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Abstract—An option is defined as a financial contract that 

provides the holder the right but not the obligation to buy or sell a 
specified quantity of an underlying asset in the future at a fixed price 
(called a strike price) on or before the expiration date of the option. 
This paper examined two approaches for derivation of Partial 
Differential Equation (PDE) options price valuation formula for the 
Heston stochastic volatility model. We obtained various PDE option 
price valuation formulas using the riskless portfolio method and the 
application of Feynman-Kac theorem respectively. From the results 
obtained, we see that the two derived PDEs for Heston model are 
distinct and non-unique. This establishes the fact of incompleteness 
in the model for option price valuation.  

 
Keywords—Option price valuation, Partial Differential 

Equations, Black-Scholes PDEs, Ito process. 

I. INTRODUCTION 

INANCIAL derivatives are financial contracts that are 
linked to an underlying asset and through which specific 

financial risks can be traded in a typical financial market. The 
value of a financial derivative is a function of the underlying 
asset and time from whence its price is derived. Since the 
future reference price of the derivative is not known with 
certainty, its value at maturity can only be anticipated or 
estimated. Options which are a type of financial derivative are 
used for several purposes which include risk management, 
hedging, etc. [1]. 

In the early advent of stochastic financial modeling, the 
Black-Scholes model [2], for option pricing, assumed that the 
volatility of the underlying asset was constant. The model 
failed to take into consideration the fact that the volatility of 
the underlying asset oscillates. This omission therefore 
necessitated the study on stochastic volatility models such as 
the Heston stochastic volatility model which treats price 
volatility as arbitrary or a random variable. This singular idea 
of allowing the price of the underlying asset to vary in the 
stochastic volatility models improved the accuracy of model 
calculations and predictions. 

Grasping and quantifying the ingrained uncertainty in a 
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volatility market is important for every portfolio, options and 
risk management. This is obvious since volatility is not 
directly observed but a statics of observable returns. So, 
estimates of it are often stochastic or probabilistic [3]. 

II. THEORETICAL INSIGHT 

Definition1. Self-financing trading strategy: A trading 
strategy is an 𝑁 dimensional stochastic process 
𝑎 𝑡 , ⋯ , 𝑎 𝑡  that represents the allocations into the assets at 
time, 𝑡. The time, 𝑡 value of the portfolio is ∏ 𝑡
∑ 𝑎 𝑡 𝑆 𝑡 .  

A trading strategy is self-financing if the change in the 
value of the portfolio is due only to changes in the value of the 
assets and not to inflows or outflows of funds. This implies 
that the strategy is self-financing if  

 

𝑑 ∏ 𝑡 𝑑 ∑ 𝑎 𝑡 𝑆 𝑡 ∑ 𝑎 𝑡 𝑑𝑆 𝑡 ,  
 
in other words, a trading strategy is self-financing, if  
 

∏ 𝑡 ∏ 0 ∑ 𝑎 𝑢 𝑑𝑆 𝑢   
 

In the case of two assets the portfolio value is ∏ 𝑡
𝑎 𝑡 𝑆 𝑡 𝑎 𝑡 𝑆 𝑡  and the strategy 𝑎 ,𝑎  is self-
financing if 𝑑 ∏ 𝑡 𝑎 𝑡 𝑑𝑆 𝑡 𝑎 𝑡 𝑑𝑆 𝑡 .  
Definition2. Self-financing portfolio: A portfolio allocation 
𝜉 , 𝜂 ℝ  with price (value) 𝑉  given by  

 
𝑉 𝜉 𝑆 𝜂 𝐴 , 𝑡 𝜖 ℝ  

 
is self-financing if and only if  
 

𝑑𝑉 𝐵 𝑑𝐴 𝜉 𝑑𝑆  
 
where 𝜉  is the number of shares in 𝑆  (could be any real 
number) and 𝐵  is the riskless asset, which is the amount in 
the bank. 
Theorem1. Multidimensional Version of the Feynman-Kac 
Theorem: Suppose that 𝑥  follows the stochastic process in 𝑛 
dimensions 
 

𝑑𝑥 𝜇 𝑥 , 𝑡 𝑑𝑡 𝜎 𝑥 , 𝑡 𝑑𝑊ℚ 
 

where 𝑥  and 𝜇 𝑥 , 𝑡  are each vectors of dimension 𝑛, 𝑊ℚ is 
a vector of dimension 𝑚 of ℚ Brownian motion, and 𝜎 𝑥 , 𝑡  is 
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a matrix of size 𝑛 𝑚. In other words 
 

𝑑 ⋮

,
⋮

,
𝑑𝑡

𝜎 𝑥 , 𝑡 ⋯ 𝜎 𝑥 , 𝑡
⋮ ⋱ ⋮

𝜎 𝑥 , 𝑡 ⋯ 𝜎 𝑥 , 𝑡

ℚ

⋮
ℚ

  

 
The generator of the process is  

 

 𝐴 ∑ 𝜇 ∑ ∑ 𝜎𝜎   (1) 

 
where for notational convenience 𝜇 𝜇 𝑥 , 𝑡 , 𝜎 𝜎 𝑥 , 𝑡 ,  
and 𝜎𝜎  is element 𝑖, 𝑗  of the matrix 𝜎𝜎  of size 𝑛
𝑛 . The theorem states that the PDE in 𝑉 𝑥 , 𝑡  given by 
 

      𝐴𝑉 𝑥 , 𝑡 𝑟 𝑥 , 𝑡 𝑉 𝑥 , 𝑡 0   (2) 

 
and with boundary condition 𝑉 𝑋 , 𝑇 |ℱ  has solution 
 

𝑉 𝑥 , 𝑡 𝐸ℚ 𝑒 , 𝑉 𝑋 , 𝑇 ℱ   (3) 

A. Ito Formula for Ito Processes  

We now turn to the general expression of Ito’s formula 
which applies to Ito processes of the form 
 

  𝑋 𝑋 𝜇 𝑑𝑠 𝜎 𝑑𝑊 ,         𝑡 𝜖 ℝ  (4) 
 
or in differential notation 
 

𝑑𝑋 𝜇 𝑑𝑡 𝜎 𝑑𝑊  
 
where 𝜇 ℝ  and 𝜎 ℝ  are square-integrable adapted 
processes [4]. 
 
Lemma1. (Ito formula for Ito processes). For any Ito process 
𝑋 ℝ  of the form (4) and any 𝑓𝜖𝐶 , ℝ ℝ  and 

𝑍 𝑓 𝑡, 𝑋  we have, 
 

𝑍 𝑓 0, 𝑋 𝜇 𝑠, 𝑋 𝑑𝑠 𝜎 𝑠, 𝑋 𝑑𝐵

𝑠, 𝑋 𝑑𝑠 |𝜎 | 𝑠, 𝑋 𝑑𝑠  
 
or in differential form 
 

𝑑𝑍 𝑡, 𝑋 𝑑𝑡 𝑡, 𝑋 𝑑𝑋 𝑡, 𝑋 𝑑𝑋  

𝑡, 𝑋 𝑡, 𝑋 𝜇 𝑡, 𝑋 𝜎 𝑑𝑡 𝑡, 𝑋 𝜎 𝑑𝑊 (5) 

III. METHODS 

The parameters for consideration in Heston model are as: 
 𝑆  or 𝑆 : Underlying asset 
 𝑣  or 𝑣 : Volatility factor 
 𝑊 or 𝑊 ∶Brownian motion 
 𝜎: Measure of the standard deviation of the returns of the 

asset 
 𝜃: The long-term running mean of the variance process 
 𝜅: The speed of mean-reversion of the variance process 
 𝜌: The instantaneous correlation between the state process 

and the volatility process 
 dt: Time step-size. 
 𝑟: Risk-free interest rate. 
 𝜇: Drift factor (Measure of average rate of growth of the 

asset). 

A. Heston Stochastic Volatility Model 

Here, we go straight to use the riskless portfolio method to 
derive the PDEs option price valuation formula for the Heston 
Stochastic Differential Equation model given as [5]. 
 

𝑑𝑆 𝜇𝑆 𝑑𝑡 𝑣 𝑆 𝑑𝑊 ,       𝑆 0 

           𝑑𝑣 𝜅 𝜃 𝑣 𝑑𝑡 𝜎 𝑣 𝑑𝑊 ,       𝑣 0 

𝑑𝑊 𝑑𝑊 𝜌𝑑𝑡                                       
 

Money market  
𝑑𝐵 𝐵 𝑟𝑑𝑡 

 
Contingent claim 

𝑐 𝑆 , 𝑣 , 𝑡  
 

We define a trading strategy 𝐻 𝜂 , 𝜉 , 𝛾 , applied to the 
portfolio 𝐵 , 𝑆 , 𝑐 𝑆 , 𝑣 , 𝑡 . The value of the trading strategy 
is then 
 

ℎ 𝜂 𝐵 𝜉 𝑆 𝛾 𝑐 𝑆 , 𝑣 , 𝑡 . 
 

We require the trading strategy to be self-financing, i.e.  
 

𝑑ℎ 𝜂 𝑑𝐵 𝜉 𝑑𝑆 𝛾 𝑑𝑐 𝑆 , 𝑣 , 𝑡 . 
 

Hence, the value of the hedge portfolio must be equal to the 
value of the option 
 

𝑢 𝑆 ,, 𝑣 , 𝑡 ℎ  
 
and in particular, the instantaneous changes must as well be 
equal. So we have  
 

𝑑𝑢 𝑆 , 𝑣 , 𝑡 𝑑ℎ . 
 

Applying the Ito’s formula (Lemma 1) we derive the PDE. 
Ito’s formula directly gives the expressions for 𝑑𝑢 𝑆 , 𝑣 , 𝑡  
and 𝑑ℎ as 
 

𝑑𝑢 𝑆 , 𝑣 , 𝑡 𝑆 𝜇 𝜅 𝜃 𝑣 𝑆 𝑣

𝜎 𝑣 𝑆 𝜎𝑣 𝜌 𝑑𝑡 𝑆 𝑣 𝑑𝑊

𝜎 𝑣 𝑑𝑊  (6) 
 

𝑑ℎ 𝛾 𝑆 𝜇 𝑘 𝜃 𝑣 𝑆 𝑣 𝜎 𝑣

𝑆 𝜎𝑣 𝑑𝑡 𝜂 𝐵 𝑟 𝜉 𝑆 𝜇 𝑑𝑡
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𝛾 𝑆 𝑣 𝜉 𝜂 𝑣 𝑑𝑊 𝛾 𝜎 𝑣 𝑑𝑊 (7) 
 

Given |𝜌| 1, the Ito processes 𝑢 𝑆 , 𝑣 , 𝑡  and ℎ  are 

identical if and only if the factors in front of 𝑑𝑊 , 𝑑𝑊  
and 𝑑𝑡 are equal. Equality of the first two factors implies 

 

𝑆 𝑣 𝛾 𝑆 𝑣 𝜉 𝑆 𝑣   

𝜎 𝑣 𝛾 𝜎 𝑣   

 
Hence, the choices of 
 

𝛾 ,  

𝜉 𝛾   

 
remove the stochastic component from 𝑑ℎ  which renders the 
portfolio riskless. Having determined 𝜉 , 𝛾  and by replacing 
𝜂  using the relation 

 
𝑢 𝑆 , 𝑣 , 𝑡 ℎ 𝜂 𝐵 𝜉 𝑆 𝛾 𝑐 𝑆 , 𝑣 , 𝑡 . 

 
We now compare the drift terms and we have, 
 

𝑆 𝜇 𝜅 𝜃 𝑣 𝑆 𝑣 𝜎 𝑣

𝑆 𝜎𝑣 𝜌 𝛾 𝑆 𝜇 𝑘 𝜃 𝑣 𝑆 𝑣

𝜎 𝑣 𝑆 𝜎𝑣 𝜌 𝑢 𝜉 𝑆 𝛾 𝑐 𝑟 𝜉 𝑆 𝜇  
 

By rearranging the terms and dividing the above equation 
by 𝑢  we see that each side of the equation is either dependent 
on 𝑐 or on 𝑢, i.e. 
 

𝑆 𝜇 𝜅 𝜃 𝑣 𝑆 𝑣 𝜎 𝑣

𝑆 𝜎𝑣 𝜌 𝑟𝑢 𝜇 𝑟 𝑆 𝑆 𝜇

𝑘 𝜃 𝑣 𝑆 𝑣 𝜎 𝑣 𝑆 𝜎𝑣 𝜌 𝑐𝑟

𝜇 𝑟 𝑆   
 
We can reproduce this result with any such option 𝑐. Given 

a set of these options we come to the conclusion that the left 
hand side of the equation does not depend on 𝑐 but is a 
function of 𝑆 , 𝑣  𝑎𝑛𝑑 𝑡 only. This function is denoted by 
𝜆 ∶  ℝ 0, 𝑇 ⟶ ℝ and we write 
 

𝑆 𝑟 𝜅 𝜃 𝑣 𝑆 𝑣 𝜎 𝑣

𝑆 𝜎𝑣 𝜌 𝑟𝑢 𝜆 𝑆 , 𝑣 , 𝑡   
 
The PDE the function 𝑢 ∶ ℝ 0, 𝑇 ⟶ ℝ, 𝑢 𝑠, 𝑣, 𝑡  has 

to obey is obtained by equating the drift factor to zero. Hence, 
we have, 

 

𝑠𝑟 𝜅 𝜃 𝑣 𝜆 𝑠, 𝑣, 𝑡 𝑣 𝑆 𝜎

𝑠𝜎𝜌 𝑟𝑢 0(8) 
 
which is the PDE valuation formula for the Heston stochastic 
volatility model. 

Now, let us examine an alternative method of using the 
application of Feynman-Kac theorem (Theorem 1) to obtain 
the PDE options price valuation formula for the Heston model 
as elaborated below. Given the Heston model [6], 

 

  𝑑𝑆 𝑟𝑆 𝑑𝑢 𝑣 𝑆 𝑑𝑊 ,    (9) 
 

 𝑑𝑣 𝜅 𝜗 𝑣 𝜆𝑣 𝑑 𝜎 𝑣 𝑑𝑊   (10) 
 
where 𝑊, 𝑊  are now 𝑃 Brownian motions with 
instantaneous correlation 𝜌. Consider now the two-
dimensional process 𝑋 with coordinates 𝑋 𝑆 and 𝑋 𝑣. 
To construct 𝑊 and 𝑊  as in (9) and (10), we choose 
independent 𝑃  Brownian motions 𝑊 , 𝑊  and set 𝑊
𝑊  and 𝑊 𝜌𝑊 1 𝜌 𝑊 . Hence, by transformation 
equation (9) becomes 

 

𝑑𝑋 𝑟𝑥 𝑑𝑢 √𝑥 𝑥 𝑑 𝜌𝑊 1 𝜌 𝑊   

𝑑𝑋 𝑟𝑥 𝑑𝑢 √𝑥 𝑥 𝑑 𝜌𝑤 𝑑 √𝑥 𝑥 1 𝜌 𝑊   

𝑑𝑋 𝑟𝑥 𝑑𝑢 𝜌𝑥 √𝑥 𝑑 𝑤 1 𝜌 𝑥 √𝑥 𝑑 𝑊   

   𝑑𝑋 𝑟𝑥 𝑑𝑢 1 𝜌 𝑥 √𝑥 𝑑 𝑊 𝜌𝑥 √𝑥 𝑑 𝑊 (11) 
 
and (10) becomes 
 

 𝑑𝑋 𝜅 𝜗 𝑥 𝜆𝑥 𝑑𝑢 𝜎√𝑥 𝑑 𝑊  (12) 

 
In matrix form, we have  

 

    𝜇 𝑡, 𝑥   (13) 

 
and 

 𝜎 𝑡, 𝑥
1 𝜌 𝑥 √𝑥 𝜌𝑥 √𝑥

0 𝜎√𝑥
   (14) 

 
Hence, we have 
 

𝑑 𝑑𝑡 1 𝜌 𝑥 √𝑥 𝜌𝑥 √𝑥

0 𝜎√𝑥
  

 
To obtain the 𝜎𝜎  in matrix form, we have 

 

𝜎𝜎 1 𝜌 𝑥 √𝑥 𝜌𝑥 √𝑥

0 𝜎√𝑥

1 𝜌 𝑥 √𝑥 0

𝜌𝑥 √𝑥 𝜎√𝑥
1 𝜌 𝑥 𝑥 𝜌 𝑥 𝑥 𝜎𝜌𝑥 𝑥

𝜎𝜌𝑥 𝑥 𝜎 𝑥
  

 
Using the variables 𝑠, 𝑣  instead of 𝑥 , 𝑥  and writing 

subscripts for partial derivatives, we have 
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1 𝜎𝜌𝑠𝑣

𝜎𝜌𝑠𝑣 𝜎 𝑣
    (15) 

 
Next is to apply the multi-dimensional version of the 

Feynman-Kac Theorem (Theorem 1), we have the generator 
function given as 
 

      𝐴 ∑ 𝜇 ∑ ∑ 𝜎𝜎   (16) 

 
Therefore substituting (15) into (16) we have  
 

𝐴 𝑟𝑠 𝜅 𝜗 𝑣 𝜆𝑣 𝜎𝜌𝑠𝑣 𝜎 𝑣   
 
But the PDE for the multi-dimensional version of the 

Feynman-Kac Theorem is given by 
 

   𝐴𝑉 𝑥 , 𝑡 𝑟 𝑥 , 𝑡 𝑉 𝑥 , 𝑡 0 (17) 

 
Therefore, the PDE in (17) for 𝑉 𝑣 𝑥, 𝑣, 𝑡  becomes 
 

 𝑟𝑠 𝜅 𝜗 𝑣 𝜆𝑣 𝜎𝜌𝑠𝑣  

𝜎 𝑣 𝑟𝑉 0  (18) 
 

Clearly, (18) is another form of the Heston PDEs option 
price valuation formula which is different from the one 
derived in (8). This implies that different PDEs can be derived 
from the Heston Model using different approaches. This in 
doubt makes the model incomplete. 

IV. CONCLUSION 

In this research, we examined the Heston stochastic 
volatility model and used two different approaches (Riskless 
portfolio method and application of Feynman-Kac theorem) to 
show that there are no unique PDE options price valuation 
formulas for the model. This is as a result of incompleteness in 
the Heston stochastic volatility model since there are two 

sources of uncertainty 𝑑𝑊 , 𝑑𝑊  or 𝑑𝑊 , 𝑑𝑊  in the 
model equation with only one risky asset 𝑆 available for trade. 
Hence, option prices are only determined once a specific 
martingale measure (or, equivalently, a market price of risk) 
has been chosen. In particular, each ideal martingale measure 
also gives rise to an associated PDE and this means that many 
different options price valuation PDEs can be obtained from 
Heston stochastic volatility model.  
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