Search results for: stochastic capacity.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1489

Search results for: stochastic capacity.

1399 Stepsize Control of the Finite Difference Method for Solving Ordinary Differential Equations

Authors: Davod Khojasteh Salkuyeh

Abstract:

An important task in solving second order linear ordinary differential equations by the finite difference is to choose a suitable stepsize h. In this paper, by using the stochastic arithmetic, the CESTAC method and the CADNA library we present a procedure to estimate the optimal stepsize hopt, the stepsize which minimizes the global error consisting of truncation and round-off error.

Keywords: Ordinary differential equations, optimal stepsize, error, stochastic arithmetic, CESTAC, CADNA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1363
1398 Optimal Path Planning under Priori Information in Stochastic, Time-varying Networks

Authors: Siliang Wang, Minghui Wang, Jun Hu

Abstract:

A novel path planning approach is presented to solve optimal path in stochastic, time-varying networks under priori traffic information. Most existing studies make use of dynamic programming to find optimal path. However, those methods are proved to be unable to obtain global optimal value, moreover, how to design efficient algorithms is also another challenge. This paper employs a decision theoretic framework for defining optimal path: for a given source S and destination D in urban transit network, we seek an S - D path of lowest expected travel time where its link travel times are discrete random variables. To solve deficiency caused by the methods of dynamic programming, such as curse of dimensionality and violation of optimal principle, an integer programming model is built to realize assignment of discrete travel time variables to arcs. Simultaneously, pruning techniques are also applied to reduce computation complexity in the algorithm. The final experiments show the feasibility of the novel approach.

Keywords: pruning method, stochastic, time-varying networks, optimal path planning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1854
1397 A Bi-Objective Stochastic Mathematical Model for Agricultural Supply Chain Network

Authors: Mohammad Mahdi Paydar, Armin Cheraghalipour, Mostafa Hajiaghaei-Keshteli

Abstract:

Nowadays, in advanced countries, agriculture as one of the most significant sectors of the economy, plays an important role in its political and economic independence. Due to farmers' lack of information about products' demand and lack of proper planning for harvest time, annually the considerable amount of products is corrupted. Besides, in this paper, we attempt to improve these unfavorable conditions via designing an effective supply chain network that tries to minimize total costs of agricultural products along with minimizing shortage in demand points. To validate the proposed model, a stochastic optimization approach by using a branch and bound solver of the LINGO software is utilized. Furthermore, to accumulate the data of parameters, a case study in Mazandaran province placed in the north of Iran has been applied. Finally, using ɛ-constraint approach, a Pareto front is obtained and one of its Pareto solutions as best solution is selected. Then, related results of this solution are explained. Finally, conclusions and suggestions for the future research are presented.

Keywords: Perishable products, stochastic optimization, agricultural supply chain, ɛ-constraint.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1003
1396 Evaluating of Bearing Capacity of Two Adjacent Strip Foundations Located around a Soil Slip

Authors: M. Meftahi, M. Hoseinzadeh, S. A. Naeini

Abstract:

Selection of soil bearing capacity is an important issue that should be investigated under different conditions. The bearing capacity of foundation around of soil slope is based on the active and passive forces. On the other hand, due to extension of urban structures, it is inevitable to put the foundations together. Concerning the two cases mentioned above, investigating the behavior of adjacent foundations which are constructed besides soil slope is essential. It should be noted that, according to the conditions, the bearing capacity of adjacent foundations can be less or more than mat foundations. Also, soil reinforcement increases the bearing capacity of adjacent foundations, and the amount of its increase depends on the distance between foundations. In this research, based on numerical studies, a method is presented for evaluating ultimate bearing capacity of adjacent foundations at different intervals. In the present study, the effect of foundation width, the center to center distance of adjacent foundations and reinforced soil has been investigated on the bearing capacity of adjacent foundations beside soil slope. The results indicate that, due to interference of failure surfaces created under foundation, it depends on their intervals and the ultimate bearing capacity of foundation varies.

Keywords: Adjacent foundation, bearing capacity, reinforcements, settlement, numerical analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 835
1395 Comparative Analysis of the Stochastic and Parsimonious Interest Rates Models on Croatian Government Market

Authors: Zdravka Aljinović, Branka Marasović, Blanka Škrabić

Abstract:

The paper provides a discussion of the most relevant aspects of yield curve modeling. Two classes of models are considered: stochastic and parsimonious function based, through the approaches developed by Vasicek (1977) and Nelson and Siegel (1987). Yield curve estimates for Croatia are presented and their dynamics analyzed and finally, a comparative analysis of models is conducted.

Keywords: the term structure of interest rates, Vasicek model, Nelson-Siegel model, Croatian Government market.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1501
1394 A Study on Characteristics and Geometric Parameters of the Flat Porous Aerostatic Bearing

Authors: T. Y. Huang, B. Z. Wang, S. C. Lin, S. Y. Hsu

Abstract:

A CFD software was employed to analyze the characteristics of the flat round porous aerostatic bearings. The effects of gap between the bearing and the guide way and the porosity of the porous material on the load capacity of the bearing were studied. The adequacy of the simulation model and the approach was verified. From the parametric study, it is found that the depth of the flow path does not influence the load capacity of the bearing; the load capacity of the bearing will decrease if the thickness of the porous material increases or the porous material protrudes above the bearing housing; the variation of the chamfer at the edge of the bearing does not affect the bearing load capacity. For a bearing with an air gap of 5μm and a porosity of 0.1, the average load capacity and the pressure distribution of the bearing are nearly unchanged no matter the bearing moves at a constant or a varying speed.

Keywords: Aerostatic bearing, Load capacity, Porosity, Porous material.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2602
1393 Solving SPDEs by a Least Squares Method

Authors: Hassan Manouzi

Abstract:

We present in this paper a useful strategy to solve stochastic partial differential equations (SPDEs) involving stochastic coefficients. Using the Wick-product of higher order and the Wiener-Itˆo chaos expansion, the SPDEs is reformulated as a large system of deterministic partial differential equations. To reduce the computational complexity of this system, we shall use a decomposition-coordination method. To obtain the chaos coefficients in the corresponding deterministic equations, we use a least square formulation. Once this approximation is performed, the statistics of the numerical solution can be easily evaluated.

Keywords: Least squares, Wick product, SPDEs, finite element, Wiener chaos expansion, gradient method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1801
1392 Optimum Radio Capacity Estimation of a Single-Cell Spread Spectrum MIMO System under Rayleigh Fading Conditions

Authors: P. Varzakas

Abstract:

In this paper, the problem of estimating the optimal radio capacity of a single-cell spread spectrum (SS) multiple-inputmultiple- output (MIMO) system operating in a Rayleigh fading environment is examined. The optimisation between the radio capacity and the theoretically achievable average channel capacity (in the sense of information theory) per user of a MIMO single-cell SS system operating in a Rayleigh fading environment is presented. Then, the spectral efficiency is estimated in terms of the achievable average channel capacity per user, during the operation over a broadcast time-varying link, and leads to a simple novel-closed form expression for the optimal radio capacity value based on the maximization of the achieved spectral efficiency. Numerical results are presented to illustrate the proposed analysis.

Keywords: Channel capacity, MIMO systems, Radio capacity, Rayleigh fading, Spectral efficiency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1278
1391 Inventory Control for a Joint Replenishment Problem with Stochastic Demand

Authors: Bassem Roushdy, Nahed Sobhy, Abdelrhim Abdelhamid, Ahmed Mahmoud

Abstract:

Most papers model Joint Replenishment Problem (JRP) as a (kT,S) where kT is a multiple value for a common review period T,and S is a predefined order up to level. In general the (T,S) policy is characterized by a long out of control period which requires a large amount of safety stock compared to the (R,Q) policy. In this paper a probabilistic model is built where an item, call it item(i), with the shortest order time between interval (T)is modeled under (R,Q) policy and its inventory is continuously reviewed, while the rest of items (j) are periodically reviewed at a definite time corresponding to item

Keywords: Inventory management, Joint replenishment, policy evaluation, stochastic process

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3049
1390 Evaluation of Bearing Capacity of Vertically Loaded Strip Piled-Raft Embedded in Soft Clay

Authors: Seyed Abolhasan Naeini, Mohammad Hosseinzade

Abstract:

Settlement and bearing capacity of a piled raft are the two important issues for the foundations of structures built on coastal areas from the geotechnical engineering point of view. Strip piled raft as a load carrying system can reduce the possible extensive consolidation settlements and improve bearing capacity of structures in soft ground. The aim of this research was to evaluate the efficiency of strip piled raft embedded in soft clay. The efficiency of bearing capacity of strip piled raft foundation has been evaluated numerically in two cases; in the first case, the cap is placed directly on the ground surface and in the second, the cap is placed above the ground. Regarding to the fact that the geotechnical parameters of the soft clay are considered at low level, low bearing capacity is expected. The length, diameter and axe-to-axe distance of piles were the parameters which varied in this study to find out how they affected the bearing capacity. Results indicate that increasing the length and the diameter of the piles increase the bearing capacity.

Keywords: Soft clay, Strip piled raft, Bearing capacity, Settlement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3107
1389 Coverage and Capacity Performance Degradation on a Co-Located Network Involving CDMA2000 and WCDMA @1.9GH

Authors: O. C. Nosiri, V. E. Idigo, C. O. Ohaneme, K. A. Akpado

Abstract:

Coverage and capacity performance in a cellular network determines the system potentials. If the coverage radius is limited, end users suffer poor service quality, if the system capacity reduces, fewer subscribers will be accommodated. This paper investigated the performance effects of the noise rise caused by the spurious emission from a co-located jammer involving downlink frequency of CDMA2000 and uplink frequency of WCDMA operating at 1.9GHz. Measurements were carried out to evaluate the impact on the coverage radius and the system capacity.

Keywords: Capacity, Co-location, Coverage, Noise rise.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1975
1388 Advanced Stochastic Models for Partially Developed Speckle

Authors: Jihad S. Daba (Jean-Pierre Dubois), Philip Jreije

Abstract:

Speckled images arise when coherent microwave, optical, and acoustic imaging techniques are used to image an object, surface or scene. Examples of coherent imaging systems include synthetic aperture radar, laser imaging systems, imaging sonar systems, and medical ultrasound systems. Speckle noise is a form of object or target induced noise that results when the surface of the object is Rayleigh rough compared to the wavelength of the illuminating radiation. Detection and estimation in images corrupted by speckle noise is complicated by the nature of the noise and is not as straightforward as detection and estimation in additive noise. In this work, we derive stochastic models for speckle noise, with an emphasis on speckle as it arises in medical ultrasound images. The motivation for this work is the problem of segmentation and tissue classification using ultrasound imaging. Modeling of speckle in this context involves partially developed speckle model where an underlying Poisson point process modulates a Gram-Charlier series of Laguerre weighted exponential functions, resulting in a doubly stochastic filtered Poisson point process. The statistical distribution of partially developed speckle is derived in a closed canonical form. It is observed that as the mean number of scatterers in a resolution cell is increased, the probability density function approaches an exponential distribution. This is consistent with fully developed speckle noise as demonstrated by the Central Limit theorem.

Keywords: Doubly stochastic filtered process, Poisson point process, segmentation, speckle, ultrasound

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1744
1387 Cost Efficiency of European Cooperative Banks

Authors: Karolína Vozková, Matěj Kuc

Abstract:

This paper analyzes recent trends in cost efficiency of European cooperative banks using efficient frontier analysis. Our methodology is based on stochastic frontier analysis which is run on a set of 649 European cooperative banks using data between 2006 and 2015. Our results show that average inefficiency of European cooperative banks is increasing since 2008, smaller cooperative banks are significantly more efficient than the bigger ones over the whole time period and that share of net fee and commission income to total income surprisingly seems to have no impact on bank cost efficiency.

Keywords: Cooperative banks, cost efficiency, efficient frontier analysis, stochastic frontier analysis, net fee and commission income.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 860
1386 Profit Efficiency and Competitiveness of Commercial Banks in Malaysia

Authors: Rosita Suhaimi, Firdaus Abdullah, Chong Fen Nee, Nurhani Aba Ibrahim

Abstract:

This paper attempts to identify the significance of Information and Communications Technology (ICT) and competitiveness to the profit efficiency of commercial banks in Malaysia. The profit efficiency of commercial banks in Malaysia, the dependent variable, was estimated using the Stochastic Frontier Approach (SFA) on a sample of unbalanced panel data, covering 23 commercial banks, between 1995 to 2007. Based on the empirical results, ICT was not found to exert a significant impact on profit efficiency, whereas competitiveness, non ICT stock expenditure and ownership were significant contributors. On the other hand, the size of banks was found to have significantly reduced profit efficiency, opening up for various interpretations of the interrelated role of ICT and competition.

Keywords: Competitiveness, Profit Efficiency, Stochastic Frontier Analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2876
1385 Application of Stochastic Models to Annual Extreme Streamflow Data

Authors: Karim Hamidi Machekposhti, Hossein Sedghi

Abstract:

This study was designed to find the best stochastic model (using of time series analysis) for annual extreme streamflow (peak and maximum streamflow) of Karkheh River at Iran. The Auto-regressive Integrated Moving Average (ARIMA) model used to simulate these series and forecast those in future. For the analysis, annual extreme streamflow data of Jelogir Majin station (above of Karkheh dam reservoir) for the years 1958–2005 were used. A visual inspection of the time plot gives a little increasing trend; therefore, series is not stationary. The stationarity observed in Auto-Correlation Function (ACF) and Partial Auto-Correlation Function (PACF) plots of annual extreme streamflow was removed using first order differencing (d=1) in order to the development of the ARIMA model. Interestingly, the ARIMA(4,1,1) model developed was found to be most suitable for simulating annual extreme streamflow for Karkheh River. The model was found to be appropriate to forecast ten years of annual extreme streamflow and assist decision makers to establish priorities for water demand. The Statistical Analysis System (SAS) and Statistical Package for the Social Sciences (SPSS) codes were used to determinate of the best model for this series.

Keywords: Stochastic models, ARIMA, extreme streamflow, Karkheh River.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 722
1384 Heuristic Methods for the Capacitated Location- Allocation Problem with Stochastic Demand

Authors: Salinee Thumronglaohapun

Abstract:

The proper number and appropriate locations of service centers can save cost, raise revenue and gain more satisfaction from customers. Establishing service centers is high-cost and difficult to relocate. In long-term planning periods, several factors may affect the service. One of the most critical factors is uncertain demand of customers. The opened service centers need to be capable of serving customers and making a profit although the demand in each period is changed. In this work, the capacitated location-allocation problem with stochastic demand is considered. A mathematical model is formulated to determine suitable locations of service centers and their allocation to maximize total profit for multiple planning periods. Two heuristic methods, a local search and genetic algorithm, are used to solve this problem. For the local search, five different chances to choose each type of moves are applied. For the genetic algorithm, three different replacement strategies are considered. The results of applying each method to solve numerical examples are compared. Both methods reach to the same best found solution in most examples but the genetic algorithm provides better solutions in some cases.

Keywords: Location-allocation problem, stochastic demand, local search, genetic algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 751
1383 Evaluation on Bearing Capacity of Ring Foundations on two-Layered Soil

Authors: R. Ziaie Moayed, V. Rashidian, E. Izadi

Abstract:

This paper utilizes a finite element analysis to study the bearing capacity of ring footings on a two-layered soil. The upper layer, that the footing is placed on it, is soft clay and the underneath layer is a cohesionless sand. For modeling soils, Mohr–Coulomb plastic yield criterion is employed. The effects of two factors, the clay layer thickness and the ratio of internal radius of the ring footing to external radius of the ring, have been analyzed. It is found that the bearing capacity decreases as the value of ri / ro increases. Although, as the clay layer thickness increases the bearing capacity was alleviated gradually.

Keywords: Bearing capacity, Ring footing, Two-layered soil

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4042
1382 Carbon Dioxide Removal from Flue Gas Using Amine-Based Hybrid Solvent Absorption

Authors: Supitcha Rinprasertmeechai, Sumaeth Chavadej, Pramoch Rangsunvigit, Santi Kulprathipanja

Abstract:

This study was to investigate the performance of hybrid solvents blended between primary, secondary, or tertiary amines and piperazine (PZ) for CO2 removal from flue gas in terms of CO2 absorption capacity and regeneration efficiency at 90 oC. Alkanolamines used in this work were monoethanolamine (MEA), diethanolamine (DEA), and triethanolamine (TEA). The CO2 absorption was experimentally examined under atmospheric pressure and room temperature. The results show that MEA blend with PZ provided the maximum CO2 absorption capacity of 0.50 mol CO2/mol amine while TEA provided the minimum CO2 absorption capacity of 0.30 mol CO2/mol amine. TEA was easier to regenerate for both first cycle and second cycle with less loss of absorption capacity. The regeneration efficiency of TEA was 95.09 and 92.89 %, for the first and second generation cycles, respectively.

Keywords: CO2 absorption capacity, regeneration efficiency, CO2 removal, flue gas

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3577
1381 An Engineering Approach to Forecast Volatility of Financial Indices

Authors: Irwin Ma, Tony Wong, Thiagas Sankar

Abstract:

By systematically applying different engineering methods, difficult financial problems become approachable. Using a combination of theory and techniques such as wavelet transform, time series data mining, Markov chain based discrete stochastic optimization, and evolutionary algorithms, this work formulated a strategy to characterize and forecast non-linear time series. It attempted to extract typical features from the volatility data sets of S&P100 and S&P500 indices that include abrupt drops, jumps and other non-linearity. As a result, accuracy of forecasting has reached an average of over 75% surpassing any other publicly available results on the forecast of any financial index.

Keywords: Discrete stochastic optimization, genetic algorithms, genetic programming, volatility forecast

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1630
1380 Synchronization for Impulsive Fuzzy Cohen-Grossberg Neural Networks with Time Delays under Noise Perturbation

Authors: Changzhao Li, Juan Zhang

Abstract:

In this paper, we investigate a class of fuzzy Cohen- Grossberg neural networks with time delays and impulsive effects. By virtue of stochastic analysis, Halanay inequality for stochastic differential equations, we find sufficient conditions for the global exponential square-mean synchronization of the FCGNNs under noise perturbation. In particular, the traditional assumption on the differentiability of the time-varying delays is no longer needed. Finally, a numerical example is given to show the effectiveness of the results in this paper.

Keywords: Fuzzy Cohen-Grossberg neural networks (FCGNNs), complete synchronization, time delays, impulsive, noise perturbation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1344
1379 Constrained Particle Swarm Optimization of Supply Chains

Authors: András Király, Tamás Varga, János Abonyi

Abstract:

Since supply chains highly impact the financial performance of companies, it is important to optimize and analyze their Key Performance Indicators (KPI). The synergistic combination of Particle Swarm Optimization (PSO) and Monte Carlo simulation is applied to determine the optimal reorder point of warehouses in supply chains. The goal of the optimization is the minimization of the objective function calculated as the linear combination of holding and order costs. The required values of service levels of the warehouses represent non-linear constraints in the PSO. The results illustrate that the developed stochastic simulator and optimization tool is flexible enough to handle complex situations.

Keywords: stochastic processes, empirical distributions, Monte Carlo simulation, PSO, supply chain management

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2075
1378 Stochastic Simulation of Reaction-Diffusion Systems

Authors: Paola Lecca, Lorenzo Dematte

Abstract:

Reactiondiffusion systems are mathematical models that describe how the concentration of one or more substances distributed in space changes under the influence of local chemical reactions in which the substances are converted into each other, and diffusion which causes the substances to spread out in space. The classical representation of a reaction-diffusion system is given by semi-linear parabolic partial differential equations, whose general form is ÔêétX(x, t) = DΔX(x, t), where X(x, t) is the state vector, D is the matrix of the diffusion coefficients and Δ is the Laplace operator. If the solute move in an homogeneous system in thermal equilibrium, the diffusion coefficients are constants that do not depend on the local concentration of solvent and of solutes and on local temperature of the medium. In this paper a new stochastic reaction-diffusion model in which the diffusion coefficients are function of the local concentration, viscosity and frictional forces of solvent and solute is presented. Such a model provides a more realistic description of the molecular kinetics in non-homogenoeus and highly structured media as the intra- and inter-cellular spaces. The movement of a molecule A from a region i to a region j of the space is described as a first order reaction Ai k- → Aj , where the rate constant k depends on the diffusion coefficient. Representing the diffusional motion as a chemical reaction allows to assimilate a reaction-diffusion system to a pure reaction system and to simulate it with Gillespie-inspired stochastic simulation algorithms. The stochastic time evolution of the system is given by the occurrence of diffusion events and chemical reaction events. At each time step an event (reaction or diffusion) is selected from a probability distribution of waiting times determined by the specific speed of reaction and diffusion events. Redi is the software tool, developed to implement the model of reaction-diffusion kinetics and dynamics. It is a free software, that can be downloaded from http://www.cosbi.eu. To demonstrate the validity of the new reaction-diffusion model, the simulation results of the chaperone-assisted protein folding in cytoplasm obtained with Redi are reported. This case study is redrawing the attention of the scientific community due to current interests on protein aggregation as a potential cause for neurodegenerative diseases.

Keywords: Reaction-diffusion systems, Fick's law, stochastic simulation algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1737
1377 The Optimal Public Debt Ceiling in Taiwan: A Simulation Approach

Authors: Ho Yuan-Hong, Hunag Chiung-Ju

Abstract:

This study conducts simulation analyses to find the optimal debt ceiling of Taiwan, while factoring in welfare maximization under a dynamic stochastic general equilibrium framework. The simulation is based on Taiwan's 2001 to 2011 economic data and shows that welfare is maximized at a debt/GDP ratio of 0.2, increases in the debt/GDP ratio leads to increases in both tax and interest rates and decreases in the consumption ratio and working hours. The study results indicate that the optimal debt ceiling of Taiwan is 20% of GDP, where if the debt/GDP ratio is greater than 40%, the welfare will be negative and result in welfare loss.

Keywords: Debt sustainability, optimal debt ceiling, dynamic stochastic general equilibrium, welfare maximization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2390
1376 A Direct Probabilistic Optimization Method for Constrained Optimal Control Problem

Authors: Akbar Banitalebi, Mohd Ismail Abd Aziz, Rohanin Ahmad

Abstract:

A new stochastic algorithm called Probabilistic Global Search Johor (PGSJ) has recently been established for global optimization of nonconvex real valued problems on finite dimensional Euclidean space. In this paper we present convergence guarantee for this algorithm in probabilistic sense without imposing any more condition. Then, we jointly utilize this algorithm along with control parameterization technique for the solution of constrained optimal control problem. The numerical simulations are also included to illustrate the efficiency and effectiveness of the PGSJ algorithm in the solution of control problems.

Keywords: Optimal Control Problem, Constraints, Direct Methods, Stochastic Algorithm

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1696
1375 Effect of Sand Wall Stabilized with Different Percentages of Lime on Bearing Capacity of Foundation

Authors: Ahmed S. Abdulrasool

Abstract:

Recently sand wall started to gain more attention as the sand is easy to compact by using vibroflotation technique. An advantage of sand wall is the availability of different additives that can be mixed with sand to increase the stiffness of the sand wall and hence to increase its performance. In this paper, the bearing capacity of circular foundation surrounded by sand wall stabilized with lime is evaluated through laboratory testing. The studied parameters include different sand-lime walls depth (H/D) ratio (wall depth to foundation diameter) ranged between (0.0-3.0). Effect of lime percentages on the bearing capacity of skirted foundation models is investigated too. From the results, significant change is occurred in the behavior of shallow foundations due to confinement of the soil. It has been found that (H/D) ratio of 2 gives substantial improvement in bearing capacity, and beyond (H/D) ratio of 2, there is no significant improvement in bearing capacity. The results show that the optimum lime content is 11%, and the maximum increase in bearing capacity reaches approximately 52% at (H/D) ratio of 2.

Keywords: Lime-sand wall, bearing capacity, circular foundation, clay soil.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1217
1374 A Stochastic Analytic Hierarchy Process Based Weighting Model for Sustainability Measurement in an Organization

Authors: Faramarz Khosravi, Gokhan Izbirak

Abstract:

A weighted statistical stochastic based Analytical Hierarchy Process (AHP) model for modeling the potential barriers and enablers of sustainability for measuring and assessing the sustainability level is proposed. For context-dependent potential barriers and enablers, the proposed model takes the basis of the properties of the variables describing the sustainability functions and was developed into a realistic analytical model for the sustainable behavior of an organization. This thus serves as a means for measuring the sustainability of the organization. The main focus of this paper was the application of the AHP tool in a statistically-based model for measuring sustainability. Hence a strong weighted stochastic AHP based procedure was achieved. A case study scenario of a widely reported major Canadian electric utility was adopted to demonstrate the applicability of the developed model and comparatively examined its results with those of an equal-weighted model method. Variations in the sustainability of a company, as fluctuations, were figured out during the time. In the results obtained, sustainability index for successive years changed form 73.12%, 79.02%, 74.31%, 76.65%, 80.49%, 79.81%, 79.83% to more exact values 73.32%, 77.72%, 76.76%, 79.41%, 81.93%, 79.72%, and 80,45% according to priorities of factors that have found by expert views, respectively. By obtaining relatively necessary informative measurement indicators, the model can practically and effectively evaluate the sustainability extent of any organization and also to determine fluctuations in the organization over time.

Keywords: AHP, sustainability fluctuation, environmental indicators, performance measurement, environmental sustainability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 924
1373 The Proof of Analogous Results for Martingales and Partial Differential Equations Options Price Valuation Formulas Using Stochastic Differential Equation Models in Finance

Authors: H. D. Ibrahim, H. C. Chinwenyi, A. H. Usman

Abstract:

Valuing derivatives (options, futures, swaps, forwards, etc.) is one uneasy task in financial mathematics. The two ways this problem can be effectively resolved in finance is by the use of two methods (Martingales and Partial Differential Equations (PDEs)) to obtain their respective options price valuation formulas. This research paper examined two different stochastic financial models which are Constant Elasticity of Variance (CEV) model and Black-Karasinski term structure model. Assuming their respective option price valuation formulas, we proved the analogous of the Martingales and PDEs options price valuation formulas for the two different Stochastic Differential Equation (SDE) models. This was accomplished by using the applications of Girsanov theorem for defining an Equivalent Martingale Measure (EMM) and the Feynman-Kac theorem. The results obtained show the systematic proof for analogous of the two (Martingales and PDEs) options price valuation formulas beginning with the Martingales option price formula and arriving back at the Black-Scholes parabolic PDEs and vice versa.

Keywords: Option price valuation, Martingales, Partial Differential Equations, PDEs, Equivalent Martingale Measure, Girsanov Theorem, Feyman-Kac Theorem, European Put Option.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 388
1372 The Non-Uniqueness of Partial Differential Equations Options Price Valuation Formula for Heston Stochastic Volatility Model

Authors: H. D. Ibrahim, H. C. Chinwenyi, T. Danjuma

Abstract:

An option is defined as a financial contract that provides the holder the right but not the obligation to buy or sell a specified quantity of an underlying asset in the future at a fixed price (called a strike price) on or before the expiration date of the option. This paper examined two approaches for derivation of Partial Differential Equation (PDE) options price valuation formula for the Heston stochastic volatility model. We obtained various PDE option price valuation formulas using the riskless portfolio method and the application of Feynman-Kac theorem respectively. From the results obtained, we see that the two derived PDEs for Heston model are distinct and non-unique. This establishes the fact of incompleteness in the model for option price valuation.

Keywords: Option price valuation, Partial Differential Equations, Black-Scholes PDEs, Ito process.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 506
1371 A Multi-period Profit Maximization Policy for a Stochastic Demand Inventory System with Upward Substitution

Authors: Soma Roychowdhury

Abstract:

This paper deals with a periodic-review substitutable inventory system for a finite and an infinite number of periods. Here an upward substitution structure, a substitution of a more costly item by a less costly one, is assumed, with two products. At the beginning of each period, a stochastic demand comes for the first item only, which is quality-wise better and hence costlier. Whenever an arriving demand finds zero inventory of this product, a fraction of unsatisfied customers goes for its substitutable second item. An optimal ordering policy has been derived for each period. The results are illustrated with numerical examples. A sensitivity analysis has been done to examine how sensitive the optimal solution and the maximum profit are to the values of the discount factor, when there is a large number of periods.

Keywords: Multi-period model, inventory, random demand, upward substitution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1439
1370 Choosing Search Algorithms in Bayesian Optimization Algorithm

Authors: Hao Wu, Jonathan L. Shapiro

Abstract:

The Bayesian Optimization Algorithm (BOA) is an algorithm based on the estimation of distributions. It uses techniques from modeling data by Bayesian networks to estimating the joint distribution of promising solutions. To obtain the structure of Bayesian network, different search algorithms can be used. The key point that BOA addresses is whether the constructed Bayesian network could generate new and useful solutions (strings), which could lead the algorithm in the right direction to solve the problem. Undoubtedly, this ability is a crucial factor of the efficiency of BOA. Varied search algorithms can be used in BOA, but their performances are different. For choosing better ones, certain suitable method to present their ability difference is needed. In this paper, a greedy search algorithm and a stochastic search algorithm are used in BOA to solve certain optimization problem. A method using Kullback-Leibler (KL) Divergence to reflect their difference is described.

Keywords: Bayesian optimization algorithm, greedy search, KL divergence, stochastic search.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1698