Search results for: Asymptotic stability
153 The Effect of Micro Tools Fabricated Dent on Alumina/Alumina Oxide Interface
Authors: Taposh Roy, Dipankar Choudhury, Belinda Pingguan-Murphy
Abstract:
The tribological outcomes of micro dent are found to be outstanding in many engineering and natural surfaces. Ceramic (Al2O3) is considered one of the most potential material to bearing surfaces particularly, artificial hip or knee implant. A well-defined micro dent on alumina oxide interface could further decrease friction and wear rate, thus increase their stability and durability. In this study we fabricated circular micro dent surface profiles (Dia: 400µm, Depth 20µm, P: 1.5mm; Dia: 400µm, Depth 20µm, P: 2mm) on pure Al2O3 (99.6%) substrate by using a micro tool machines. A preliminary tribological experiment was carried out to compare friction coefficient of these fabricated dent surfaces with that of non-textured surfaces. The experiment was carried on well know pin-on-disk specimens while other experimental parameters such as hertz pressure, speed, lubrication, and temperature were maintained to standard of simulated hip joints condition. The experiment results revealed that micro dent surface texture reduced 15%, 8% and 4% friction coefficient under 0.132,0.162, 0.187 GPa contact pressure respectively. Since this is a preliminary tribological study, we will pursue further experiments considering higher ranges of dent profiles and longer run experiments. However, the preliminary results confirmed the suitability of fabricating dent profile to ceramic surfaces by using micro tooling, and also their improved tribological performance in simulated hip joints.
Keywords: Micro dent, tribology, ceramic on ceramic hipjoints.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2345152 Stabilizing Effects of Deep Eutectic Solvents on Alcohol Dehydrogenase Mediated Systems
Authors: Fatima Zohra Ibn Majdoub Hassani, Ivan Lavandera, Joseph Kreit
Abstract:
This study explored the effects of different organic solvents, temperature, and the amount of glycerol on the alcohol dehydrogenase (ADH)-catalysed stereoselective reduction of different ketones. These conversions were then analyzed by gas chromatography. It was found that when the amount of deep eutectic solvents (DES) increases, it can improve the stereoselectivity of the enzyme although reducing its ability to convert the substrate into the corresponding alcohol. Moreover, glycerol was found to have a strong stabilizing effect on the ADH from Ralstonia sp. (E. coli/ RasADH). In the case of organic solvents, it was observed that the best conversions into the alcohols were achieved with DMSO and hexane. It was also observed that temperature decreased the ability of the enzyme to convert the substrates into the products and also affected the selectivity. In addition to that, the recycling of DES up to three times gave good conversions and enantiomeric excess results and glycerol showed a positive effect in the stability of various ADHs. Using RasADH, a good conversion and enantiomeric excess into the S-alcohol were obtained. It was found that an enhancement of the temperature disabled the stabilizing effect of glycerol and decreased the stereoselectivity of the enzyme. However, for other ADHs a temperature increase had an opposite positive effect, especially with ADH-T from Thermoanaerobium sp. One of the objectives of this study was to see the effect of cofactors such as NAD(P) on the biocatlysis activities of ADHs.
Keywords: Alcohol dehydrogenases, DES, gas chromatography, RasADH.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1142151 Correlation of Microstructure and Corrosion Behavior of Martensitic Stainless Steel Surgical Grade AISI 420A Exposed to 980-1035oC
Authors: Taqi Zahid Butt, Tanveer Ahmad Tabish
Abstract:
Martensitic stainless steels have been extensively used for their good corrosion resistance and better mechanical properties. Heat treatment was suggested as one of the most excellent ways to this regard; hence, it affects the microstructure, mechanical and corrosion properties of the steel. In the current research work the microstructural changes and corrosion behavior in an AISI 420A stainless steel exposed to temperatures in the 980-1035oC range were investigated. The heat treatment is carried out in vacuum furnace within the said temperature range. The quenching of the samples was carried out in oil, brine and water media. The formation and stability of passive film was studied by Open Circuit Potential, Potentiodynamic polarization and Electrochemical Scratch Tests. The Electrochemical Impedance Spectroscopy results simulated with Equivalent Electrical Circuit suggested bilayer structure of outer porous and inner barrier oxide films. The quantitative data showed thick inner barrier oxide film retarded electrochemical reactions. Micrographs of the quenched samples showed sigma and chromium carbide phases which prove the corrosion resistance of steel alloy.Keywords: Martensitic stainless steel corrosion, microstructure, vacuum furnace.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2646150 Numerical Evaluation of Shear Strength for Cold-Formed Steel Shear Wall Panel
Authors: Rouaz Idriss, Bourahla Nour-Eddine, Kahlouche Farah, Rafa Sid Ali
Abstract:
The stability of structures made of light-gauge steel depends highly on the contribution of Shear Wall Panel (SWP) systems under horizontal forces due to wind or earthquake loads. Steel plate sheathing is often used with these panels made of cold formed steel (CFS) to improve its shear strength. In order to predict the shear strength resistance, two methods are presented in this paper. In the first method, the steel plate sheathing is modeled with plats strip taking into account only the tension and compression force due to the horizontal load, where both track and stud are modeled according to the geometrical and mechanical characteristics of the specimen used in the experiments. The theoretical background and empirical formulations of this method are presented in this paper. However, the second method is based on a micro modeling of the cold formed steel Shear Wall Panel “CFS-SWP” using Abaqus software. A nonlinear analysis was carried out with an in-plan monotonic load. Finally, the comparison between these two methods shows that the micro modeling with Abaqus gives better prediction of shear resistance of SWP than strips method. However, the latter is easier and less time consuming than the micro modeling method.Keywords: Cold Formed Steel Shear Wall Panel, CFS-SWP, micro modeling, nonlinear analysis, strip method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1526149 Colour Stability of Wild Cactus Pear Juice
Authors: Kgatla T.E, Howard S.S., Hiss D.C.
Abstract:
Prickly pear (Opuntia spp) fruit has received renewed interest since it contains a betalain pigment that has an attractive purple colour for the production of juice. Prickly pear juice was prepared by homogenizing the fruit and treating the pulp with 48 g of pectinase from Aspergillus niger. Titratable acidity was determined by diluting 10 ml prickly pear juice with 90 ml deionized water and titrating to pH 8.2 with 0.1 N NaOH. Brix was measured using a refractometer and ascorbic acid content assayed spectrophotometrically. Colour variation was determined colorimetrically (Hunter L.a.b.). Hunter L.a.b. analysis showed that the red purple colour of prickly pear juice had been affected by juice treatments. This was indicated by low light values of colour difference meter (CDML*), hue, CDMa* and CDMb* values. It was observed that non-treated prickly pear juice had a high (colour difference meter of light) CDML* of 3.9 compared to juice treatments (range 3.29 to 2.14). The CDML* significantly (p<0.05) decreased as the juice was preserved. Spectrophotometric colour analysis showed that browning was low in all treated prickly juice samples as indicated by high values at 540 nm and low values at 476 nm (browning index). The brightness of prickly pear had been affected by acidification compared to other juice treatments. This study presents evidence that processing has a positive effect on the colour quality attribute that offers a clear advantage for the production of red-purple prickly pear juice.Keywords: Colour, Hunter L.a.b, Prickly pear juice, processing, physicochemical.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2830148 Flutter Analysis of Slender Beams with Variable Cross Sections Based on Integral Equation Formulation
Authors: Z. El Felsoufi, L. Azrar
Abstract:
This paper studies a mathematical model based on the integral equations for dynamic analyzes numerical investigations of a non-uniform or multi-material composite beam. The beam is subjected to a sub-tangential follower force and elastic foundation. The boundary conditions are represented by generalized parameterized fixations by the linear and rotary springs. A mathematical formula based on Euler-Bernoulli beam theory is presented for beams with variable cross-sections. The non-uniform section introduces non-uniformity in the rigidity and inertia of beams and consequently, more complicated equilibrium who governs the equation. Using the boundary element method and radial basis functions, the equation of motion is reduced to an algebro-differential system related to internal and boundary unknowns. A generalized formula for the deflection, the slope, the moment and the shear force are presented. The free vibration of non-uniform loaded beams is formulated in a compact matrix form and all needed matrices are explicitly given. The dynamic stability analysis of slender beam is illustrated numerically based on the coalescence criterion. A realistic case related to an industrial chimney is investigated.
Keywords: Chimney, BEM and integral equation formulation, non uniform cross section, vibration and Flutter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1621147 The Quality of Working Life and the Organizational Commitment of Municipal Employee in Samut Sakhon Province
Authors: Mananya Meenakorn
Abstract:
This research aims to investigate: (1) Relationship between the quality of working life and organizational commitment of municipal employee in Samut Sakhon Province. (2) To compare the quality of working life and the organizational commitment of municipal employee in Samut Sakhon Province by the gender, age, education, official experience, position, division, and income. This study is a quantitative research; data was collected by questionnaires distributed to the municipal employee in Samut Sakhon province for 241 sample by stratified random sampling. Data was analyzed by descriptive statistic including percentage, mean, standard deviation and inferential statistic including t-test, F-test and Pearson correlation for hypothesis testing. Finding showed that the quality of working life and the organizational commitment of municipal Employee in Samut Sakhon province in terms of compensation and fair has a positive correlation (r = 0.673) and the comparison of the quality of working life and organizational commitment of municipal employees in Samut Sakhon province by gender. We found that the overall difference was statistically significant at the 0.05 level and we also found stability and progress in career path and the characteristics are beneficial to society has a difference was statistically significant at the 0.01 level, and the participation and social acceptance has a difference was statistically significant at the 0.05 level.
Keywords: Quality of working life, organizational commitment, municipal employee, Samut Sakhon province.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 876146 An Evaluation of Solubility of Wax and Asphaltene in Crude Oil for Improved Flow Properties Using a Copolymer Solubilized in Organic Solvent with an Aromatic Hydrocarbon
Authors: S. M. Anisuzzaman, Sariah Abang, Awang Bono, D. Krishnaiah, N. M. Ismail, G. B. Sandrison
Abstract:
Wax and asphaltene are high molecular weighted compounds that contribute to the stability of crude oil at a dispersed state. Transportation of crude oil along pipelines from the oil rig to the refineries causes fluctuation of temperature which will lead to the coagulation of wax and flocculation of asphaltenes. This paper focuses on the prevention of wax and asphaltene precipitate deposition on the inner surface of the pipelines by using a wax inhibitor and an asphaltene dispersant. The novelty of this prevention method is the combination of three substances; a wax inhibitor dissolved in a wax inhibitor solvent and an asphaltene solvent, namely, ethylene-vinyl acetate (EVA) copolymer dissolved in methylcyclohexane (MCH) and toluene (TOL) to inhibit the precipitation and deposition of wax and asphaltene. The objective of this paper was to optimize the percentage composition of each component in this inhibitor which can maximize the viscosity reduction of crude oil. The optimization was divided into two stages which are the laboratory experimental stage in which the viscosity of crude oil samples containing inhibitor of different component compositions is tested at decreasing temperatures and the data optimization stage using response surface methodology (RSM) to design an optimizing model. The results of experiment proved that the combination of 50% EVA + 25% MCH + 25% TOL gave a maximum viscosity reduction of 67% while the RSM model proved that the combination of 57% EVA + 20.5% MCH + 22.5% TOL gave a maximum viscosity reduction of up to 61%.
Keywords: Asphaltene, ethylene-vinyl acetate, methylcyclohexane, toluene, wax.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1446145 Seismic Performance of Slopes Subjected to Earthquake Mainshock Aftershock Sequences
Authors: Alisha Khanal, Gokhan Saygili
Abstract:
It is commonly observed that aftershocks follow the mainshock. Aftershocks continue over a period of time with a decreasing frequency and typically there is not sufficient time for repair and retrofit between a mainshock–aftershock sequence. Usually, aftershocks are smaller in magnitude; however, aftershock ground motion characteristics such as the intensity and duration can be greater than the mainshock due to the changes in the earthquake mechanism and location with respect to the site. The seismic performance of slopes is typically evaluated based on the sliding displacement predicted to occur along a critical sliding surface. Various empirical models are available that predict sliding displacement as a function of seismic loading parameters, ground motion parameters, and site parameters but these models do not include the aftershocks. The seismic risks associated with the post-mainshock slopes ('damaged slopes') subjected to aftershocks is significant. This paper extends the empirical sliding displacement models for flexible slopes subjected to earthquake mainshock-aftershock sequences (a multi hazard approach). A dataset was developed using 144 pairs of as-recorded mainshock-aftershock sequences using the Pacific Earthquake Engineering Research Center (PEER) database. The results reveal that the combination of mainshock and aftershock increases the seismic demand on slopes relative to the mainshock alone; thus, seismic risks are underestimated if aftershocks are neglected.
Keywords: Seismic slope stability, sliding displacement, mainshock, aftershock, landslide, earthquake.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 900144 On the Catalytic Combustion Behaviors of CH4 in a MCFC Power Generation System
Authors: Man Young Kim
Abstract:
Catalytic combustion is generally accepted as an environmentally preferred alternative for the generation of heat and power from fossil fuels mainly due to its advantages related to the stable combustion under very lean conditions with low emissions of NOx, CO, and UHC at temperatures lower than those occurred in conventional flame combustion. Despite these advantages, the commercial application of catalytic combustion has been delayed because of complicated reaction processes and the difficulty in developing appropriate catalysts with the required stability and durability. To develop the catalytic combustors, detailed studies on the combustion characteristics of catalytic combustion should be conducted. To the end, in current research, quantitative studies on the combustion characteristics of the catalytic combustors, with a Pd-based catalyst for MCFC power generation systems, relying on numerical simulations have been conducted. In addition, data from experimental studies of variations in outlet temperatures and fuel conversion, taken after operating conditions have been used to validate the present numerical approach. After introducing the governing equations for mass, momentum, and energy equations as well as a description of catalytic combustion kinetics, the effects of the excess air ratio, space velocity, and inlet gas temperature on the catalytic combustion characteristics are extensively investigated. Quantitative comparisons are also conducted with previous experimental data. Finally, some concluding remarks are presented.
Keywords: Catalytic combustion, Methane, BOP, MCFC power generation system, Inlet temperature, Excess air ratio, Space velocity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2174143 Development and in vitro Characterization of Self-nanoemulsifying Drug Delivery Systems of Valsartan
Authors: P. S. Rajinikanth, Yeoh Suyu, Sanjay Garg
Abstract:
The present study is aim to prepare and evaluate the selfnanoemulsifying drug delivery (SNEDDS) system of a poorly water soluble drug valsartan in order to achieve a better dissolution rate which would further help in enhancing oral bioavailability. The present research work describes a SNEDDS of valsartan using labrafil M 1944 CS, Tween 80 and Transcutol HP. The pseudoternary phase diagrams with presence and absence of drug were plotted to check for the emulsification range and also to evaluate the effect of valsartan on the emulsification behavior of the phases. The mixtures consisting of oil (labrafil M 1944 CS) with surfactant (tween 80), co-surfactant (Transcutol HP) were found to be optimum formulations. Prepared formulations were evaluated for its particle size distribution, nanoemulsifying properties, robustness to dilution, self emulsication time, turbidity measurement, drug content and invitro dissolution. The optimized formulations are further evaluated for heating cooling cycle, centrifugation studies, freeze thaw cycling, particle size distribution and zeta potential were carried out to confirm the stability of the formed SNEDDS formulations. The prepared formulation revealed t a significant improvement in terms of the drug solubility as compared with marketed tablet and pure drug.
Keywords: Self Emulsifying Drug Delivery System, Valsartan, Bioavailability, poorly soluble drug.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2680142 Numerical Simulation on Deformation Behaviour of Additively Manufactured AlSi10Mg Alloy
Authors: Racholsan Raj Nirmal, B. S. V. Patnaik, R. Jayaganthan
Abstract:
The deformation behaviour of additively manufactured AlSi10Mg alloy under low strains, high strain rates and elevated temperature conditions is essential to analyse and predict its response against dynamic loading such as impact and thermomechanical fatigue. The constitutive relation of Johnson-Cook is used to capture the strain rate sensitivity and thermal softening effect in AlSi10Mg alloy. Johnson-Cook failure model is widely used for exploring damage mechanics and predicting the fracture in many materials. In this present work, Johnson-Cook material and damage model parameters for additively manufactured AlSi10Mg alloy have been determined numerically from four types of uniaxial tensile test. Three different uniaxial tensile tests with dynamic strain rates (0.1, 1, 10, 50, and 100 s-1) and elevated temperature tensile test with three different temperature conditions (450 K, 500 K and 550 K) were performed on 3D printed AlSi10Mg alloy in ABAQUS/Explicit. Hexahedral elements are used to discretize tensile specimens and fracture energy value of 43.6 kN/m was used for damage initiation. Levenberg Marquardt optimization method was used for the evaluation of Johnson-Cook model parameters. It was observed that additively manufactured AlSi10Mg alloy has shown relatively higher strain rate sensitivity and lower thermal stability as compared to the other Al alloys.
Keywords: ABAQUS, additive manufacturing, AlSi10Mg, Johnson-Cook model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1141141 AI-Driven Cloud Security: Proactive Defense Against Evolving Cyber Threats
Authors: Ashly Joseph
Abstract:
Cloud computing has become an essential component of enterprises and organizations globally in the current era of digital technology. The cloud has a multitude of advantages, including scalability, flexibility, and cost-effectiveness, rendering it an appealing choice for data storage and processing. The increasing storage of sensitive information in cloud environments has raised significant concerns over the security of such systems. The frequency of cyber threats and attacks specifically aimed at cloud infrastructure has been increasing, presenting substantial dangers to the data, reputation, and financial stability of enterprises. Conventional security methods can become inadequate when confronted with ever intricate and dynamic threats. Artificial Intelligence (AI) technologies possess the capacity to significantly transform cloud security through their ability to promptly identify and thwart assaults, adjust to emerging risks, and offer intelligent perspectives for proactive security actions. The objective of this research study is to investigate the utilization of AI technologies in augmenting the security measures within cloud computing systems. This paper aims to offer significant insights and recommendations for businesses seeking to protect their cloud-based assets by analyzing the present state of cloud security, the capabilities of AI, and the possible advantages and obstacles associated with using AI into cloud security policies.
Keywords: Machine Learning, Natural Learning Processing, Denial-of-Service attacks, Sentiment Analysis, Cloud computing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 194140 Effects of Initial Moisture Content on the Physical and Mechanical Properties of Norway Spruce Briquettes
Authors: Miloš Matúš, Peter Križan, Ľubomír Šooš, Juraj Beniak
Abstract:
The moisture content of densified biomass is a limiting parameter influencing the quality of this solid biofuel. It influences its calorific value, density, mechanical strength and dimensional stability as well as affecting its production process. This paper deals with experimental research into the effect of moisture content of the densified material on the final quality of biofuel in the form of logs (briquettes or pellets). Experiments based on the singleaxis densification of the spruce sawdust were carried out with a hydraulic piston press (piston and die), where the densified logs were produced at room temperature. The effect of moisture content on the qualitative properties of the logs, including density, change of moisture, expansion and physical changes, and compressive and impact resistance were studied. The results show the moisture ranges required for producing good-quality logs. The experiments were evaluated and the moisture content of the tested material was optimized to achieve the optimum value for the best quality of the solid biofuel. The dense logs also have high-energy content per unit volume. The research results could be used to develop and optimize industrial technologies and machinery for biomass densification to achieve high quality solid biofuel.Keywords: Biomass, briquettes, densification, fuel quality, moisture content, density.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2769139 Steady State Power Flow Calculations with STATCOM under Load Increase Scenario and Line Contingencies
Authors: A. S. Telang, P. P. Bedekar
Abstract:
Flexible AC transmission system controllers play an important role in controlling the line power flow and in improving voltage profiles of the power system network. They can be used to increase the reliability and efficiency of transmission and distribution system. The modeling of these FACTS controllers in power flow calculations have become a challenging research problem. This paper presents a simple and systematic approach for a steady state power flow calculations of power system with STATCOM (Static Synchronous Compensator). It shows how systematically STATCOM can be implemented in conventional power flow calculations. The main contribution of this paper is to investigate this approach for two special conditions i.e. consideration of load increase pattern incorporating load change (active, reactive and both active and reactive) at all load buses simultaneously and the line contingencies under such load change. Such investigation proves to be relevant for determination of strategy for the optimal placement of STATCOM to enhance the voltage stability. The performance has been evaluated on many standard IEEE test systems. The results for standard IEEE-30 bus test system are presented here.Keywords: Load flow analysis, Newton-Raphson (N-R) power flow, Flexible AC transmission system, FACTS, Static synchronous compensator, STATCOM, voltage profile.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1169138 Analysis of Precipitation and Temperature Trends in Sefid-Roud Basin
Authors: Amir Gandomkar, Tahereh Soltani Gord faramarzi, Parisa Safaripour Chafi, Abdol-Reza Amani
Abstract:
Temperature, humidity and precipitation in an area, are parameters proved influential in the climate of that area, and one should recognize them so that he can determine the climate of that area. Climate changes are of primary importance in climatology, and in recent years, have been of great concern to researchers and even politicians and organizations, for they can play an important role in social, political and economic activities. Even though the real cause of climate changes or their stability is not yet fully recognized, they are a matter of concern to researchers and their importance for countries has prompted them to investigate climate changes in different levels, especially in regional, national and continental level. This issue has less been investigated in our country. However, in recent years, there have been some researches and conferences on climate changes. This study is also in line with such researches and tries to investigate and analyze the trends of climate changes (temperature and precipitation) in Sefid-roud (the name of a river) basin. Three parameters of mean annual precipitation, temperature, and maximum and minimum temperatures in 36 synoptic and climatology stations in a statistical period of 49 years (1956-2005) in the stations of Sefid-roud basin were analyzed by Mann-Kendall test. The results obtained by data analysis show that climate changes are short term and have a trend. The analysis of mean temperature revealed that changes have a significantly rising trend, besides the precipitation has a significantly falling trend.Keywords: Trend, Climate changes, Sefid-roud, Mann-Kendall
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1754137 The Thermal Properties of Nano Magnesium Hydroxide Blended with LDPE/EVA/Irganox1010 for Insulator Application
Authors: Ahmad Aroziki Abdul Aziz, Sakinah Mohd Alauddin, Ruzitah Mohd Salleh, Mohammed Iqbal Shueb
Abstract:
This paper illustrates the effect of nano Magnesium Hydroxide (MH) loading on the thermal properties of Low Density Polyethylene (LDPE)/Poly (ethylene-co vinyl acetate) (EVA) nano composite. Thermal studies were conducted, as it understanding is vital for preliminary development of new polymeric systems. Thermal analysis of nanocomposite was conducted using thermo gravimetric analysis (TGA), and differential scanning calorimetry (DSC). Major finding of TGA indicated two main stages of degradation process found at (350 ± 25oC) and (480 ± 25oC) respectively. Nano metal filler expressed better fire resistance as it stand over high degree of temperature. Furthermore, DSC analysis provided a stable glass temperature around 51 (±1oC) and captured double melting point at 84 (±2oC) and 108 (±2oC). This binary melting point reflects the modification of nano filler to the polymer matrix forming melting crystals of folded and extended chain. The percent crystallinity of the samples grew vividly with increasing filler content. Overall, increasing the filler loading improved the degradation temperature and weight loss evidently and a better process and phase stability was captured in DSC.
Keywords: Cable and Wire, LDPE/EVA, Nano MH, Nano Particles, Thermal properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3042136 Action Potential Propagation in Inhomogeneous 2D Mouse Ventricular Tissue Model
Authors: Mouse, cardiac myocytes, computer simulation, action potential.
Abstract:
Heterogeneous repolarization causes dispersion of the T-wave and has been linked to arrhythmogenesis. Such heterogeneities appear due to differential expression of ionic currents in different regions of the heart, both in healthy and diseased animals and humans. Mice are important animals for the study of heart diseases because of the ability to create transgenic animals. We used our previously reported model of mouse ventricular myocytes to develop 2D mouse ventricular tissue model consisting of 14,000 cells (apical or septal ventricular myocytes) and to study the stability of action potential propagation and Ca2+ dynamics. The 2D tissue model was implemented as a FORTRAN program code for highperformance multiprocessor computers that runs on 36 processors. Our tissue model is able to simulate heterogeneities not only in action potential repolarization, but also heterogeneities in intracellular Ca2+ transients. The multicellular model reproduced experimentally observed velocities of action potential propagation and demonstrated the importance of incorporation of realistic Ca2+ dynamics for action potential propagation. The simulations show that relatively sharp gradients of repolarization are predicted to exist in 2D mouse tissue models, and they are primarily determined by the cellular properties of ventricular myocytes. Abrupt local gradients of channel expression can cause alternans at longer pacing basic cycle lengths than gradual changes, and development of alternans depends on the site of stimulation.
Keywords: Mouse, cardiac myocytes, computer simulation, action potential
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1474135 Transmission Model for Plasmodium Vivax Malaria: Conditions for Bifurcation
Authors: P. Pongsumpun, I.M. Tang
Abstract:
Plasmodium vivax malaria differs from P. falciparum malaria in that a person suffering from P. vivax infection can suffer relapses of the disease. This is due the parasite being able to remain dormant in the liver of the patients where it is able to re-infect the patient after a passage of time. During this stage, the patient is classified as being in the dormant class. The model to describe the transmission of P. vivax malaria consists of a human population divided into four classes, the susceptible, the infected, the dormant and the recovered. The effect of a time delay on the transmission of this disease is studied. The time delay is the period in which the P. vivax parasite develops inside the mosquito (vector) before the vector becomes infectious (i.e., pass on the infection). We analyze our model by using standard dynamic modeling method. Two stable equilibrium states, a disease free state E0 and an endemic state E1, are found to be possible. It is found that the E0 state is stable when a newly defined basic reproduction number G is less than one. If G is greater than one the endemic state E1 is stable. The conditions for the endemic equilibrium state E1 to be a stable spiral node are established. For realistic values of the parameters in the model, it is found that solutions in phase space are trajectories spiraling into the endemic state. It is shown that the limit cycle and chaotic behaviors can only be achieved with unrealistic parameter values.
Keywords: Equilibrium states, Hopf bifurcation, limit cyclebehavior, local stability, Plasmodium Vivax, time delay.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2243134 Mathematical Model for the Transmission of P. Falciparum and P. Vivax Malaria along the Thai-Myanmar Border
Authors: Puntani Pongsumpun, I-Ming Tang
Abstract:
The most Malaria cases are occur along Thai-Mynmar border. Mathematical model for the transmission of Plasmodium falciparum and Plasmodium vivax malaria in a mixed population of Thais and migrant Burmese living along the Thai-Myanmar Border is studied. The population is separated into two groups, Thai and Burmese. Each population is divided into susceptible, infected, dormant and recovered subclasses. The loss of immunity by individuals in the infected class causes them to move back into the susceptible class. The person who is infected with Plasmodium vivax and is a member of the dormant class can relapse back into the infected class. A standard dynamical method is used to analyze the behaviors of the model. Two stable equilibrium states, a disease-free state and an epidemic state, are found to be possible in each population. A disease-free equilibrium state in the Thai population occurs when there are no infected Burmese entering the community. When infected Burmese enter the Thai community, an epidemic state can occur. It is found that the disease-free state is stable when the threshold number is less than one. The epidemic state is stable when a second threshold number is greater than one. Numerical simulations are used to confirm the results of our model.
Keywords: Basic reproduction number, Burmese, local stability, Plasmodium Vivax malaria.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1868133 Banking Risk Management between the Prudential and the Operational Approaches
Authors: Mustapha Achibane, Imane Allam
Abstract:
Since the nineties, all Moroccan banking institutions have to respect an arsenal of prudential ratios. The respect of these prudential measures aims to ensure the financial system stability. In order to do so, regulatory authorities tried to reduce the financial and operational risks incurred by the banking entities. Meanwhile, regulatory authorities demanded a balance sheet management work from banks. They also asked them to establish a management control system to manage operational risk, as well as an effort in terms of incurred risk-based commitments. Therefore, the prudential approach has a macroeconomic nature and it is presented as a determinant of the operational, microeconomic approach. This operational approach takes the form of a strategy that each banking entity must develop to manage the different banking risks. This study seeks to analyze the problem of risk management between the prudential and the operational approaches. It was processed through a literature review followed by an analysis of the Moroccan banking sector’s performance. At first, we will reconcile the inductive logic and then, the analytical one. The first approach consists of analyzing the phenomenon from a normative and conceptual perspective, while the second one will consist of considering the Moroccan banking system and analyzing the behavior of Moroccan banking entities in terms of risk management and performance. The results identified a favorable growth in terms of performance, despite the huge provisioning effort made to meet the international standards and the harmonization of the regulations.
Keywords: Banking performance, financial intermediation, operational approach, prudential standards, risk management.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 641132 Nonlinear Sensitive Control of Centrifugal Compressor
Authors: F. Laaouad, M. Bouguerra, A. Hafaifa, A. Iratni
Abstract:
In this work, we treat the problems related to chemical and petrochemical plants of a certain complex process taking the centrifugal compressor as an example, a system being very complex by its physical structure as well as its behaviour (surge phenomenon). We propose to study the application possibilities of the recent control approaches to the compressor behaviour, and consequently evaluate their contribution in the practical and theoretical fields. Facing the studied industrial process complexity, we choose to make recourse to fuzzy logic for analysis and treatment of its control problem owing to the fact that these techniques constitute the only framework in which the types of imperfect knowledge can jointly be treated (uncertainties, inaccuracies, etc..) offering suitable tools to characterise them. In the particular case of the centrifugal compressor, these imperfections are interpreted by modelling errors, the neglected dynamics, no modelisable dynamics and the parametric variations. The purpose of this paper is to produce a total robust nonlinear controller design method to stabilize the compression process at its optimum steady state by manipulating the gas rate flow. In order to cope with both the parameter uncertainty and the structured non linearity of the plant, the proposed method consists of a linear steady state regulation that ensures robust optimal control and of a nonlinear compensation that achieves the exact input/output linearization.
Keywords: Compressor, Fuzzy logic, Surge control, Bilinearcontroller, Stability analysis, Nonlinear plant.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2145131 Fluorescence Quenching as an Efficient Tool for Sensing Application: Study on the Fluorescence Quenching of Naphthalimide Dye by Graphene Oxide
Authors: Sanaz Seraj, Shohre Rouhani
Abstract:
Recently, graphene has gained much attention because of its unique optical, mechanical, electrical, and thermal properties. Graphene has been used as a key material in the technological applications in various areas such as sensors, drug delivery, super capacitors, transparent conductor, and solar cell. It has a superior quenching efficiency for various fluorophores. Based on these unique properties, the optical sensors with graphene materials as the energy acceptors have demonstrated great success in recent years. During quenching, the emission of a fluorophore is perturbed by a quencher which can be a substrate or biomolecule, and due to this phenomenon, fluorophore-quencher has been used for selective detection of target molecules. Among fluorescence dyes, 1,8-naphthalimide is well known for its typical intramolecular charge transfer (ICT) and photo-induced charge transfer (PET) fluorophore, strong absorption and emission in the visible region, high photo stability, and large Stokes shift. Derivatives of 1,8-naphthalimides have found applications in some areas, especially fluorescence sensors. Herein, the fluorescence quenching of graphene oxide has been carried out on a naphthalimide dye as a fluorescent probe model. The quenching ability of graphene oxide on naphthalimide dye was studied by UV-VIS and fluorescence spectroscopy. This study showed that graphene is an efficient quencher for fluorescent dyes. Therefore, it can be used as a suitable candidate sensing platform. To the best of our knowledge, studies on the quenching and absorption of naphthalimide dyes by graphene oxide are rare.
Keywords: Fluorescence, graphene oxide, naphthalimide dye, quenching.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 757130 Study of Rayleigh-Bénard-Brinkman Convection Using LTNE Model and Coupled, Real Ginzburg-Landau Equations
Authors: P. G. Siddheshwar, R. K. Vanishree, C. Kanchana
Abstract:
A local nonlinear stability analysis using a eight-mode expansion is performed in arriving at the coupled amplitude equations for Rayleigh-Bénard-Brinkman convection (RBBC) in the presence of LTNE effects. Streamlines and isotherms are obtained in the two-dimensional unsteady finite-amplitude convection regime. The parameters’ influence on heat transport is found to be more pronounced at small time than at long times. Results of the Rayleigh-Bénard convection is obtained as a particular case of the present study. Additional modes are shown not to significantly influence the heat transport thus leading us to infer that five minimal modes are sufficient to make a study of RBBC. The present problem that uses rolls as a pattern of manifestation of instability is a needed first step in the direction of making a very general non-local study of two-dimensional unsteady convection. The results may be useful in determining the preferred range of parameters’ values while making rheometric measurements in fluids to ascertain fluid properties such as viscosity. The results of LTE are obtained as a limiting case of the results of LTNE obtained in the paper.Keywords: Rayleigh-Bénard convection, heat transport, porous media, generalized Lorenz model, coupled Ginzburg-Landau model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 927129 An Observer-Based Direct Adaptive Fuzzy Sliding Control with Adjustable Membership Functions
Authors: Alireza Gholami, Amir H. D. Markazi
Abstract:
In this paper, an observer-based direct adaptive fuzzy sliding mode (OAFSM) algorithm is proposed. In the proposed algorithm, the zero-input dynamics of the plant could be unknown. The input connection matrix is used to combine the sliding surfaces of individual subsystems, and an adaptive fuzzy algorithm is used to estimate an equivalent sliding mode control input directly. The fuzzy membership functions, which were determined by time consuming try and error processes in previous works, are adjusted by adaptive algorithms. The other advantage of the proposed controller is that the input gain matrix is not limited to be diagonal, i.e. the plant could be over/under actuated provided that controllability and observability are preserved. An observer is constructed to directly estimate the state tracking error, and the nonlinear part of the observer is constructed by an adaptive fuzzy algorithm. The main advantage of the proposed observer is that, the measured outputs is not limited to the first entry of a canonical-form state vector. The closed-loop stability of the proposed method is proved using a Lyapunov-based approach. The proposed method is applied numerically on a multi-link robot manipulator, which verifies the performance of the closed-loop control. Moreover, the performance of the proposed algorithm is compared with some conventional control algorithms.
Keywords: Adaptive algorithm, fuzzy systems, membership functions, observer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 779128 Thermal Management of Space Power Electronics using TLM-3D
Authors: R. Hocine, K. Belkacemi, A. Boukortt, A. Boudjemai
Abstract:
When designing satellites, one of the major issues aside for designing its primary subsystems is to devise its thermal. The thermal management of satellites requires solving different sets of issues with regards to modelling. If the satellite is well conditioned all other parts of the satellite will have higher temperature no matter what. The main issue of thermal modelling for satellite design is really making sure that all the other points of the satellite will be within the temperature limits they are designed. The insertion of power electronics in aerospace technologies is becoming widespread and the modern electronic systems used in space must be reliable and efficient with thermal management unaffected by outer space constraints. Many advanced thermal management techniques have been developed in recent years that have application in high power electronic systems. This paper presents a Three-Dimensional Modal Transmission Line Matrix (3D-TLM) implementation of transient heat flow in space power electronics. In such kind of components heat dissipation and good thermal management are essential. Simulation provides the cheapest tool to investigate all aspects of power handling. The 3DTLM has been successful in modeling heat diffusion problems and has proven to be efficient in terms of stability and complex geometry. The results show a three-dimensional visualisation of self-heating phenomena in the device affected by outer space constraints, and will presents possible approaches for increasing the heat dissipation capability of the power modules.
Keywords: Thermal management, conduction, heat dissipation, CTE, ceramic, heat spreader, nodes, 3D-TLM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2785127 Effect of Sensory Manipulations on Human Joint Stiffness Strategy and Its Adaptation for Human Dynamic Stability
Authors: Aizreena Azaman, Mai Ishibashi, Masanori Ishizawa, Shin-Ichiroh Yamamoto
Abstract:
Sensory input plays an important role to human posture control system to initiate strategy in order to counterpart any unbalance condition and thus, prevent fall. In previous study, joint stiffness was observed able to describe certain issues regarding to movement performance. But, correlation between balance ability and joint stiffness is still remains unknown. In this study, joint stiffening strategy at ankle and hip were observed under different sensory manipulations and its correlation with conventional clinical test (Functional Reach Test) for balance ability was investigated. In order to create unstable condition, two different surface perturbations (tilt up-tilt (TT) down and forward-backward (FB)) at four different frequencies (0.2, 0.4, 0.6 and 0.8 Hz) were introduced. Furthermore, four different sensory manipulation conditions (include vision and vestibular system) were applied to the subject and they were asked to maintain their position as possible. The results suggested that joint stiffness were high during difficult balance situation. Less balance people generated high average joint stiffness compared to balance people. Besides, adaptation of posture control system under repetitive external perturbation also suggested less during sensory limited condition. Overall, analysis of joint stiffening response possible to predict unbalance situation faced by human
Keywords: Balance ability, joint stiffness, sensory, adaptation, dynamic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1953126 An Algorithm Proposed for FIR Filter Coefficients Representation
Authors: Mohamed Al Mahdi Eshtawie, Masuri Bin Othman
Abstract:
Finite impulse response (FIR) filters have the advantage of linear phase, guaranteed stability, fewer finite precision errors, and efficient implementation. In contrast, they have a major disadvantage of high order need (more coefficients) than IIR counterpart with comparable performance. The high order demand imposes more hardware requirements, arithmetic operations, area usage, and power consumption when designing and fabricating the filter. Therefore, minimizing or reducing these parameters, is a major goal or target in digital filter design task. This paper presents an algorithm proposed for modifying values and the number of non-zero coefficients used to represent the FIR digital pulse shaping filter response. With this algorithm, the FIR filter frequency and phase response can be represented with a minimum number of non-zero coefficients. Therefore, reducing the arithmetic complexity needed to get the filter output. Consequently, the system characteristic i.e. power consumption, area usage, and processing time are also reduced. The proposed algorithm is more powerful when integrated with multiplierless algorithms such as distributed arithmetic (DA) in designing high order digital FIR filters. Here the DA usage eliminates the need for multipliers when implementing the multiply and accumulate unit (MAC) and the proposed algorithm will reduce the number of adders and addition operations needed through the minimization of the non-zero values coefficients to get the filter output.
Keywords: Pulse shaping Filter, Distributed Arithmetic, Optimization algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3177125 The Effects of Increasing Unsaturation in Palm Oil and Incorporation of Carbon Nanotubes on Resinous Properties
Authors: Muhammad R. Islam, Mohammad Dalour H. Beg, Saidatul S. Jamari
Abstract:
Considering palm oil as non-drying oil owing to its low iodine value, an attempt was taken to increase the unsaturation in the fatty acid chains of palm oil for the preparation of alkyds. To increase the unsaturation in the palm oil, sulphuric acid (SA) and para-toluene sulphonic acid (PTSA) was used prior to alcoholysis for the dehydration process. The iodine number of the oil samples was checked for the unsaturation measurement by Wijs method. Alkyd resin was prepared using the dehydrated palm oil by following alcoholysis and esterification reaction. To improve the film properties 0.5wt.% multi-wall carbon nano tubes (MWCNTs) were used to manufacture polymeric film. The properties of the resins were characterized by various physico-chemical properties such as density, viscosity, iodine value, saponification value, etc. Structural elucidation was confirmed by Fourier transform of infrared spectroscopy and proton nuclear magnetic resonance; surfaces of the films were examined by field-emission scanning electron microscope. In addition, pencil hardness and chemical resistivity was also measured by using standard methods. The effect of enhancement of the unsaturation in the fatty acid chain found significant and motivational. The resin prepared with dehydrated palm oil showed improved properties regarding hardness and chemical resistivity testing. The incorporation of MWCNTs enhanced the thermal stability and hardness of the films as well.
Keywords: Alkyd resin, nano-coatings, dehydration, palm oil.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2446124 A Comparative Analysis of Multiple Criteria Decision Making Analysis Methods for Strategic, Tactical, and Operational Decisions in Military Fighter Aircraft Selection
Authors: C. Ardil
Abstract:
This paper considers a comparative analysis of multiple criteria decision making analysis methods for strategic, tactical, and operational decisions in military fighter aircraft selection for the air force fleet planning. The evaluation criteria governing the decision analysis process are determined from the literature for the three existing military combat aircraft. Military fighter aircraft selection problem is structured using "preference analysis for reference ideal solution (PARIS)” approach in multiple criteria decision analysis (MCDMA). Systematic comparisons were made with existing MCDMA methods (PARIS, and TOPSIS) to verify the stability and accuracy of the results obtained. The proposed integrated MCDMA systematic approach is expected to address the issues encountered in the aircraft selection process. The comparative analysis results show that the proposed method is an effective and accurate tool that can help analysts make better strategic, tactical, and operational decisions.
Keywords: aircraft, military fighter aircraft selection, multiple criteria decision making, multiple criteria decision making analysis, mean weight, entropy weight, MCDMA, PARIS, TOPSIS, Saab Gripen, Dassault Rafale, Eurofighter Typhoon
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 574