Search results for: Mathematical model
7723 A Mathematical Model Approach Regarding the Children’s Height Development with Fractional Calculus
Authors: Nisa Özge Önal, Kamil Karaçuha, Göksu Hazar Erdinç, Banu Bahar Karaçuha, Ertuğrul Karaçuha
Abstract:
The study aims to use a mathematical approach with the fractional calculus which is developed to have the ability to continuously analyze the factors related to the children’s height development. Until now, tracking the development of the child is getting more important and meaningful. Knowing and determining the factors related to the physical development of the child any desired time would provide better, reliable and accurate results for childcare. In this frame, 7 groups for height percentile curve (3th, 10th, 25th, 50th, 75th, 90th, and 97th) of Turkey are used. By using discrete height data of 0-18 years old children and the least squares method, a continuous curve is developed valid for any time interval. By doing so, in any desired instant, it is possible to find the percentage and location of the child in Percentage Chart. Here, with the help of the fractional calculus theory, a mathematical model is developed. The outcomes of the proposed approach are quite promising compared to the linear and the polynomial method. The approach also yields to predict the expected values of children in the sense of height.
Keywords: Children growth percentile, children physical development, fractional calculus, linear and polynomial model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8647722 Optimum Operating Conditions for Direct Oxidation of H2S in a Fluidized Bed Reactor
Authors: Fahimeh Golestani, Mohammad Kazemeini, Moslem Fattahi, Ali Amjadian
Abstract:
In this research a mathematical model for direct oxidization of hydrogen sulfide into elemental sulfur in a fluidized bed reactor with external circulation was developed. As the catalyst is deactivated in the fluidized bed, it might be placed in a reduction tank in order to remove sulfur through heating above its dew point. The reactor model demonstrated via MATLAB software. It was shown that variations of H2S conversion as well as; products formed were reasonable in comparison with corresponding results of a fixed bed reactor. Through analyzing results of this model, it became possible to propose the main optimized operating conditions for the process considered. These conditions included; the temperature range of 100-130ºC and utilizing the catalyst as much as possible providing the highest bed density respect to dimensions of bed, economical aspects that the bed ever remained in fluidized mode. A high active and stable catalyst under the optimum conditions exhibited 100% conversion in a fluidized bed reactor.Keywords: Direct oxidization, Fluidized bed, H2S, Mathematical modeling, Optimum conditions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18797721 A Method to Predict Hemorrhage Disease of Grass Carp Tends
Authors: Zhongxu Chen, Jun Yang, Heyue Mao, Xiaoyu Zheng
Abstract:
Hemorrhage Disease of Grass Carp (HDGC) is a kind of commonly occurring illnesses in summer, and the extremely high death rate result in colossal losses to aquaculture. As the complex connections among each factor which influences aquiculture diseases, there-s no quit reasonable mathematical model to solve the problem at present.A BP neural network which with excellent nonlinear mapping coherence was adopted to establish mathematical model; Environmental factor, which can easily detected, such as breeding density, water temperature, pH and light intensity was set as the main analyzing object. 25 groups of experimental data were used for training and test, and the accuracy of using the model to predict the trend of HDGC was above 80%. It is demonstrated that BP neural network for predicating diseases in HDGC has a particularly objectivity and practicality, thus it can be spread to other aquiculture disease.Keywords: Aquaculture, Hemorrhage Disease of Grass Carp, BP Neural Network
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19197720 Developing a Mathematical Model for Trade-off Analysis of New Green Products
Authors: M. R. Gholizadeh, N. Bhuiyan, M. Salari
Abstract:
In the near future, companies will be increasingly forced to shift their activities along a new road in order to decrease the harmful effects of their design, production and after-life on our environment. Products must meet environmental standards to not only prevent penalties but to consider the sustainability for future generations. However, the most important factor that companies will face is selecting a reasonable strategy to maximize their profit. Thus, companies need to have precise forecast from their profit after design stage through Trade-off analysis. This paper is an attempt to introduce a mathematical model that considers effective factors that impact the total profit when products are designed for resource and energy efficiency or recyclability. The modification is according to different strategies based on a Cost-Volume-Profit model. Here, the cost structure consists of Recycling cost, Development cost, Ramp-up cost, Production cost, and Pollution cost. Also, the model shows the effect of implementation of design for recyclable on revenue structure through revenue of used parts and revenue of recycled materials. A numerical example is used to evaluate the proposed model. Results show that fulfillment of Green Product Development not only can reduce the environmental impact of products but also it will increase profit of company in long term.
Keywords: Green Product, Design for Environment, C-V-P Model, Trade-off analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20717719 Improved Fuzzy Neural Modeling for Underwater Vehicles
Authors: O. Hassanein, Sreenatha G. Anavatti, Tapabrata Ray
Abstract:
The dynamics of the Autonomous Underwater Vehicles (AUVs) are highly nonlinear and time varying and the hydrodynamic coefficients of vehicles are difficult to estimate accurately because of the variations of these coefficients with different navigation conditions and external disturbances. This study presents the on-line system identification of AUV dynamics to obtain the coupled nonlinear dynamic model of AUV as a black box. This black box has an input-output relationship based upon on-line adaptive fuzzy model and adaptive neural fuzzy network (ANFN) model techniques to overcome the uncertain external disturbance and the difficulties of modelling the hydrodynamic forces of the AUVs instead of using the mathematical model with hydrodynamic parameters estimation. The models- parameters are adapted according to the back propagation algorithm based upon the error between the identified model and the actual output of the plant. The proposed ANFN model adopts a functional link neural network (FLNN) as the consequent part of the fuzzy rules. Thus, the consequent part of the ANFN model is a nonlinear combination of input variables. Fuzzy control system is applied to guide and control the AUV using both adaptive models and mathematical model. Simulation results show the superiority of the proposed adaptive neural fuzzy network (ANFN) model in tracking of the behavior of the AUV accurately even in the presence of noise and disturbance.Keywords: AUV, AUV dynamic model, fuzzy control, fuzzy modelling, adaptive fuzzy control, back propagation, system identification, neural fuzzy model, FLNN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21537718 Forming the Differential-Algebraic Model of Radial Power Systems for Simulation of both Transient and Steady-State Conditions
Authors: Saleh A. Al-Jufout
Abstract:
This paper presents a procedure of forming the mathematical model of radial electric power systems for simulation of both transient and steady-state conditions. The research idea has been based on nodal voltages technique and on differentiation of Kirchhoff's current law (KCL) applied to each non-reference node of the radial system, the result of which the nodal voltages has been calculated by solving a system of algebraic equations. Currents of the electric power system components have been determined by solving their respective differential equations. Transforming the three-phase coordinate system into Cartesian coordinate system in the model decreased the overall number of equations by one third. The use of Cartesian coordinate system does not ignore the DC component during transient conditions, but restricts the model's implementation for symmetrical modes of operation only. An example of the input data for a four-bus radial electric power system has been calculated.Keywords: Mathematical Modelling, Radial Power System, Steady-State, Transients
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12487717 Constructivism Learning Management in Mathematical Analysis Courses
Authors: K. Paisal
Abstract:
The purposes of this research were (1) to create a learning activity for constructivism, (2) study the Mathematical Analysis courses learning achievement, and (3) study students’ attitude toward the learning activity for constructivism. The samples in this study were divided into 2 parts including 3 Mathematical Analysis courses instructors of Suan Sunandha Rajabhat University who provided basic information and attended the seminar and 17 Mathematical Analysis courses students who were studying in the academic and engaging in the learning activity for constructivism. The research instruments were lesson plans constructivism, subjective Mathematical Analysis courses achievement test with reliability index of 0.8119, and an attitude test concerning the students’ attitude toward the Mathematical Analysis courses learning activity for constructivism. The result of the research show that the efficiency of the Mathematical Analysis courses learning activity for constructivism is 73.05/72.16, which is more than expected criteria of 70/70. The research additionally find that the average score of learning achievement of students who engaged in the learning activities for constructivism are equal to 70% and the students’ attitude toward the learning activity for constructivism are at the medium level.
Keywords: Constructivism, learning management, Mathematical Analysis courses.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18687716 Mathematical Model for Dengue Disease with Maternal Antibodies
Authors: Rujira Kongnuy, Puntani Pongsumpun, I-Ming Tang
Abstract:
Mathematical models can be used to describe the dynamics of the spread of infectious disease between susceptibles and infectious populations. Dengue fever is a re-emerging disease in the tropical and subtropical regions of the world. Its incidence has increased fourfold since 1970 and outbreaks are now reported quite frequently from many parts of the world. In dengue endemic regions, more cases of dengue infection in pregnancy and infancy are being found due to the increasing incidence. It has been reported that dengue infection was vertically transmitted to the infants. Primary dengue infection is associated with mild to high fever, headache, muscle pain and skin rash. Immune response includes IgM antibodies produced by the 5th day of symptoms and persist for 30-60 days. IgG antibodies appear on the 14th day and persist for life. Secondary infections often result in high fever and in many cases with hemorrhagic events and circulatory failure. In the present paper, a mathematical model is proposed to simulate the succession of dengue disease transmission in pregnancy and infancy. Stability analysis of the equilibrium points is carried out and a simulation is given for the different sets of parameter. Moreover, the bifurcation diagrams of our model are discussed. The controlling of this disease in infant cases is introduced in the term of the threshold condition.Keywords: Dengue infection, equilibrium states, maternalantibodies, pregnancy and infancy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20237715 Metabolic Analysis of Fibroblast Conditioned Media and Comparison with Theoretical Modeling
Authors: Priyanka Gupta, Paul Verma, Kerry Hourigan, Jayesh Bellare, Sameer Jadhav
Abstract:
Understanding the consumption and production of various metabolites of fibroblast conditioned media is needed for its proper and optimized use in expansion of pluripotent stem cells. For this purpose, we have used the HPLC method to analyse the consumption of glucose and the production of lactate over time by mouse embryonic fibroblasts. The experimental data have also been compared with mathematical model fits. 0.025 moles of lactate was produced after 72 hrs while the glucose concentration decreased from 0.017 moles to 0.011 moles. The mathematical model was able to predict the trends of glucose consumption and lactate production.Keywords: Conditioned media, HPLC, metabolite analysis, mouse embryonic fibroblast.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26167714 The Fatigue Damage Accumulation on Systems of Concentrators
Authors: Alexander Urbach, Mukharbij Banov, Vladislav Turko
Abstract:
Fatigue tests of specimen-s with numerous holes are presented. The tests were made up till fatigue cracks have been created on both sides of the hole. Their extension was stopping with pressed plastic deformation at the mouth of the detected crack. It is shown that the moments of occurrence of cracks on holes are stochastically dependent. This dependence has positive and negative correlation relations. Shown that the positive correlation is formed across of the applied force, while negative one – along it. The negative relationship extends over a greater distance. The mathematical model of dependence area formation is represented as well as the estimating of model parameters. The positive correlation of fatigue cracks origination can be considered as an extension of one main crack. With negative correlation the first crack locates the place of its origin, leading to the appearance of multiple cracks; do not merge with each other.Keywords: Correlation analysis, fatigue damage accumulation, local area, mathematical model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15777713 An Aggregate Production Planning Model for Brass Casting Industry in Fuzzy Environment
Authors: Ömer Faruk Baykoç, Ümit Sami Sakalli
Abstract:
In this paper, we propose a fuzzy aggregate production planning (APP) model for blending problem in a brass factory which is the problem of computing optimal amounts of raw materials for the total production of several types of brass in a period. The model has deterministic and imprecise parameters which follows triangular possibility distributions. The brass casting APP model can not always be solved by using common approaches used in the literature. Therefore a mathematical model is presented for solving this problem. In the proposed model, the Lai and Hwang-s fuzzy ranking concept is relaxed by using one constraint instead of three constraints. An application of the brass casting APP model in a brass factory shows that the proposed model successfully solves the multi-blend problem in casting process and determines the optimal raw material purchasing policies.Keywords: Aggregate production planning, Blending, brasscasting, possibilistic programming.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19107712 A Recommendation to Oncologists for Cancer Treatment by Immunotherapy: Quantitative and Qualitative Analysis
Authors: Mandana Kariminejad, Ali Ghaffari
Abstract:
Today, the treatment of cancer, in a relatively short period, with minimum adverse effects is a great concern for oncologists. In this paper, based on a recently used mathematical model for cancer, a guideline has been proposed for the amount and duration of drug doses for cancer treatment by immunotherapy. Dynamically speaking, the mathematical ordinary differential equation (ODE) model of cancer has different equilibrium points; one of them is unstable, which is called the no tumor equilibrium point. In this paper, based on the number of tumor cells an intelligent soft computing controller (a combination of fuzzy logic controller and genetic algorithm), decides regarding the amount and duration of drug doses, to eliminate the tumor cells and stabilize the unstable point in a relatively short time. Two different immunotherapy approaches; active and adoptive, have been studied and presented. It is shown that the rate of decay of tumor cells is faster and the doses of drug are lower in comparison with the result of some other literatures. It is also shown that the period of treatment and the doses of drug in adoptive immunotherapy are significantly less than the active method. A recommendation to oncologists has also been presented.Keywords: Tumor, immunotherapy, fuzzy controller, Genetic algorithm, mathematical model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10867711 Bridging the Mental Gap between Convolution Approach and Compartmental Modeling in Functional Imaging: Typical Embedding of an Open Two-Compartment Model into the Systems Theory Approach of Indicator Dilution Theory
Authors: Gesine Hellwig
Abstract:
Functional imaging procedures for the non-invasive assessment of tissue microcirculation are highly requested, but require a mathematical approach describing the trans- and intercapillary passage of tracer particles. Up to now, two theoretical, for the moment different concepts have been established for tracer kinetic modeling of contrast agent transport in tissues: pharmacokinetic compartment models, which are usually written as coupled differential equations, and the indicator dilution theory, which can be generalized in accordance with the theory of lineartime- invariant (LTI) systems by using a convolution approach. Based on mathematical considerations, it can be shown that also in the case of an open two-compartment model well-known from functional imaging, the concentration-time course in tissue is given by a convolution, which allows a separation of the arterial input function from a system function being the impulse response function, summarizing the available information on tissue microcirculation. Due to this reason, it is possible to integrate the open two-compartment model into the system-theoretic concept of indicator dilution theory (IDT) and thus results known from IDT remain valid for the compartment approach. According to the long number of applications of compartmental analysis, even for a more general context similar solutions of the so-called forward problem can already be found in the extensively available appropriate literature of the seventies and early eighties. Nevertheless, to this day, within the field of biomedical imaging – not from the mathematical point of view – there seems to be a trench between both approaches, which the author would like to get over by exemplary analysis of the well-known model.
Keywords: Functional imaging, Tracer kinetic modeling, LTIsystem, Indicator dilution theory / convolution approach, Two-Compartment model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14197710 Vaccinated Susceptible Infected and Recovered (VSIR) Mathematical Model to Study the Effect of Bacillus Calmette-Guerin (BCG) Vaccine and the Disease Stability Analysis
Authors: Muhammad Shahid, Nasir-uddin Khan, Mushtaq Hussain, Muhammad Liaquat Ali, Asif Mansoor
Abstract:
Tuberculosis (TB) remains a leading cause of infectious mortality. It is primarily transmitted by the respiratory route, individuals with active disease may infect others through airborne particles which releases when they cough, talk, or sing and subsequently inhale by others. In order to study the effect of the Bacilli Calmette-Guerin (BCG) vaccine after vaccination of TB patient, a Vaccinated Susceptible Infected and Recovered (VSIR) mathematical model is being developed to achieve the desired objectives. The mathematical model, so developed, shall be used to quantify the effect of BCG Vaccine to protect the immigrant young adult person. Moreover, equations are to be established for the disease endemic and free equilibrium states and subsequently utilized in disease stability analysis. The stability analysis will give a complete picture of disease annihilation from the total population if the total removal rate from the infectious group should be greater than total number of dormant infections produced throughout infectious period.Keywords: Bacillus Calmette-Guerin vaccine, disease-free equilibrium state, VSIR Quantification, disease stability analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16787709 Mathematical Modelling of Different Types of Body Support Surface for Pressure Ulcer Prevention
Authors: Mahbub C. Mishu, Venketesh N. Dubey, Tamas Hickish, Jonathan Cole
Abstract:
Pressure ulcer is a common problem for today’s healthcare industry. It occurs due to external load applied to the skin. Also when the subject is immobile for a longer period of time and there is continuous load applied to a particular area of human body, blood flow gets reduced and as a result pressure ulcer develops. Body support surface has a significant role in preventing ulceration so it is important to know the characteristics of support surface under loading conditions. In this paper we have presented mathematical models of different types of viscoelastic materials and also we have shown the validation of our simulation results with experiments.
Keywords: Pressure ulcer, viscoelastic material, mathematical model, experimental validation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19197708 Analysis of Model in Pregnant and Non-Pregnant Dengue Patients
Authors: R. Kongnuy, P. Pongsumpun
Abstract:
We used mathematical model to study the transmission of dengue disease. The model is developed in which the human population is separated into two populations, pregnant and non-pregnant humans. The dynamical analysis method is used for analyzing this modified model. Two equilibrium states are found and the conditions for stability of theses two equilibrium states are established. Numerical results are shown for each equilibrium state. The basic reproduction numbers are found and they are compared by using numerical simulations.Keywords: Basic reproductive number, dengue disease, equilibrium states, pregnancy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15957707 Analysis of Multilayer Neural Network Modeling and Long Short-Term Memory
Authors: Danilo López, Nelson Vera, Luis Pedraza
Abstract:
This paper analyzes fundamental ideas and concepts related to neural networks, which provide the reader a theoretical explanation of Long Short-Term Memory (LSTM) networks operation classified as Deep Learning Systems, and to explicitly present the mathematical development of Backward Pass equations of the LSTM network model. This mathematical modeling associated with software development will provide the necessary tools to develop an intelligent system capable of predicting the behavior of licensed users in wireless cognitive radio networks.Keywords: Neural networks, multilayer perceptron, long short-term memory, recurrent neuronal network, mathematical analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15627706 The Dynamics of Oil Bodies in A. thaliana Seeds: A Mathematical Model of Biogenesis and Coalescence
Authors: G. Trigui, B. Laroche, M. Miquel, B. Dubreucq, A. Trubuil
Abstract:
The subcellular organelles called oil bodies (OBs) are lipid-filled quasi-spherical droplets produced from the endoplasmic reticulum (ER) and then released into the cytoplasm during seed development. It is believed that an OB grows by coalescence with other OBs and that its stability depends on the composition of oleosins, major proteins inserted in the hemi membrane that covers OBs. In this study, we measured the OB-volume distribution from different genotypes of A. thaliana after 7, 8, 9, 10 and 11 days of seed development. In order to test the hypothesis of OBs dynamics, we developed a simple mathematical model using non-linear differential equations inspired from the theory of coagulation. The model describes the evolution of OB-volume distribution during the first steps of seed development by taking into consideration the production of OBs, the increase of triacylglycerol volume to be stored, and the growth by coalescence of OBs. Fitted parameters values show an increase in the OB production and coalescence rates in A. thaliana oleosin mutants compared to wild type.
Keywords: Biogenesis, coalescence, oil body, oleosin, population dynamics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17537705 Effect of Hartmann Number on Free Convective Flow in a Square Cavity with Different Positions of Heated Square Block
Authors: Abdul Halim Bhuiyan, M. A. Alim, Md. Nasir Uddin
Abstract:
This paper is concerned with the effect of Hartmann number on the free convective flow in a square cavity with different positions of heated square block. The two-dimensional Physical and mathematical model have been developed, and mathematical model includes the system of governing mass, momentum and energy equations are solved by the finite element method. The calculations have been computed for Prandtl number Pr = 0.71, the Rayleigh number Ra = 1000 and the different values of Hartmann number. The results are illustrated with the streamlines, isotherms, velocity and temperature fields as well as local Nusselt number.
Keywords: Finite element method, free convection, Hartmann number, square cavity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29927704 Hybrid Rocket Motor Performance Parameters: Theoretical and Experimental Evaluation
Authors: A. El-S. Makled, M. K. Al-Tamimi
Abstract:
A mathematical model to predict the performance parameters (thrusts, chamber pressures, fuel mass flow rates, mixture ratios, and regression rates during firing time) of hybrid rocket motor (HRM) is evaluated. The internal ballistic (IB) hybrid combustion model assumes that the solid fuel surface regression rate is controlled only by heat transfer (convective and radiative) from flame zone to solid fuel burning surface. A laboratory HRM is designed, manufactured, and tested for low thrust profile space missions (10-15 N) and for validating the mathematical model (computer program). The polymer material and gaseous oxidizer which are selected for this experimental work are polymethyle-methacrylate (PMMA) and polyethylene (PE) as solid fuel grain and gaseous oxygen (GO2) as oxidizer. The variation of various operational parameters with time is determined systematically and experimentally in firing of up to 20 seconds, and an average combustion efficiency of 95% of theory is achieved, which was the goal of these experiments. The comparison between recording fire data and predicting analytical parameters shows good agreement with the error that does not exceed 4.5% during all firing time. The current mathematical (computer) code can be used as a powerful tool for HRM analytical design parameters.Keywords: Hybrid combustion, internal ballistics, hybrid rocket motor, performance parameters.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17727703 Back Stepping Sliding Mode Control of Blood Glucose for Type I Diabetes
Authors: N. Tadrisi Parsa, A. R. Vali, R. Ghasemi
Abstract:
Diabetes is a growing health problem in worldwide. Especially, the patients with Type 1 diabetes need strict glycemic control because they have deficiency of insulin production. This paper attempts to control blood glucose based on body mathematical body model. The Bergman minimal mathematical model is used to develop the nonlinear controller. A novel back-stepping based sliding mode control (B-SMC) strategy is proposed as a solution that guarantees practical tracking of a desired glucose concentration. In order to show the performance of the proposed design, it is compared with conventional linear and fuzzy controllers which have been done in previous researches. The numerical simulation result shows the advantages of sliding mode back stepping controller design to linear and fuzzy controllers.
Keywords: Back stepping, Bergman Model, Nonlinear control, Sliding mode control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35377702 A Simple Epidemiological Model for Typhoid with Saturated Incidence Rate and Treatment Effect
Authors: Steady Mushayabasa
Abstract:
Typhoid fever is a communicable disease, found only in man and occurs due to systemic infection mainly by Salmonella typhi organism. The disease is endemic in many developing countries and remains a substantial public health problem despite recent progress in water and sanitation coverage. Globally, it is estimated that typhoid causes over 16 million cases of illness each year, resulting in over 600,000 deaths. A mathematical model for assessing the impact of educational campaigns on controlling the transmission dynamics of typhoid in the community, has been formulated and analyzed. The reproductive number has been computed. Stability of the model steady-states has been examined. The impact of educational campaigns on controlling the transmission dynamics of typhoid has been discussed through the basic reproductive number and numerical simulations. At its best the study suggests that targeted education campaigns, which are effective at stopping transmission of typhoid more than 40% of the time, will be highly effective at controlling the disease in the community.
Keywords: Mathematical model, Typhoid, saturated incidence rate, treatment, reproductive number, sensitivity analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35207701 Analysis of a Secondary Autothermal Reformer Using a Thermodynamic POX Model
Authors: Akbar Zamaniyan, Alireza Behroozsarand, Hadi Ebrahimi
Abstract:
Partial oxidation (POX) of light hydrocarbons (e.g. methane) is occurred in the first part of the autothermal reformer (ATR). The results of the detailed modeling of the reformer based on the thermodynamic model of the POX and 1D heterogeneous catalytic model for the fixed bed section are considered here. According to the results, the overall performance of the ATR can be improved by changing the important feed parameters.Keywords: Autothermal Reformer, Partial Oxidation, Mathematical Modeling, Process Simulation, Syngas.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22107700 Mathematical Properties of the Viscous Rotating Stratified Fluid Counting with Salinity and Heat Transfer in a Layer
Authors: A. Giniatoulline
Abstract:
A model of the mathematical fluid dynamics which describes the motion of a three-dimensional viscous rotating fluid in a homogeneous gravitational field with the consideration of the salinity and heat transfer is considered in a vertical finite layer. The model is a generalization of the linearized Navier-Stokes system with the addition of the Coriolis parameter and the equations for changeable density, salinity, and heat transfer. An explicit solution is constructed and the proof of the existence and uniqueness theorems is given. The localization and the structure of the spectrum of inner waves is also investigated. The results may be used, in particular, for constructing stable numerical algorithms for solutions of the considered models of fluid dynamics of the Atmosphere and the Ocean.
Keywords: Fourier transform, generalized solutions, Navier-Stokes equations, stratified fluid.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8837699 Mathematical Modelling and Numerical Simulation of Maisotsenko Cycle
Authors: Rasikh Tariq, Fatima Z. Benarab
Abstract:
Evaporative coolers has a minimum potential to reach the wet-bulb temperature of intake air which is not enough to handle a large cooling load; therefore, it is not a feasible option to overcome cooling requirement of a building. The invention of Maisotsenko (M) cycle has led evaporative cooling technology to reach the sub-wet-bulb temperature of the intake air; therefore, it brings an innovation in evaporative cooling techniques. In this work, we developed a mathematical model of the Maisotsenko based air cooler by applying energy and mass balance laws on different air channels. The governing ordinary differential equations are discretized and simulated on MATLAB. The temperature and the humidity plots are shown in the simulation results. A parametric study is conducted by varying working air inlet conditions (temperature and humidity), inlet air velocity, geometric parameters and water temperature. The influence of these aforementioned parameters on the cooling effectiveness of the HMX is reported. Results have shown that the effectiveness of the M-Cycle is increased by increasing the ambient temperature and decreasing absolute humidity. An air velocity of 0.5 m/sec and a channel height of 6-8mm is recommended.
Keywords: Renewable energy, indirect evaporative cooling, Maisotsenko cycle, HMX, mathematical model, numerical simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12827698 Sliding Mode Control of a Bus Suspension System
Authors: Mujde Turkkan, Nurkan Yagiz
Abstract:
The vibrations, caused by the irregularities of the road surface, are to be suppressed via suspension systems. In this paper, sliding mode control for a half bus model with air suspension system is presented. The bus is modelled as five degrees of freedom (DoF) system. The mathematical model of the half bus is developed using Lagrange Equations. For time domain analysis, the bus model is assumed to travel at certain speed over the bump road. The numerical results of the analysis indicate that the sliding mode controllers can be effectively used to suppress the vibrations and to improve the ride comfort of the busses.
Keywords: Sliding mode control, bus model, air suspension.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17727697 Model the Off-Shore Ocean-Sea Waves to Generate Electric Power by Design of a Converting Device
Authors: Muthana A. M. Jameel Al-Jaboori
Abstract:
In this paper, we will present a mathematical model to design a system able to generate electricity from ocean-sea waves. We will use the basic principles of the transfer of the energy potential of waves in a chamber to force the air inside a vertical or inclined cylindrical column, which is topped by a wind turbine to rotate the electric generator. The present mathematical model included a high number of variables such as the wave, height, width, length, velocity, and frequency, as well as others for the energy cylindrical column, like varying diameters and heights, and the wave chamber shape diameter and height. While for the wells wind turbine the variables included the number of blades, length, width, and clearance, as well as the rotor and tip radius. Additionally, the turbine rotor and blades must be made from the light and strong material for a smooth blade surface. The variables were too vast and high in number. Then the program was run successfully within the MATLAB and presented very good modeling results.Keywords: Water wave, model, wells turbine, MATLAB program, results.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11807696 Model of the Increasing the Capacity of the Train and Railway Track by Using the New Type of Wagon
Authors: Martin Kendra, Jaroslav Mašek, Juraj Čamaj, Martin Búda
Abstract:
The paper deals with possibilities of increase train capacity by using a new type of railway wagon. In the first part is created a mathematical model to calculate the capacity of the train. The model is based on the main limiting parameters of the train - maximum number of axles per train, maximum gross weight of train, maximum length of train and number of TEUs per one wagon. In the second part is the model applied to four different model trains with different composition of the train set and three different average weights of TEU and a train consisting of a new type of wagons. The result is to identify where the carrying capacity of the original trains is higher, respectively less than a capacity of train consisting of a new type of wagons.Keywords: Loading units, theoretical capacity model, train capacity, wagon for intermodal transport.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24097695 On Two Control Approaches for The Output Voltage Regulation of a Boost Converter
Authors: Abdelaziz Sahbani, Kamel Ben Saad, Mohamed Benrejeb
Abstract:
This paper deals with the comparison between two proposed control strategies for a DC-DC boost converter. The first control is a classical Sliding Mode Control (SMC) and the second one is a distance based Fuzzy Sliding Mode Control (FSMC). The SMC is an analytical control approach based on the boost mathematical model. However, the FSMC is a non-conventional control approach which does not need the controlled system mathematical model. It needs only the measures of the output voltage to perform the control signal. The obtained simulation results show that the two proposed control methods are robust for the case of load resistance and the input voltage variations. However, the proposed FSMC gives a better step voltage response than the one obtained by the SMC.
Keywords: Boost DC-DC converter, Sliding Mode Control (SMC), Fuzzy Sliding Mode Control (FSMC), Robustness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15457694 Finite Volume Model to Study The Effect of Voltage Gated Ca2+ Channel on Cytosolic Calcium Advection Diffusion
Authors: Brajesh Kumar Jha, Neeru Adlakha, M. N. Mehta
Abstract:
Mathematical and computational modeling of calcium signalling in nerve cells has produced considerable insights into how the cells contracts with other cells under the variation of biophysical and physiological parameters. The modeling of calcium signaling in astrocytes has become more sophisticated. The modeling effort has provided insight to understand the cell contraction. Main objective of this work is to study the effect of voltage gated (Operated) calcium channel (VOC) on calcium profile in the form of advection diffusion equation. A mathematical model is developed in the form of advection diffusion equation for the calcium profile. The model incorporates the important physiological parameter like diffusion coefficient etc. Appropriate boundary conditions have been framed. Finite volume method is employed to solve the problem. A program has been developed using in MATLAB 7.5 for the entire problem and simulated on an AMD-Turion 32-bite machine to compute the numerical results.Keywords: Ca2+ Profile, Advection Diffusion, VOC, FVM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1783