Wang, Mei-Ching Tang
Abstract:
The service sector continues to grow and the percentage of GDP accounted for by service industries keeps increasing. The growth and importance of service to an economy is not just a phenomenon of advanced economies, service is now a majority of the world gross domestic products. However, the performance evaluation process of new service development problems generally involves uncertain and imprecise data. This paper presents a 2-tuple fuzzy linguistic computing approach to dealing with heterogeneous information and information loss problems while the processes of subjective evaluation integration. The proposed method based on group decision-making scenario to assist business managers in measuring performance of new service development manipulates the heterogeneity integration processes and avoids the information loss effectively.Keywords: Heterogeneity, Multigranular linguistic computing, New service development, Performance evaluation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1544122 Evaluation of the ANN Based Nonlinear System Models in the MSE and CRLB Senses
Authors: M.V Rajesh, Archana R, A Unnikrishnan, R Gopikakumari, Jeevamma Jacob
Abstract:
The System Identification problem looks for a suitably parameterized model, representing a given process. The parameters of the model are adjusted to optimize a performance function based on error between the given process output and identified process output. The linear system identification field is well established with many classical approaches whereas most of those methods cannot be applied for nonlinear systems. The problem becomes tougher if the system is completely unknown with only the output time series is available. It has been reported that the capability of Artificial Neural Network to approximate all linear and nonlinear input-output maps makes it predominantly suitable for the identification of nonlinear systems, where only the output time series is available. [1][2][4][5]. The work reported here is an attempt to implement few of the well known algorithms in the context of modeling of nonlinear systems, and to make a performance comparison to establish the relative merits and demerits.Keywords: Multilayer neural networks, Radial Basis Functions, Clustering algorithm, Back Propagation training, Extended Kalmanfiltering, Mean Square Error, Nonlinear Modeling, Cramer RaoLower Bound.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1646121 Empirical and Indian Automotive Equity Portfolio Decision Support
Authors: P. Sankar, P. James Daniel Paul, Siddhant Sahu
Abstract:
A brief review of the empirical studies on the methodology of the stock market decision support would indicate that they are at a threshold of validating the accuracy of the traditional and the fuzzy, artificial neural network and the decision trees. Many researchers have been attempting to compare these models using various data sets worldwide. However, the research community is on the way to the conclusive confidence in the emerged models. This paper attempts to use the automotive sector stock prices from National Stock Exchange (NSE), India and analyze them for the intra-sectorial support for stock market decisions. The study identifies the significant variables and their lags which affect the price of the stocks using OLS analysis and decision tree classifiers.
Keywords: Indian Automotive Sector, Stock Market Decisions, Equity Portfolio Analysis, Decision Tree Classifiers, Statistical Data Analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2036120 ANFIS Approach for Locating Faults in Underground Cables
Authors: Magdy B. Eteiba, Wael Ismael Wahba, Shimaa Barakat
Abstract:
This paper presents a fault identification, classification and fault location estimation method based on Discrete Wavelet Transform and Adaptive Network Fuzzy Inference System (ANFIS) for medium voltage cable in the distribution system.
Different faults and locations are simulated by ATP/EMTP, and then certain selected features of the wavelet transformed signals are used as an input for a training process on the ANFIS. Then an accurate fault classifier and locator algorithm was designed, trained and tested using current samples only. The results obtained from ANFIS output were compared with the real output. From the results, it was found that the percentage error between ANFIS output and real output is less than three percent. Hence, it can be concluded that the proposed technique is able to offer high accuracy in both of the fault classification and fault location.
Keywords: ANFIS, Fault location, Underground Cable, Wavelet Transform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2741119 Comparison of Machine Learning Models for the Prediction of System Marginal Price of Greek Energy Market
Authors: Ioannis P. Panapakidis, Marios N. Moschakis
Abstract:
The Greek Energy Market is structured as a mandatory pool where the producers make their bid offers in day-ahead basis. The System Operator solves an optimization routine aiming at the minimization of the cost of produced electricity. The solution of the optimization problem leads to the calculation of the System Marginal Price (SMP). Accurate forecasts of the SMP can lead to increased profits and more efficient portfolio management from the producer`s perspective. Aim of this study is to provide a comparative analysis of various machine learning models such as artificial neural networks and neuro-fuzzy models for the prediction of the SMP of the Greek market. Machine learning algorithms are favored in predictions problems since they can capture and simulate the volatilities of complex time series.
Keywords: Deregulated energy market, forecasting, machine learning, system marginal price, energy efficiency and quality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1311118 A Multi-Criteria Evaluation Incorporating Linguistic Computing for Service Innovation Performance
Authors: Wen-Pai Wang
Abstract:
The growing influence of service industries has prompted greater attention being paid to service operations management. However, service managers often have difficulty articulating the veritable effects of their service innovation. Especially, the performance evaluation process of service innovation problems generally involves uncertain and imprecise data. This paper presents a 2-tuple fuzzy linguistic computing approach to dealing with heterogeneous information and information loss problems while the processes of subjective evaluation integration. The proposed method based on group decision-making scenario to assist business managers in measuring performance of service innovation manipulates the heterogeneity integration processes and avoids the information loss effectively.Keywords: Group decision-making, Heterogeneity, Linguisticcomputing, Multi-criteria, Service innovation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1570117 Development of a Pipeline Monitoring System by Bio-mimetic Robots
Authors: Seung You Na, Daejung Shin, Jin Young Kim, Joo Hyun Jung, Yong-Gwan Won
Abstract:
To explore pipelines is one of various bio-mimetic robot applications. The robot may work in common buildings such as between ceilings and ducts, in addition to complicated and massive pipeline systems of large industrial plants. The bio-mimetic robot finds any troubled area or malfunction and then reports its data. Importantly, it can not only prepare for but also react to any abnormal routes in the pipeline. The pipeline monitoring tasks require special types of mobile robots. For an effective movement along a pipeline, the movement of the robot will be similar to that of insects or crawling animals. During its movement along the pipelines, a pipeline monitoring robot has an important task of finding the shapes of the approaching path on the pipes. In this paper we propose an effective solution to the pipeline pattern recognition, based on the fuzzy classification rules for the measured IR distance data.Keywords: Bio-mimetic robots, Plant pipes monitoring, Pipepattern recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1649116 A Study on Early Prediction of Fault Proneness in Software Modules using Genetic Algorithm
Authors: Parvinder S. Sandhu, Sunil Khullar, Satpreet Singh, Simranjit K. Bains, Manpreet Kaur, Gurvinder Singh
Abstract:
Fault-proneness of a software module is the probability that the module contains faults. To predict faultproneness of modules different techniques have been proposed which includes statistical methods, machine learning techniques, neural network techniques and clustering techniques. The aim of proposed study is to explore whether metrics available in the early lifecycle (i.e. requirement metrics), metrics available in the late lifecycle (i.e. code metrics) and metrics available in the early lifecycle (i.e. requirement metrics) combined with metrics available in the late lifecycle (i.e. code metrics) can be used to identify fault prone modules using Genetic Algorithm technique. This approach has been tested with real time defect C Programming language datasets of NASA software projects. The results show that the fusion of requirement and code metric is the best prediction model for detecting the faults as compared with commonly used code based model.Keywords: Genetic Algorithm, Fault Proneness, Software Faultand Software Quality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1984115 A Multi-Agent Intelligent System for Monitoring Health Conditions of Elderly People
Authors: Ayman M. Mansour
Abstract:
In this paper, we propose a multi-agent intelligent system that is used for monitoring the health conditions of elderly people. Monitoring the health condition of elderly people is a complex problem that involves different medical units and requires continuous monitoring. Such expert system is highly needed in rural areas because of inadequate number of available specialized physicians or nurses. Such monitoring must have autonomous interactions between these medical units in order to be effective. A multi-agent system is formed by a community of agents that exchange information and proactively help one another to achieve the goal of elderly monitoring. The agents in the developed system are equipped with intelligent decision maker that arms them with the rule-based reasoning capability that can assist the physicians in making decisions regarding the medical condition of elderly people.
Keywords: Fuzzy Logic, Inference system, Monitoring system, Multi-agent system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2282114 Mining and Visual Management of XML-Based Image Collections
Authors: Khalil Shihab, Nida Al-Chalabi
Abstract:
This article describes Uruk, the virtual museum of Iraq that we developed for visual exploration and retrieval of image collections. The system largely exploits the loosely-structured hierarchy of XML documents that provides a useful representation method to store semi-structured or unstructured data, which does not easily fit into existing database. The system offers users the capability to mine and manage the XML-based image collections through a web-based Graphical User Interface (GUI). Typically, at an interactive session with the system, the user can browse a visual structural summary of the XML database in order to select interesting elements. Using this intermediate result, queries combining structure and textual references can be composed and presented to the system. After query evaluation, the full set of answers is presented in a visual and structured way.Keywords: Data-centric XML, graphical user interfaces, information retrieval, case-based reasoning, fuzzy sets
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1790113 On the Performance of Information Criteria in Latent Segment Models
Authors: Jaime R. S. Fonseca
Abstract:
Nevertheless the widespread application of finite mixture models in segmentation, finite mixture model selection is still an important issue. In fact, the selection of an adequate number of segments is a key issue in deriving latent segments structures and it is desirable that the selection criteria used for this end are effective. In order to select among several information criteria, which may support the selection of the correct number of segments we conduct a simulation study. In particular, this study is intended to determine which information criteria are more appropriate for mixture model selection when considering data sets with only categorical segmentation base variables. The generation of mixtures of multinomial data supports the proposed analysis. As a result, we establish a relationship between the level of measurement of segmentation variables and some (eleven) information criteria-s performance. The criterion AIC3 shows better performance (it indicates the correct number of the simulated segments- structure more often) when referring to mixtures of multinomial segmentation base variables.Keywords: Quantitative Methods, Multivariate Data Analysis, Clustering, Finite Mixture Models, Information Theoretical Criteria, Simulation experiments.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1519112 Cognition Technique for Developing a World Music
Authors: Haider Javed Uppal, Javed Yunas Uppal
Abstract:
In today's globalized world, it is necessary to develop a form of music that is able to evoke equal emotional responses among people from diverse cultural backgrounds. Indigenous cultures throughout history have developed their own music cognition, specifically in terms of the connections between music and mood. With the advancements in artificial intelligence technologies, it has become possible to analyze and categorize music features such as timbre, harmony, melody, and rhythm, and relate them to the resulting mood effects experienced by listeners. This paper presents a model that utilizes a screenshot translator to convert music from different origins into waveforms, which are then analyzed using machine learning and information retrieval techniques. By connecting these waveforms with Thayer's matrix of moods, a mood classifier has been developed using fuzzy logic algorithms to determine the emotional impact of different types of music on listeners from various cultures.
Keywords: Cognition, world music, artificial intelligence, Thayer’s matrix.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 154111 Contractor Selection in Saudi Arabia
Authors: M. A. Bajaber, M. A. Taha
Abstract:
Contractor selection in Saudi Arabia is very important due to the large construction boom and the contractor role to get over construction risks. The need for investigating contractor selection is due to the following reasons; large number of defaulted or failed projects (18%), large number of disputes attributed to contractor during the project execution stage (almost twofold), the extension of the General Agreement on Tariffs and Trade (GATT) into construction industry, and finally the few number of researches. The selection strategy is not perfect and considered as the reason behind irresponsible contractors. As a response, this research was conducted to review the contractor selection strategies as an integral part of a long advanced research to develop a good selection model. Many techniques can be used to form a selection strategy; multi criteria for optimizing decision, prequalification to discover contractor-s responsibility, bidding process for competition, third party guarantee to enhance the selection, and fuzzy techniques for ambiguities and incomplete information.
Keywords: Bidding, Construction industry, Contractor selection, Saudi Arabia.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3141110 A Graph Theoretic Approach for Quantitative Evaluation of NAAC Accreditation Criteria for the Indian University
Authors: Nameesh Miglani, Rajeev Saha, R. S. Parihar
Abstract:
Estimation of the quality regarding higher education within a university is practically long drawn process besides being difficult to measure primarily due to lack of a standard scale. National Assessment and Accreditation Council (NAAC) evolved a methodology of assessment which involves self-appraisal by each university/college and an assessment of performance by an expert committee. The attributes involved in assessing a university may not be totally independent from each other thereby necessitating the consideration of interdependencies. The present study focuses on evaluation of assessment criteria using graph theoretic approach and fuzzy treatment of data collected from the students. The technique will provide a suitable platform to university management team to cross check assessment of education quality by considering interdependencies of the attributes using graph theory.
Keywords: Graph theory, NAAC accreditation criteria, Indian University accreditation process.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1127109 A Design for Supply Chain Model by Integrated Evaluation of Design Value and Supply Chain Cost
Authors: Yuan-Jye Tseng, Jia-Shu Li
Abstract:
To design a product with the given product requirement and design objective, there can be alternative ways to propose the detailed design specifications of the product. In the design modeling stage, alternative design cases with detailed specifications can be modeled to fulfill the product requirement and design objective. Therefore, in the design evaluation stage, it is required to perform an evaluation of the alternative design cases for deciding the final design. The purpose of this research is to develop a product evaluation model for evaluating the alternative design cases by integrated evaluating the criteria of functional design, Kansei design, and design for supply chain. The criteria in the functional design group include primary function, expansion function, improved function, and new function. The criteria in the Kansei group include geometric shape, dimension, surface finish, and layout. The criteria in the design for supply chain group include material, manufacturing process, assembly, and supply chain operation. From the point of view of value and cost, the criteria in the functional design group and Kansei design group represent the design value of the product. The criteria in the design for supply chain group represent the supply chain and manufacturing cost of the product. It is required to evaluate the design value and the supply chain cost to determine the final design. For the purpose of evaluating the criteria in the three criteria groups, a fuzzy analytic network process (FANP) method is presented to evaluate a weighted index by calculating the total relational values among the three groups. A method using the technique for order preference by similarity to ideal solution (TOPSIS) is used to compare and rank the design alternative cases according to the weighted index using the total relational values of the criteria. The final decision of a design case can be determined by using the ordered ranking. For example, the design case with the top ranking can be selected as the final design case. Based on the criteria in the evaluation, the design objective can be achieved with a combined and weighted effect of the design value and manufacturing cost. An example product is demonstrated and illustrated in the presentation. It shows that the design evaluation model is useful for integrated evaluation of functional design, Kansei design, and design for supply chain to determine the best design case and achieve the design objective.
Keywords: Design evaluation, functional design, Kansei design, supply chain, design value, manufacturing cost, fuzzy analytic network process, technique for order preference by similarity to ideal solution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 794108 Advanced Neural Network Learning Applied to Pulping Modeling
Authors: Z. Zainuddin, W. D. Wan Rosli, R. Lanouette, S. Sathasivam
Abstract:
This paper reports work done to improve the modeling of complex processes when only small experimental data sets are available. Neural networks are used to capture the nonlinear underlying phenomena contained in the data set and to partly eliminate the burden of having to specify completely the structure of the model. Two different types of neural networks were used for the application of pulping problem. A three layer feed forward neural networks, using the Preconditioned Conjugate Gradient (PCG) methods were used in this investigation. Preconditioning is a method to improve convergence by lowering the condition number and increasing the eigenvalues clustering. The idea is to solve the modified odified problem M-1 Ax= M-1b where M is a positive-definite preconditioner that is closely related to A. We mainly focused on Preconditioned Conjugate Gradient- based training methods which originated from optimization theory, namely Preconditioned Conjugate Gradient with Fletcher-Reeves Update (PCGF), Preconditioned Conjugate Gradient with Polak-Ribiere Update (PCGP) and Preconditioned Conjugate Gradient with Powell-Beale Restarts (PCGB). The behavior of the PCG methods in the simulations proved to be robust against phenomenon such as oscillations due to large step size.
Keywords: Convergence, pulping modeling, neural networks, preconditioned conjugate gradient.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1408107 Classifier Combination Approach in Motion Imagery Signals Processing for Brain Computer Interface
Authors: Homayoon Zarshenas, Mahdi Bamdad, Hadi Grailu, Akbar A. Shakoori
Abstract:
In this study we focus on improvement performance of a cue based Motor Imagery Brain Computer Interface (BCI). For this purpose, data fusion approach is used on results of different classifiers to make the best decision. At first step Distinction Sensitive Learning Vector Quantization method is used as a feature selection method to determine most informative frequencies in recorded signals and its performance is evaluated by frequency search method. Then informative features are extracted by packet wavelet transform. In next step 5 different types of classification methods are applied. The methodologies are tested on BCI Competition II dataset III, the best obtained accuracy is 85% and the best kappa value is 0.8. At final step ordered weighted averaging (OWA) method is used to provide a proper aggregation classifiers outputs. Using OWA enhanced system accuracy to 95% and kappa value to 0.9. Applying OWA just uses 50 milliseconds for performing calculation.Keywords: BCI, EEG, Classifier, Fuzzy operator, OWA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1876106 Secure and Efficient Transmission of Aggregated Data for Mobile Wireless Sensor Networks
Authors: A. Krishna Veni, R.Geetha
Abstract:
Wireless Sensor Networks (WSNs) are suitable for many scenarios in the real world. The retrieval of data is made efficient by the data aggregation techniques. Many techniques for the data aggregation are offered and most of the existing schemes are not energy efficient and secure. However, the existing techniques use the traditional clustering approach where there is a delay during the packet transmission since there is no proper scheduling. The presented system uses the Velocity Energy-efficient and Link-aware Cluster-Tree (VELCT) scheme in which there is a Data Collection Tree (DCT) which improves the lifetime of the network. The VELCT scheme and the construction of DCT reduce the delay and traffic. The network lifetime can be increased by avoiding the frequent change in cluster topology. Secure and Efficient Transmission of Aggregated data (SETA) improves the security of the data transmission via the trust value of the nodes prior the aggregation of data. Since SETA considers the data only from the trustworthy nodes for aggregation, it is more secure in transmitting the data thereby improving the accuracy of aggregated data.
Keywords: Aggregation, lifetime, network security, wireless sensor network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1217105 Objective Assessment of Psoriasis Lesion Thickness for PASI Scoring using 3D Digital Imaging
Authors: M.H. Ahmad Fadzil, Hurriyatul Fitriyah, Esa Prakasa, Hermawan Nugroho, S.H. Hussein, Azura Mohd. Affandi
Abstract:
Psoriasis is a chronic inflammatory skin condition which affects 2-3% of population around the world. Psoriasis Area and Severity Index (PASI) is a gold standard to assess psoriasis severity as well as the treatment efficacy. Although a gold standard, PASI is rarely used because it is tedious and complex. In practice, PASI score is determined subjectively by dermatologists, therefore inter and intra variations of assessment are possible to happen even among expert dermatologists. This research develops an algorithm to assess psoriasis lesion for PASI scoring objectively. Focus of this research is thickness assessment as one of PASI four parameters beside area, erythema and scaliness. Psoriasis lesion thickness is measured by averaging the total elevation from lesion base to lesion surface. Thickness values of 122 3D images taken from 39 patients are grouped into 4 PASI thickness score using K-means clustering. Validation on lesion base construction is performed using twelve body curvature models and show good result with coefficient of determinant (R2) is equal to 1.Keywords: 3D digital imaging, base construction, PASI, psoriasis lesion thickness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2454104 Communicative Competence: Novice versus Professional Engineers' Perceptions
Authors: Ena Bhattacharyya
Abstract:
The notion of communicative competence has been deemed fuzzy in communication studies. This fuzziness has led to tensions among engineers across tenures in interpreting what constitutes communicative competence. The study seeks to investigate novice and professional engineers- understanding of the said notion in terms of two main elements of communicative competence: linguistic and rhetorical competence. Novice engineers are final year engineering students, whilst professional engineers represent engineers who have at least 5 years working experience. Novice and professional engineers were interviewed to gauge their perceptions on linguistic and rhetorical features deemed necessary to enhance communicative competence for the profession. Both groups indicated awareness and differences on the importance of the sub-sets of communicative competence, namely, rhetorical explanatory competence, linguistic oral immediacy competence, technical competence and meta-cognitive competence. Such differences, a possible attribute of the learning theory, inadvertently indicate sublime differences in the way novice and professional engineers perceive communicative competence.
Keywords: Communicative competence, technical oral presentation, linguistic competence, rhetorical competence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2266103 Risk Level Evaluation for Power System Facilities in Smart Grid
Authors: Sung-Hun Lee, Yun-Seong Lee, Jin-O Kim
Abstract:
Reliability Centered Maintenance(RCM) is one of most widely used methods in the modern power system to schedule a maintenance cycle and determine the priority of inspection. In order to apply the RCM method to the Smart Grid, a precedence study for the new structure of rearranged system should be performed due to introduction of additional installation such as renewable and sustainable energy resources, energy storage devices and advanced metering infrastructure. This paper proposes a new method to evaluate the priority of maintenance and inspection of the power system facilities in the Smart Grid using the Risk Priority Number. In order to calculate that risk index, it is required that the reliability block diagram should be analyzed for the Smart Grid system. Finally, the feasible technical method is discussed to estimate the risk potential as part of the RCM procedure.Keywords: Expert System, FMECA, Fuzzy Theory, Reliability Centered Maintenance, Risk Priority Number
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1783102 Mobile Robot Navigation Using Local Model Networks
Authors: Hamdi. A. Awad, Mohamed A. Al-Zorkany
Abstract:
Developing techniques for mobile robot navigation constitutes one of the major trends in the current research on mobile robotics. This paper develops a local model network (LMN) for mobile robot navigation. The LMN represents the mobile robot by a set of locally valid submodels that are Multi-Layer Perceptrons (MLPs). Training these submodels employs Back Propagation (BP) algorithm. The paper proposes the fuzzy C-means (FCM) in this scheme to divide the input space to sub regions, and then a submodel (MLP) is identified to represent a particular region. The submodels then are combined in a unified structure. In run time phase, Radial Basis Functions (RBFs) are employed as windows for the activated submodels. This proposed structure overcomes the problem of changing operating regions of mobile robots. Read data are used in all experiments. Results for mobile robot navigation using the proposed LMN reflect the soundness of the proposed scheme.Keywords: Mobile Robot Navigation, Neural Networks, Local Model Networks
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2021