
 
Abstract—Test automation is a vital requirement of any 

organization to release products faster to their customers. In most 
cases, an organization has an approach to developing automation but 
struggles to maintain it. It results in an increased number of flaky tests, 
reducing return on investments and stakeholders’ confidence. 
Challenges grow in multiple folds when automation is for User 
Interface (UI) behaviors. This paper describes the approaches taken to 
identify the root cause of automation instability in an extensive 
payments application and the best practices to address that using 
processes, tools, and technologies, resulting in a 75% reduction of 
effort.  

 
Keywords—Automation stability, test stability, flaky test, test 

quality, test automation quality. 

I. INTRODUCTION 

PPLICATION undertest is a large, complex, and 
monolithic application to accept payments. It has 963 

functional test cases which on paper were automated with 
Selenium, however, they never worked. Because of instability, 
Quality Assurance (QA) engineers were executing these test 
cases manually and ended up taking three days to complete one 
cycle of regression.  

Unstable automation is a classic example of an automation 
challenge that most companies are facing. All companies are 
investing a lot in test automation. Based on market estimates, 
software companies worldwide invested $931 million in 
automated software testing tools in 1999, with an estimate of at 
least $2.6 billion in 2004 [4]. Testing is costly, and though its 
estimate varies from project to project, statistically speaking, 
testing occupies 20% of the overall development time for a 
single-component application, 20% to 30% for a two-
component application, and 30% to 35% for an application with 
GUI [2]. The number can be as high as 35% to 50% for a 
distributed application with GUI [1], [2]. Automating test cases 
ensures a faster execution and hence a reduction in the overall 
effort. Nowadays, most companies follow an Agile 
development approach in which applications are getting 
developed in multiple iterations. As per the statistics published 
in 2022, at least 71% of US companies are following Agile now 
[3]. In general, automating previous iteration functionalities test 
cases or automating test cases within the sprint ensures a speedy 
execution and, eventually, enables faster delivery.  

Automation instability and Flaky tests are big problem across 
industries; even big giants like Google and Microsoft are not 
untouched. A survey published in October 2021 shows that 

 
Nagmani Lnu is Director of Quality Engineer at a FinTech Company, San 

Antonio, USA (e-mail: nagmanijobs@gmail.com). 

41% of Google and 26% of Microsoft test were Flaky [6].  
Tests can be flaky because of Flaky Test environment and 

Unstable tests [5]. While individual test engineers cannot 
control the test environment, there are better practices that can 
effectively reduce inconsistent tests. 

II. ROOT CAUSE ANALYSIS AND SOLUTION 

The project team was tasked to stabilize the automation that 
mainly had two milestones: Root Cause Analysis and Develop 
a Robust Solution to Ensure Reusability. The team adopted a 
three-step approach: a) Execute, b) Analyze, and c) Document 
to reach the first milestone which was finding the different root 
cause of the failures. Under the step execute, the team decided 
to run all the automation at least once a day to gather the 
execution results and analyze the failure root cause as step 2 and 
finally document those as step 3 so they can further group the 
related causes for future action as part of the second significant 
milestone which is developing a robust solution to ensure 
reusability. These steps for Root Cause Analysis are shown in 
Fig. 1.  

 

 

Fig. 1 Three Steps process for the Root Cause Analysis 
 

After carefully studying many automation failures, we 
observed that we failed to maintain the automation for many 
reasons. The following are the most important ones: 
 Lack of proper repository and code management principle: 

QA engineers were developing automation scripts and 
keeping them running locally. We have multiple team 
members doing the automation, but they were not 
frequently checking their code to a single repository, hence 
creating a risk of breaking the other team member’s 
automation. This matches a survey report published in 
October 2021 that says that out of the 96 sampled order-
dependent tests, 94 reportedly caused a test failure in the 
absence of a bug, i.e., a false alarm [6]. It is a huge problem, 
and an organization should handle this by creating a code 
management policy. We established this practice by 

Factors Affecting Test Automation Stability and Their 
Solutions 

Nagmani Lnu 

A

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:18, No:2, 2024 

114International Scholarly and Scientific Research & Innovation 18(2) 2024 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
Sy

st
em

s 
E

ng
in

ee
ri

ng
 V

ol
:1

8,
 N

o:
2,

 2
02

4 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

13
51

0.
pd

f



creating a code repo in Azure DevOps to maintain the 
automation code sanity immediately. 

 Traceability between Manual and Automated Tests: The 
application was going through a phase of development and 
maintenance. As per the world quality report published in 
2018, 61% of companies state that they were unable to 
maintain automation because of frequent changes [12]. In 
standard practice, test engineers create test cases and 
automate them. Every time the application changes, test 
engineers are supposed to update both manual and 
automated test cases. While it was easy to locate and 
correct manual test cases, engineers often needed to pay 
more attention to update the corresponding automated test 
cases because that requires traceability between the 
automated and manual test cases were missing. Tools like 
Azure DevOps have features of associating automated test 
cases with manual test cases directly from the code editor 
like Visual Studio [8]. Azure DevOps is a popular tool with 
a market share of 30% [10] that provides services like 
Board, Repo, Pipeline, Test Plan and Artifacts with one 
tool [11]. Fig. 2 is taken as an example from the Azure 
DevOps documentation [8] to show how an automated test 
can get linked with the manual test cases. 

 

 

Fig. 2 Associate Automated test script with manual Test Cases in 
Azure DevOps 

 
Using the feature of associating automation and manual test 

cases has enabled us to identify the application changes 
immediately while updating the manual test cases; it has 
increased the automation reusability to almost 100%. 
 Infrequent Test Execution: In an ideal situation, test scripts 

should be a part of the build and deployment pipeline. 
However, because of the longer execution cycle, the team 
tried to manage it separately. As a result, test cases were 
executed infrequently and often failed when trying to run. 

To fix this, we created a stand-alone test execution pipeline 
in Azure DevOps to trigger the automation automatically. 
We captured some vital metrics like Failing 
Since or consecutive failure days count. Failing since was 
a critical data point to understand the magnitude of 
instability. Sometimes, test cases fail because of other 
factors, like test environment slowness, wrong build 
deployed in the QA environment, or vendor environment 
problems. One should not jump to conclusions 
immediately and should spend time analyzing the root 
cause. We executed all the test cases for the first week just 
to gather the test results for further analysis. We observed 
that at least 10% of failed test cases in the previous run 
were getting passed in the following execution. However, 
the overall pass percentage varied between 15% and 25% 
during this time. That means most of the test cases were 
failing. 

After carefully analyzing the data, we were able to find the 
exact cause of inconsistency as shown in Fig. 3. 

 

 

Fig. 3 Template to capture Failing Since and Root Cause 
 

Additionally, with Azure DevOps, we got many other inbuilt 
metrics like Overall Pass rate, pass rate of each test, Test case 
execution trend, failure logs, etc. When we run the tests from 
their designated pipeline, our analysis was made very easy to 
establish subsequent actions for stabilizing the tests [7]. Fig. 4 
is one such report taken from the Azure DevOps documentation 
[7]. 

 

 

Fig. 4 Pipeline Test Execution report 
 

 Dynamic Data in the Data Table: As per the World Quality 
report published in 2018, 48% of companies are facing test 
data challenges while doing the automation, in 2016 it was 
40% [12]. As per the analysis with this project, this was the 
number one cause of unstable tests. Functional tests depend 
on test data, and dynamic data change over time. The basic 
principle of automation is repeatability; we cannot achieve 
repeatability with dynamic data, and thus engineers need to 
handle it very carefully.  

Test Data Management (TDM) is a growing concept 
addressing this situation that creates, manages, and delivers test 
data to application teams. We could not implement TDM in a 
very short amount of time. After evaluating a series of failed 

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:18, No:2, 2024 

115International Scholarly and Scientific Research & Innovation 18(2) 2024 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
Sy

st
em

s 
E

ng
in

ee
ri

ng
 V

ol
:1

8,
 N

o:
2,

 2
02

4 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

13
51

0.
pd

f



tests during this exercise, we found the following challenges 
with respect to the test data: 
o Shared test data: In most financial companies, certain test 

data will be shared among the team (e.g., portal login). This 
is not a good practice; however, it is the reality. Once 
shared, control on the test data reduces drastically. 

o Unable to create new test data: Financial companies often 
integrate their application with a vendor application, 
creating complexities as the vendor gives very limited test 
data that they process from their end. Also, we could not 
mimic this type of data during system testing. An example 
is a test credit card, or test account numbers. 

o Test data cannot be reused: Some test data cannot be 
reused unless it gets reset back to its original state. For 
example, one will not be able to reuse an account number 
if it gets closed, or an application will block a duplicate 
payment on certain loan accounts. 

o Hard coded test data in the script: QA Engineers had hard 
coded certain data like dates in the script, resulting a failure 
in the second run. Also, some validation like person name, 
account number, and status were so tightly linked with the 
parent test data, resulting in a false alarm if the parent test 
data gets corrupted and then, the QE needs to replace it. 

We implemented different solutions for each of the problems 
stated above. To solve hard coding, we enforced coding 
practices that stopped QE engineers from hard coding the value. 
Instead, they need to create a function that can make those 
dynamic test data on the fly, for example, a date function to 
return desired date based on the business rules or connect to the 
database in the backend to check the properties related to parent 
test data and pass it in the script instead of hard coding.  

As mentioned above, we could not reuse some of the test 
data. This was the trickiest problem, and we had to implement 
a unique solution to each case. For example, we called API to 
generate account data on the fly and pass it to UI for further 
processing, but in some scenarios, we will not have API 
available to generate the test data; for that, we created a setup 
script to reset the data in the database before executing the main 
test case. 

The last but most widespread problem related to test data was 
that most of our test data were shared. Business flows are 
dynamic and differ from person to person based on their 
credentials or privileges. For example, the application will 
appear differently to an admin user than to a regular user. In our 
application, specific business flows or transactions will only be 
allowed if the users are qualified. Before this exercise, QA had 
acquired the test data and used those to develop automation 
scripts. The team had assumed that those test data were 
allocated only for automation. However, those test data slowly 
went public, and each team started modifying those based on 
their needs. QA engineers in our application were unaware of 
these facts, reporting those failures as defects that eventually 
turned into false alarms. It became a significant cause of 
dissatisfaction as automation was supposed to save time, but in 
turn, even the developer had to spend their time debugging false 
alarms.  

To fix this issue, we created utilities to dynamically 

generate/reset test data. The decision to develop the utilities was 
very innovative as, most of the time, QA engineers think 
traditionally and use a Setup method that comes with the 
framework. However, the limitation of the Setup method is that 
it gets tied very closely to the test cases. Some test data, like 
portal user or their respective credentials, were identical to 
multiple test cases. So, once reset, it will be suitable for all the 
related test cases. Also, adding setup scripts increases test 
execution time, so one should avoid it unless needed. After 
analyzing all the failures, we created 12 utilities for 963 test 
cases. The team created a separate pipeline to run these utilities 
before each execution to reset test data to their original 
condition, as shown in Fig. 5 of the overall Test Execution 
steps. 

 

 

Fig. 5 Overall Test Execution Steps 
 

It has a drastic impact on the overall test stability. By doing 
this alone, the pass rate for test cases was increased by more 
than 60% and freed up almost 100% of the developer’s time 
spent earlier on debugging the false alarms. 
 Dynamic Element Identifier and Other Minor 

Improvements: This was minor; however, automation 
stability highly depends on the locator selection strategy. 
We switched to advance Xpath instead of standard Xpath 
to resolve this issue [9]. Other than this, we also improved 
coding standards to capture different application errors in a 
more readable fashion to troubleshoot any failures more 
effectively. 

III. CONCLUSION AND RESULTS 

The whole exercise took approximately 120 hours. Once 
everything mentioned above was implemented, we started 
seeing reduction in the overall timeframe of test execution, 
which used to be three days in the past, but is now reduced to 
six hours, resulting in 24 hours being saved. The project is 
making at least one release every week and has so far saved 
around 1000 hours overall. 

REFERENCES 
[1] B. Shea, “Software testing gets new respect,” InformationWeek, July 

2000.  
[2] “Time Estimation for software testing,” devmio - Software Know-How, 

08-Feb-2016. (Online). Available: https://devm.io/testing/time-
estimation-for-software-testing-128078#:~:text=Statistically 

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:18, No:2, 2024 

116International Scholarly and Scientific Research & Innovation 18(2) 2024 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
Sy

st
em

s 
E

ng
in

ee
ri

ng
 V

ol
:1

8,
 N

o:
2,

 2
02

4 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

13
51

0.
pd

f



%20speaking%2C%20testing%20occupies%2020,as%2035%20to%205
0%20percent (Accessed: 18-Jan-2023).  

[3] Zippia. "16 Amazing Agile Statistics (2023): What Companies Use Agile 
Methodology" Zippia.com. Nov. 27, 2022, 
https://www.zippia.com/advice/agile-statistics/ 

[4] R. Krish, “Test automation framework – challenges in the ever changing 
technology scenario,” Test Automation Framework – Challenges In The 
Ever Changing Technology Scenario - page 4. (Online). Available: 
https://www.siliconindia.com/guestcontributor/guestarticle/383/test-
automation-framework-%E2%80%93-challenges-in-the-ever-changing-
technology-scenario.html (Accessed: 26-Jan-2023).  

[5] “How to find flaky selenium test suite,” LambdaTest, 06-Sep-2022. 
(Online). Available: https://www.lambdatest.com/blog/flaky-selenium-
test-suite/ (Accessed: 26-Jan-2023).  

[6] Owain Parry, Gregory Kapfhammer, Michael Hilton, and Phil McMinn, 
“A survey of flaky tests a survey of flaky tests,” A Survey of Flaky Tests. 
(Online). Available: https://dl.acm.org/doi/fullHtml/10.1145/3476105 
(Accessed: 26-Jan-2023).  

[7] Vinodjo, “Test analytics - azure pipelines,” Azure Pipelines | Microsoft 
Learn. (Online). Available: https://learn.microsoft.com/en-
us/azure/devops/pipelines/test/test-analytics?view=azure-devops 
(Accessed: 26-Jan-2023).  

[8] steved0x, “Associate automated tests with test cases azure test 
plans,” Azure Test Plans | Microsoft Learn. (Online). Available: 
https://learn.microsoft.com/en-us/azure/devops/test/associate-automated-
test-with-test-case?view=azure-devops (Accessed: 26-Jan-2023).  

[9] K. Rungta, “Xpath in selenium,” Guru99, 21-Dec-2022. (Online). 
Available: https://www.guru99.com/xpath-selenium.html (Accessed: 26-
Jan-2023).  

[10] M. Fayaz, “Azure devops vs AWS Devops,” Cloud Training Program. 
(Online). Available: https://k21academy.com/amazon-web-services/aws-
devops-vs-azure-devops/ (Accessed: 26-Jan-2023).  

[11] Chcomley, “What is azure devops? - azure DevOps,” Azure DevOps | 
Microsoft Learn. (Online). Available: https://learn.microsoft.com/en-
us/azure/devops/user-guide/what-is-azure-devops?view=azure-devops 
(Accessed: 26-Jan-2023) 

[12] Qentelli, “It Is Automation, Not Automagic: Avoiding Failures in Test 
Automation Projects,” https://www.qentelli.com/thought-
leadership/insights/it-automation-not-automagic-avoiding-test-
automation-failures (Accessed: 23-Dec-2023) 

 

 

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:18, No:2, 2024 

117International Scholarly and Scientific Research & Innovation 18(2) 2024 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
Sy

st
em

s 
E

ng
in

ee
ri

ng
 V

ol
:1

8,
 N

o:
2,

 2
02

4 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

13
51

0.
pd

f


