Search results for: instability torque ripples reduction
1824 Robust Control of a High-Speed Manipulator in State Space
Authors: M. M. Fateh, A. Izadbakhsh
Abstract:
A robust control approach is proposed for a high speed manipulator using a hybrid computed torque control approach in the state space. The high-speed manipulator is driven by permanent magnet dc motors to track a trajectory in the joint space in the presence of disturbances. Tracking problem is analyzed in the state space where the completed models are considered for actuators. The proposed control approach can guarantee the stability and a satisfactory tracking performance. A two-link elbow manipulator driven by electrical actuators is simulated and results are shown to satisfy conditions under technical specifications.
Keywords: Computed torque, manipulator, robust control, state space.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23391823 Instability of Electron Plasma Waves in an Electron-Hole Bounded Quantum Dusty Plasma
Authors: Basudev Ghosh, Sailendranath Paul, Sreyasi Banerjee
Abstract:
Using quantum hydrodynamical (QHD) model the linear dispersion relation for the electron plasma waves propagating in a cylindrical waveguide filled with a dense plasma containing streaming electron, hole and stationary charged dust particles has been derived. It is shown that the effect of finite boundary and stream velocity of electrons and holes make some of the possible modes of propagation linearly unstable. The growth rate of this instability is shown to depend significantly on different plasma parameters.
Keywords: Electron Plasma wave, Quantum plasma, Quantum Hydrodynamical model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17021822 Effects of Injection Conditions on Flame Structures in Gas-Centered Swirl Coaxial Injector
Authors: Wooseok Song, Sunjung Park, Jongkwon Lee, Jaye Koo
Abstract:
The objective of this paper is to observe the effects of injection conditions on flame structures in gas-centered swirl coaxial injector. Gaseous oxygen and liquid kerosene were used as propellants. For different injection conditions, two types of injector, which only differ in the diameter of the tangential inlet, were used in this study. In addition, oxidizer injection pressure was varied to control the combustion chamber pressure in different types of injector. In order to analyze the combustion instability intensity, the dynamic pressure was measured in both the combustion chamber and propellants lines. With the increase in differential pressure between the propellant injection pressure and the combustion chamber pressure, the combustion instability intensity increased. In addition, the flame structure was recorded using a high-speed camera to detect CH* chemiluminescence intensity. With the change in the injection conditions in the gas-centered swirl coaxial injector, the flame structure changed.
Keywords: Liquid rocket engine, flame structure, combustion instability, dynamic pressure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8901821 Optimal Risk Reduction in the Railway Industry by Using Dynamic Programming
Authors: Michael Todinov, Eberechi Weli
Abstract:
The paper suggests for the first time the use of dynamic programming techniques for optimal risk reduction in the railway industry. It is shown that by using the concept ‘amount of removed risk by a risk reduction option’, the problem related to optimal allocation of a fixed budget to achieve a maximum risk reduction in the railway industry can be reduced to an optimisation problem from dynamic programming. For n risk reduction options and size of the available risk reduction budget B (expressed as integer number), the worst-case running time of the proposed algorithm is O (n x (B+1)), which makes the proposed method a very efficient tool for solving the optimal risk reduction problem in the railway industry.
Keywords: Optimisation, railway risk reduction, budget constraints, dynamic programming.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21811820 Modeling of a Novel Dual-Belt Continuously Variable Transmission for Automobiles
Authors: Y. Q. Chen, P. K. Wong, Z. C. Xie, H. W. Wu, K. U. Chan, J., L. Huang
Abstract:
It is believed that continuously variable transmission (CVT) will dominate the automotive transmissions in the future. The most popular design is Van Doorne-s CVT with single metal pushing V-belt. However, it is only applicable to low power passenger cars because its major limitation is low torque capacity. Therefore, this research studies a novel dual-belt CVT system to overcome the limitation of traditional single-belt CVT, such that it can be applicable to the heavy-duty vehicles. This paper presents the mathematical model of the design and its experimental verification. Experimental and simulated results show that the model developed is valid and the proposed dual-belt CVT can really overcome the traditional limitation of single-belt Van Doorne-s CVT.
Keywords: Analytical model, CVT, Dual belts, Torque capacity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21471819 Modeling Parametric Vibration of Multistage Gear Systems as a Tool for Design Optimization
Authors: James Kuria, John Kihiu
Abstract:
This work presents a numerical model developed to simulate the dynamics and vibrations of a multistage tractor gearbox. The effect of time varying mesh stiffness, time varying frictional torque on the gear teeth, lateral and torsional flexibility of the shafts and flexibility of the bearings were included in the model. The model was developed by using the Lagrangian method, and it was applied to study the effect of three design variables on the vibration and stress levels on the gears. The first design variable, module, had little effect on the vibration levels but a higher module resulted to higher bending stress levels. The second design variable, pressure angle, had little effect on the vibration levels, but had a strong effect on the stress levels on the pinion of a high reduction ratio gear pair. A pressure angle of 25o resulted to lower stress levels for a pinion with 14 teeth than a pressure angle of 20o. The third design variable, contact ratio, had a very strong effect on both the vibration levels and bending stress levels. Increasing the contact ratio to 2.0 reduced both the vibration levels and bending stress levels significantly. For the gear train design used in this study, a module of 2.5 and contact ratio of 2.0 for the various meshes was found to yield the best combination of low vibration levels and low bending stresses. The model can therefore be used as a tool for obtaining the optimum gear design parameters for a given multistage spur gear train.Keywords: bending stress levels, frictional torque, gear designparameters, mesh stiffness, multistage gear train, vibration levels.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25681818 Comparison of Field-Oriented Control and Direct Torque Control for Permanent Magnet Synchronous Motor (PMSM)
Authors: M. S. Merzoug, F. Naceri
Abstract:
This paper presents a comparative study on two most popular control strategies for Permanent Magnet Synchronous Motor (PMSM) drives: field-oriented control (FOC) and direct torque control (DTC). The comparison is based on various criteria including basic control characteristics, dynamic performance, and implementation complexity. The study is done by simulation using the Simulink Power System Blockset that allows a complete representation of the power section (inverter and PMSM) and the control system. The simulation and evaluation of both control strategies are performed using actual parameters of Permanent Magnet Synchronous Motor fed by an IGBT PWM inverter.Keywords: PMSM, FOC, DTC, hysteresis, PWM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 70801817 An Intelligent Controller Augmented with Variable Zero Lag Compensation for Antilock Braking System
Authors: Benjamin C. Agwah, Paulinus C. Eze
Abstract:
Antilock braking system (ABS) is one of the important contributions by the automobile industry, designed to ensure road safety in such way that vehicles are kept steerable and stable when during emergency braking. This paper presents a wheel slip-based intelligent controller with variable zero lag compensation for ABS. It is required to achieve a very fast perfect wheel slip tracking during hard braking condition and eliminate chattering with improved transient and steady state performance, while shortening the stopping distance using effective braking torque less than maximum allowable torque to bring a braking vehicle to a stop. The dynamic of a vehicle braking with a braking velocity of 30 ms⁻¹ on a straight line was determined and modelled in MATLAB/Simulink environment to represent a conventional ABS system without a controller. Simulation results indicated that system without a controller was not able to track desired wheel slip and the stopping distance was 135.2 m. Hence, an intelligent control based on fuzzy logic controller (FLC) was designed with a variable zero lag compensator (VZLC) added to enhance the performance of FLC control variable by eliminating steady state error, provide improve bandwidth to eliminate the effect of high frequency noise such as chattering during braking. The simulation results showed that FLC-VZLC provided fast tracking of desired wheel slip, eliminated chattering, and reduced stopping distance by 70.5% (39.92 m), 63.3% (49.59 m), 57.6% (57.35 m) and 50% (69.13 m) on dry, wet, cobblestone and snow road surface conditions respectively. Generally, the proposed system used effective braking torque that is less than the maximum allowable braking torque to achieve efficient wheel slip tracking and overall robust control performance on different road surfaces.
Keywords: ABS, Fuzzy Logic Controller, Variable Zero Lag Compensator, Wheel Slip Tracking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3431816 A Stochastic Approach to Extreme Wind Speeds Conditions on a Small Axial Wind Turbine
Authors: Nkongho Ayuketang Arreyndip, Ebobenow Joseph
Abstract:
In this paper, to model a real life wind turbine, a probabilistic approach is proposed to model the dynamics of the blade elements of a small axial wind turbine under extreme stochastic wind speeds conditions. It was found that the power and the torque probability density functions even-dough decreases at these extreme wind speeds but are not infinite. Moreover, we also fund that it is possible to stabilize the power coefficient (stabilizing the output power)above rated wind speeds by turning some control parameters. This method helps to explain the effect of turbulence on the quality and quantity of the harness power and aerodynamic torque.Keywords: Probability, Stochastic, Probability density function, Turbulence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17451815 Hydrodynamic Force on Acoustically Driven Bubble in Sulfuric Acid
Authors: Zeinab Galavani, Reza Rezaei-Nasirabad, Rasoul Sadighi-Bonabi
Abstract:
Using a force balanced translational-radial dynamics, phase space of the moving single bubble sonoluminescence (m- SBSL) in 85% wt sulfuric acid has been numerically calculated. This phase space is compared with that of single bubble sonoluminescence (SBSL) in pure water which has been calculated by using the mere radial dynamics. It is shown that in 85% wt sulfuric acid, in a general agreement with experiment, the bubble-s positional instability threshold lays under the shape instability threshold. At the onset of spatial instability of moving sonoluminescing (SL) bubble in 85% wt sulfuric acid, temporal effects of the hydrodynamic force on the bubble translational-radial dynamics have been investigated. The appearance of non-zero history force on the moving SL bubble is because of proper condition which was produced by high viscosity of acid. Around the moving bubble collapse due to the rapid contraction of the bubble wall, the inertial based added mass force overcomes the viscous based history force and induces acceleration on the bubble translational motion.Keywords: Bjerknes force, History force, Reynolds number, Sonoluminescence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15461814 The Effect of Development of Two-Phase Flow Regimes on the Stability of Gas Lift Systems
Authors: Khalid. M. O. Elmabrok, M. L. Burby, G. G. Nasr
Abstract:
Flow instability during gas lift operation is caused by three major phenomena – the density wave oscillation, the casing heading pressure and the flow perturbation within the two-phase flow region. This paper focuses on the causes and the effect of flow instability during gas lift operation and suggests ways to control it in order to maximise productivity during gas lift operations. A laboratory-scale two-phase flow system to study the effects of flow perturbation was designed and built. The apparatus is comprised of a 2 m long by 66 mm ID transparent PVC pipe with air injection point situated at 0.1 m above the base of the pipe. This is the point where stabilised bubbles were visibly clear after injection. Air is injected into the water filled transparent pipe at different flow rates and pressures. The behavior of the different sizes of the bubbles generated within the two-phase region was captured using a digital camera and the images were analysed using the advanced image processing package. It was observed that the average maximum bubbles sizes increased with the increase in the length of the vertical pipe column from 29.72 to 47 mm. The increase in air injection pressure from 0.5 to 3 bars increased the bubble sizes from 29.72 mm to 44.17 mm and then decreasing when the pressure reaches 4 bars. It was observed that at higher bubble velocity of 6.7 m/s, larger diameter bubbles coalesce and burst due to high agitation and collision with each other. This collapse of the bubbles causes pressure drop and reverse flow within two phase flow and is the main cause of the flow instability phenomena.Keywords: Gas lift instability, bubble forming, bubble collapsing, image processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14751813 FEA- Aided Design, Optimization and Development of an Axial Flux Motor for Implantable Ventricular Assist Device
Authors: Neethu S., Shinoy K.S., A.S. Shajilal
Abstract:
This paper presents the optimal design and development of an axial flux motor for blood pump application. With the design objective of maximizing the motor efficiency and torque, different topologies of AFPM machine has been examined. Selection of optimal magnet fraction, Halbach arrangement of rotor magnets and the use of Soft Magnetic Composite (SMC) material for the stator core results in a novel motor with improved efficiency and torque profile. The results of the 3D Finite element analysis for the novel motor have been shown.Keywords: Axial flux motor, Finite Element Methods, Halbach array, Left Ventricular Assist Device, Soft magnetic composite.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21911812 Study of Human Upper Arm Girth during Elbow Isokinetic Contractions Based on a Smart Circumferential Measuring System
Authors: Xi Wang, Xiaoming Tao, Raymond C. H. So
Abstract:
As one of the convenient and noninvasive sensing approaches, the automatic limb girth measurement has been applied to detect intention behind human motion from muscle deformation. The sensing validity has been elaborated by preliminary researches but still need more fundamental studies, especially on kinetic contraction modes. Based on the novel fabric strain sensors, a soft and smart limb girth measurement system was developed by the authors’ group, which can measure the limb girth in-motion. Experiments were carried out on elbow isometric flexion and elbow isokinetic flexion (biceps’ isokinetic contractions) of 90°/s, 60°/s, and 120°/s for 10 subjects (2 canoeists and 8 ordinary people). After removal of natural circumferential increments due to elbow position, the joint torque is found not uniformly sensitive to the limb circumferential strains, but declining as elbow joint angle rises, regardless of the angular speed. Moreover, the maximum joint torque was found as an exponential function of the joint’s angular speed. This research highly contributes to the application of the automatic limb girth measuring during kinetic contractions, and it is useful to predict the contraction level of voluntary skeletal muscles.Keywords: Fabric strain sensor, muscle deformation, isokinetic contraction, joint torque, limb girth strain.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21221811 Study on Electrohydrodynamic Capillary Instability with Heat and Mass Transfer
Authors: D. K. Tiwari, Mukesh Kumar Awasthi, G. S. Agrawal
Abstract:
The effect of an axial electric field on the capillary instability of a cylindrical interface in the presence of heat and mass transfer has been investigated using viscous potential flow theory. In viscous potential flow, the viscous term in Navier-Stokes equation vanishes as vorticity is zero but viscosity is not zero. Viscosity enters through normal stress balance in the viscous potential flow theory and tangential stresses are not considered. A dispersion relation that accounts for the growth of axisymmetric waves is derived and stability is discussed theoretically as well as numerically. Stability criterion is given by critical value of applied electric field as well as critical wave number. Various graphs have been drawn to show the effect of various physical parameters such as electric field, heat transfer capillary number, conductivity ratio, permittivity ratio on the stability of the system. It has been observed that the axial electric field and heat and mass transfer both have stabilizing effect on the stability of the system.
Keywords: Capillary instability, Viscous potential flow, Heat and mass transfer, Axial electric field.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19661810 Depressing Turbine-Generator Supersynchronous Torsional Torques by Using Virtual Inertia
Authors: Jong-Ian Tsai, Chi-Chuan Chen, Tung-Sheng Zhan, Rong-Ching Wu
Abstract:
Single-pole switching scheme is widely used in the Extra High Voltage system. However, the substantial negativesequence current injected to the turbine-generators imposes the electromagnetic (E/M) torque of double system- frequency components during the dead time (between single-pole clearing and line reclosing). This would induce supersynchronous resonance (SPSR) torque amplifications on low pressure turbine generator blades and even lead to fatigue damage. This paper proposes the design of a mechanical filter (MF) with natural frequency close to double-system frequency. From the simulation results, it is found that such a filter not only successfully damps the resonant effect, but also has the characteristics of feasibility and compact.Keywords: Single-pole, Supersynchronous, Blade, Unbalance, filter
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17491809 Analysis of Distribution of Thrust, Torque and Efficiency of a Constant Chord, Constant Pitch C.R.P. Fan by H.E.S. Method
Authors: Morteza Abbaszadeh, Parvin Nikpoorparizi, Mina Shahrooz
Abstract:
For the first time since 1940 and presentation of theodorson-s theory, distribution of thrust, torque and efficiency along the blade of a counter rotating propeller axial fan was studied with a novel method in this research. A constant chord, constant pitch symmetric fan was investigated with Reynolds Stress Turbulence method in this project and H.E.S. method was utilized to obtain distribution profiles from C.F.D. tests outcome. C.F.D. test results were validated by estimation from Playlic-s analytical method. Final results proved ability of H.E.S. method to obtain distribution profiles from C.F.D test results and demonstrated interesting facts about effects of solidity and differences between distributions in front and rear section.Keywords: C.F.D Test, Counter Rotating Propeller, H.E.S. Method, R.S.M. Method
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30231808 Coordination between SC and SVC for Voltage Stability Improvement
Authors: Ali Reza Rajabi, Shahab Rashnoei, Mojtaba Hakimzadeh, Amir Habibi
Abstract:
At any point of time, a power system operating condition should be stable, meeting various operational criteria and it should also be secure in the event of any credible contingency. Present day power systems are being operated closer to their stability limits due to economic and environmental constraints. Maintaining a stable and secure operation of a power system is therefore a very important and challenging issue. Voltage instability has been given much attention by power system researchers and planners in recent years, and is being regarded as one of the major sources of power system insecurity. Voltage instability phenomena are the ones in which the receiving end voltage decreases well below its normal value and does not come back even after setting restoring mechanisms such as VAR compensators, or continues to oscillate for lack of damping against the disturbances. Reactive power limit of power system is one of the major causes of voltage instability. This paper investigates the effects of coordinated series capacitors (SC) with static VAR compensators (SVC) on steady-state voltage stability of a power system. Also, the influence of the presence of series capacitor on static VAR compensator controller parameters and ratings required to stabilize load voltages at certain values are highlighted.
Keywords: Static VAR Compensator (SVC), Series Capacitor (SC), voltage stability, reactive power.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19671807 An Investigation of the Cu-Ni Compound Cathode Materials Affecting on Transient Recovery Voltage
Authors: Arunrungrusmi S, Chaokamnerd W, Tanitteerapan T, Mungkung N., Yuji T.
Abstract:
The purpose of this research was to analyze and compare the instability of a contact surface between Copper and Nickel an alloy cathode in vacuum, the different ratio of Copper and Copper were conducted at 1%, 2% and 4% by using the cathode spot model. The transient recovery voltage is predicted. The cathode spot region is recognized as the collisionless space charge sheath connected with singly ionized collisional plasma. It was found that the transient voltage is decreased with increasing the percentage of an amount of Nickel in cathode materials.
Keywords: Vacuum arc, Instability, Low current, Cathode spot, copper, Nickel, Transient Recovery Voltage.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14501806 Factors Affecting Test Automation Stability and Their Solutions
Authors: Nagmani Lnu
Abstract:
Test automation is a vital requirement of any organization to release products faster to their customers. In most cases, an organization has an approach to developing automation but struggles to maintain it. It results in an increased number of flaky tests, reducing return on investments and stakeholders’ confidence. Challenges grow in multiple folds when automation is for User Interface (UI) behaviors. This paper describes the approaches taken to identify the root cause of automation instability in an extensive payments application and the best practices to address that using processes, tools, and technologies, resulting in a 75% reduction of effort.
Keywords: Automation stability, test stability, flaky test, test quality, test automation quality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2501805 Effect of Speed and Torque on Statistical Parameters in Tapered Bearing Fault Detection
Authors: Sylvester A. Aye, Philippus S. Heyns
Abstract:
The effect of the rotational speed and axial torque on the diagnostics of tapered rolling element bearing defects was investigated. The accelerometer was mounted on the bearing housing and connected to Sound and Vibration Analyzer (SVAN 958) and was used to measure the accelerations from the bearing housing. The data obtained from the bearing was processed to detect damage of the bearing using statistical tools and the results were subsequently analyzed to see if bearing damage had been captured. From this study it can be seen that damage is more evident when the bearing is loaded. Also, at the incipient stage of damage the crest factor and kurtosis values are high but as time progresses the crest factors and kurtosis values decrease whereas the peak and RMS values are low at the incipient stage but increase with damage.Keywords: crest factor, damage detection, kurtosis, RMS, tapered roller bearing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23111804 Viscous Potential Flow Analysis of Electrohydrodynamic Capillary Instability through Porous Media
Authors: Mukesh Kumar Awasth, Mohammad Tamsir
Abstract:
The effect of porous medium on the capillary instability of a cylindrical interface in the presence of axial electric field has been investigated using viscous potential flow theory. In viscous potential flow, the viscous term in Navier-Stokes equation vanishes as vorticity is zero but viscosity is not zero. Viscosity enters through normal stress balance in the viscous potential flow theory and tangential stresses are not considered. A dispersion relation that accounts for the growth of axisymmetric waves is derived and stability is discussed theoretically as well as numerically. Stability criterion is given by critical value of applied electric field as well as critical wave number. Various graphs have been drawn to show the effect of various physical parameters such as electric field, viscosity ratio, permittivity ratio on the stability of the system. It has been observed that the axial electric field and porous medium both have stabilizing effect on the stability of the system.
Keywords: Capillary instability, Viscous potential flow, Porous media, Axial electric field.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20811803 Starting Characteristic Analysis of LSPM for Pumping System Considering Demagnetization
Authors: Subrato Saha, Yun-Hyun Cho
Abstract:
This paper presents the design process of a high performance 3-phase 3.7 kW 2-pole line start permanent magnet synchronous motor for pumping system. A method was proposed to study the starting torque characteristics considering line start with high inertia load. A d-q model including cage was built to study the synchronization capability. Time-stepping finite element method analysis was utilized to accurately predict the dynamic and transient performance, efficiency, starting current, speed curve and etc. Considering the load torque of pumps during starting stage, the rotor bar was designed with minimum demagnetization of permanent magnet caused by huge starting current.Keywords: LSPM, starting analysis, demagnetization, FEA, pumping system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22551802 Turing Pattern in the Oregonator Revisited
Authors: Elragig Aiman, Dreiwi Hanan, Townley Stuart, Elmabrook Idriss
Abstract:
In this paper, we reconsider the analysis of the Oregonator model. We highlight an error in this analysis which leads to an incorrect depiction of the parameter region in which diffusion driven instability is possible. We believe that the cause of the oversight is the complexity of stability analyses based on eigenvalues and the dependence on parameters of matrix minors appearing in stability calculations. We regenerate the parameter space where Turing patterns can be seen, and we use the common Lyapunov function (CLF) approach, which is numerically reliable, to further confirm the dependence of the results on diffusion coefficients intensities.Keywords: Diffusion driven instability, common Lyapunov function (CLF), turing pattern, positive-definite matrix.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10481801 Analysis of Cascade Control Structure in Train Dynamic Braking System
Authors: B. Moaveni, S. Morovati
Abstract:
In recent years, increasing the usage of railway transportations especially in developing countries caused more attention to control systems railway vehicles. Consequently, designing and implementing the modern control systems to improve the operating performance of trains and locomotives become one of the main concerns of researches. Dynamic braking systems is an important safety system which controls the amount of braking torque generated by traction motors, to keep the adhesion coefficient between the wheel-sets and rail road in optimum bound. Adhesion force has an important role to control the braking distance and prevent the wheels from slipping during the braking process. Cascade control structure is one of the best control methods for the wide range of industrial plants in the presence of disturbances and errors. This paper presents cascade control structure based on two forward simple controllers with two feedback loops to control the slip ratio and braking torque. In this structure, the inner loop controls the angular velocity and the outer loop control the longitudinal velocity of the locomotive that its dynamic is slower than the dynamic of angular velocity. This control structure by controlling the torque of DC traction motors, tries to track the desired velocity profile to access the predefined braking distance and to control the slip ratio. Simulation results are employed to show the effectiveness of the introduced methodology in dynamic braking system.Keywords: Cascade control, dynamic braking system, DC traction motors, slip control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16531800 Numerical Simulation of Interfacial Flow with Volume-Of-Fluid Method
Authors: Afshin Ahmadi Nadooshan
Abstract:
In this article, various models of surface tension force (CSF, CSS and PCIL) for interfacial flows have been applied to dynamic case and the results were compared. We studied the Kelvin- Helmholtz instabilities, which are produced by shear at the interface between two fluids with different physical properties. The velocity inlet is defined as a sinusoidal perturbation. When gravity and surface tension are taking into account, we observe the development of the Instability for a critic value of the difference of velocity of the both fluids. The VOF Model enables to simulate Kelvin-Helmholtz Instability as dynamic case.
Keywords: Interfacial flow, Incompressible flow, surface tension, Volume-Of-Fluid, Kelvin-Helmholtz.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25621799 Real Time Monitoring of Long Slender Shaft by Distributed-Lumped Modeling Techniques
Authors: Sina Babadi, K. M. Ebrahimi
Abstract:
The aim of this paper is to determine the stress levels at the end of a long slender shaft such as a drilling assembly used in the oil or gas industry using a mathematical model in real-time. The torsional deflection experienced by this type of drilling shaft (about 4 KM length and 20 cm diameter hollow shaft with a thickness of 1 cm) can only be determined using a distributed modeling technique. The main objective of this project is to calculate angular velocity and torque at the end of the shaft by TLM method and also analyzing of the behavior of the system by transient response. The obtained result is compared with lumped modeling technique the importance of these results will be evident only after the mentioned comparison. Two systems have different transient responses and in this project because of the length of the shaft transient response is very important.Keywords: Distributed Lumped modeling, Lumped modeling, Drill string, Angular Velocity, Torque.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14611798 Simulation of Ammonia-Water Two Phase Flow in Bubble Pump
Authors: Jemai Rabeb, Benhmidene Ali, Hidouri Khaoula, Chaouachi Bechir
Abstract:
The diffusion-absorption refrigeration cycle consists of a generator bubble pump, an absorber, an evaporator and a condenser, and usually operates with ammonia/water/ hydrogen or helium as the working fluid. The aim of this paper is to study the stability problem a bubble pump. In fact instability can caused a reduction of bubble pump efficiency. To achieve this goal, we have simulated the behaviour of two-phase flow in a bubble pump by using a drift flow model. Equations of a drift flow model are formulated in the transitional regime, non-adiabatic condition and thermodynamic equilibrium between the liquid and vapour phases. Equations resolution allowed to define void fraction, and liquid and vapour velocities, as well as pressure and mixing enthalpy. Ammonia-water mixing is used as working fluid, where ammonia mass fraction in the inlet is 0.6. Present simulation is conducted out for a heating flux of 2 kW/m² to 5 kW/m² and bubble pump tube length of 1 m and 2.5 mm of inner diameter. Simulation results reveal oscillations of vapour and liquid velocities along time. Oscillations decrease with time and with heat flux. For sufficient time the steady state is established, it is characterised by constant liquid velocity and void fraction values. However, vapour velocity does not have the same behaviour, it increases for steady state too. On the other hand, pressure drop oscillations are studied.
Keywords: Bubble pump, drift flow model, instability, simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10901797 Simulation of a Double-Sided Axial Flux Brushless Dc Two-Phase Motor Dynamics
Authors: Abdolamir Nekoubin
Abstract:
The objective of this paper is to analyze the performance of a double-sided axial flux permanent magnet brushless DC (AFPM BLDC) motor with two-phase winding. To study the motor operation, a mathematical dynamic model has been proposed for motor, which became the basis for simulations that were performed using MATLAB/SIMULINK software package. The results of simulations were presented in form of the waveforms of selected quantities and the electromechanical characteristics performed by the motor. The calculation results show that the two-phase motor version develops smooth torque and reaches high efficiency. The twophase motor can be applied where more smooth torque is required. Finally a study on the influence of switching angle on motor performance shows that when advance switching technique is used, the motor operates with the highest efficiency.Keywords: brushless DC motor, inverter, switching angle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29681796 Experimental Investigations on the Mechanism of Stratified Liquid Mixing in a Cylinder
Authors: Chai Mingming, Li Lei, Lu Xiaoxia
Abstract:
In this paper, the mechanism of stratified liquids’ mixing in a cylinder is investigated. It is focused on the effects of Rayleigh-Taylor Instability (RTI) and rotation of the cylinder on liquid interface mixing. For miscible liquids, Planar Laser Induced Fluorescence (PLIF) technique is applied to record the concentration field for one liquid. Intensity of Segregation (IOS) is used to describe the mixing status. For immiscible liquids, High Speed Camera is adopted to record the development of the interface. The experiment of RTI indicates that it plays a great role in the mixing process, and meanwhile the large-scale mixing is triggered, and subsequently the span of the stripes decreases, showing that the mesoscale mixing is coming into being. The rotation experiments show that the spin-down process has a great role in liquid mixing, during which the upper liquid falls down rapidly along the wall and crashes into the lower liquid. During this process, a lot of interface instabilities are excited. Liquids mix rapidly in the spin-down process. It can be concluded that no matter what ways have been adopted to speed up liquid mixing, the fundamental reason is the interface instabilities which increase the area of the interface between liquids and increase the relative velocity of the two liquids.
Keywords: Interface instability, liquid mixing, Rayleigh-Taylor Instability, spin-down process, spin-up process.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9271795 Decontamination of Cr(VI) Polluted Wastewater by use of Low Cost Industrial Wastes
Authors: Marius Gheju, Rodica Pode
Abstract:
The reduction of hexavalent chromium by scrap iron was investigated in continuous system, using long-term column experiments, for aqueous Cr(VI) solutions having low buffering capacities, over the Cr(VI) concentration range of 5 – 40 mg/L. The results showed that the initial Cr(VI) concentration significantly affects the reduction capacity of scrap iron. Maximum reduction capacity of scrap iron was observed at the beginning of the column experiments; the lower the Cr(VI) concentration, the greater the experiment duration with maximum scrap iron reduction capacity. However, due to passivation of active surface, scrap iron reduction capacity continuously decreased in time, especially after Cr(VI) breakthrough. The experimental results showed that highest reduction capacity recorded until Cr(VI) breakthrough was 22.8 mg Cr(VI)/g scrap iron, at CI = 5 mg/L, and decreased with increasing Cr(VI) concentration. In order to assure total reduction of greater Cr(VI) concentrations for a longer period of time, either the mass of scrap iron filling, or the hydraulic retention time should be increased.Keywords: hexavalent chromium, heavy metals, scrap iron, reduction capacity, wastewater treatment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1842