Search results for: Full adder
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 669

Search results for: Full adder

579 User Guidance for Effective Query Interpretation in Natural Language Interfaces to Ontologies

Authors: Aliyu Isah Agaie, Masrah Azrifah Azmi Murad, Nurfadhlina Mohd Sharef, Aida Mustapha

Abstract:

Natural Language Interfaces typically support a restricted language and also have scopes and limitations that naïve users are unaware of, resulting in errors when the users attempt to retrieve information from ontologies. To overcome this challenge, an auto-suggest feature is introduced into the querying process where users are guided through the querying process using interactive query construction system. Guiding users to formulate their queries, while providing them with an unconstrained (or almost unconstrained) way to query the ontology results in better interpretation of the query and ultimately lead to an effective search. The approach described in this paper is unobtrusive and subtly guides the users, so that they have a choice of either selecting from the suggestion list or typing in full. The user is not coerced into accepting system suggestions and can express himself using fragments or full sentences.

Keywords: Auto-suggest, expressiveness, habitability, natural language interface, query interpretation, user guidance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1474
578 Lunar Rover Virtual Simulation System with Autonomous Navigation

Authors: Bao Jinsong, Hu Xiaofeng, Wang Wei, Yu Dili, Jin Ye

Abstract:

The paper researched and presented a virtual simulation system based on a full-digital lunar terrain, integrated with kinematics and dynamics module as well as autonomous navigation simulation module. The system simulation models are established. Enabling technologies such as digital lunar surface module, kinematics and dynamics simulation, Autonomous navigation are investigated. A prototype system for lunar rover locomotion simulation is developed based on these technologies. Autonomous navigation is a key echnology in lunar rover system, but rarely involved in virtual simulation system. An autonomous navigation simulation module have been integrated in this prototype system, which was proved by the simulation results that the synthetic simulation and visualizing analysis system are established in the system, and the system can provide efficient support for research on the autonomous navigation of lunar rover.

Keywords: Lunar rover, virtual simulation, autonomous navigation, full-digital lunar terrain

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1927
577 Analysis of Wave Propagation in Two-dimensional Phononic Crystals with Hollow Cylinders

Authors: Zi-Gui Huang, Tsung-Tsong Wu

Abstract:

Large full frequency band gaps of surface and bulk acoustic waves in two-dimensional phononic band structures with hollow cylinders are addressed in this paper. It is well-known that absolute frequency band gaps are difficultly obtained in a band structure consisted of low-acoustic-impedance cylinders in high-acoustic-impedance host materials such as PMMA/Ni band structures. Phononic band structures with hollow cylinders are analyzed and discussed to obtain large full frequency band gaps not only for bulk modes but also for surface modes. The tendency of absolute frequency band gaps of surface and bulk acoustic waves is also addressed by changing the inner radius of hollow cylinders in this paper. The technique and this kind of band structure are useful for tuning the frequency band gaps and the design of acoustic waveguides.

Keywords: Phononic crystals, Band gap, SAW, BAW.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1988
576 Analyses and Optimization of Physical and Mechanical Properties of Direct Recycled Aluminium Alloy (AA6061) Wastes by ANOVA Approach

Authors: Mohammed H. Rady, Mohd Sukri Mustapa, S Shamsudin, M. A. Lajis, A. Wagiman

Abstract:

The present study is aimed at investigating microhardness and density of aluminium alloy chips when subjected to various settings of preheating temperature and preheating time. Three values of preheating temperature were taken as 450 °C, 500 °C, and 550 °C. On the other hand, three values of preheating time were chosen (1, 2, 3) hours. The influences of the process parameters (preheating temperature and time) were analyzed using Design of Experiments (DOE) approach whereby full factorial design with center point analysis was adopted. The total runs were 11 and they comprise of two factors of full factorial design with 3 center points. The responses were microhardness and density. The results showed that the density and microhardness increased with decreasing the preheating temperature. The results also found that the preheating temperature is more important to be controlled rather than the preheating time in microhardness analysis while both the preheating temperature and preheating time are important in density analysis. It can be concluded that setting temperature at 450 °C for 1 hour resulted in the optimum responses.

Keywords: AA6061, density, DOE, hot extrusion, microhardness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 703
575 Three Dimensional Numerical Simulation of a Full Scale CANDU Reactor Moderator to Study Temperature Fluctuations

Authors: A. Sarchami, N. Ashgriz, M. Kwee

Abstract:

Threedimensional numerical simulations are conducted on a full scale CANDU Moderator and Transient variations of the temperature and velocity distributions inside the tank are determined. The results show that the flow and temperature distributions inside the moderator tank are three dimensional and no symmetry plane can be identified.Competition between the upward moving buoyancy driven flows and the downward moving momentum driven flows, results in the formation of circulation zones. The moderator tank operates in the buoyancy driven mode and any small disturbances in the flow or temperature makes the system unstable and asymmetric. Different types of temperature fluctuations are noted inside the tank: (i) large amplitude are at the boundaries between the hot and cold (ii) low amplitude are in the core of the tank (iii) high frequency fluctuations are in the regions with high velocities and (iv) low frequency fluctuations are in the regions with lower velocities.

Keywords: Bruce, Fluctuations, Numerical, Temperature, Thermal hydraulics

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1930
574 Full-genomic Network Inference for Non-model organisms: A Case Study for the Fungal Pathogen Candida albicans

Authors: Jörg Linde, Ekaterina Buyko, Robert Altwasser, Udo Hahn, Reinhard Guthke

Abstract:

Reverse engineering of full-genomic interaction networks based on compendia of expression data has been successfully applied for a number of model organisms. This study adapts these approaches for an important non-model organism: The major human fungal pathogen Candida albicans. During the infection process, the pathogen can adapt to a wide range of environmental niches and reversibly changes its growth form. Given the importance of these processes, it is important to know how they are regulated. This study presents a reverse engineering strategy able to infer fullgenomic interaction networks for C. albicans based on a linear regression, utilizing the sparseness criterion (LASSO). To overcome the limited amount of expression data and small number of known interactions, we utilize different prior-knowledge sources guiding the network inference to a knowledge driven solution. Since, no database of known interactions for C. albicans exists, we use a textmining system which utilizes full-text research papers to identify known regulatory interactions. By comparing with these known regulatory interactions, we find an optimal value for global modelling parameters weighting the influence of the sparseness criterion and the prior-knowledge. Furthermore, we show that soft integration of prior-knowledge additionally improves the performance. Finally, we compare the performance of our approach to state of the art network inference approaches.

Keywords: Pathogen, network inference, text-mining, Candida albicans, LASSO, mutual information, reverse engineering, linear regression, modelling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1673
573 Low-Latency and Low-Overhead Path Planning for In-band Network-Wide Telemetry

Authors: Penghui Zhang, Hua Zhang, Jun-Bo Wang, Cheng Zeng, Zijian Cao

Abstract:

With the development of software-defined networks and programmable data planes, in-band network telemetry (INT) has become an emerging technology in communications because it can get accurate and real-time network information. However, due to the expansion of the network scale, existing telemetry systems, to the best of the authors’ knowledge, have difficulty in meeting the common requirements of low overhead, low latency and full coverage for traffic measurement. This paper proposes a network-wide telemetry system with a low-latency low-overhead path planning (INT-LLPP). This paper builds a mathematical model to analyze the telemetry overhead and latency of INT systems. Then, we adopt a greedy-based path planning algorithm to reduce the overhead and latency of the network telemetry with the full network coverage. The simulation results show that network-wide telemetry is achieved and the telemetry overhead can be reduced significantly compared with existing INT systems. INT-LLPP can control the system latency to get real-time network information.

Keywords: Network telemetry, network monitoring, path planning, low latency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 253
572 The Effect of Drought Stress on Grain Yield, Yield Components and Protein Content of Durum Wheat Cultivars in Ilam Province, Iran

Authors: Parvaneh Vafa, Rahim Naseri, Meysam Moradi

Abstract:

In order to study the effect of drought stress on grain yield, yield components and associated traits of durum wheat cultivars, an experiment was done as split plot arrangement using randomized complete block design with three replications in Ilam province, Iran in 2009-2010 cropping season. Different levels of irrigation (Full irrigation, drought stress at stem elongation, Flowering and grain formation stages) were considered as a main plot and three durum wheat cultivars (Yavaros, Seimareh and Karkheh) were assigned as a sub plot. The results showed that drought stress was significant on grain yield, spike.m-2, grain. Spike-1, 1000-grain weight, biological yield, harvest index and protein content. Drought stress at all stages caused a loss in grain yield and its components. Full irrigation had the highest grain yield and yield components. Drought stress at stem elongation, flowering and grain formation stages caused a reduction in spike.m-2, grain.spike-1 and 1000-grain weight, respectively. Protein content was significantly affected by drought stress. The highest protein content was obtained from drought stress at grain formation stage. Cultivars had an influence on grain yield and yield components. Yavaros and Seimareh cultivars had the highest and lowest grain yield, respectively. Interaction effect between drought stress and cultivar had a significant effect on grain and yield components. Full irrigation and Yavaros cultivar had the highest grain yield and drought stress at grain formation stage and Seimareh cultivar had the lowest grain yield, respectively.

Keywords: Durum wheat, Drought stress, Grain yield.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2737
571 Investigation of Utilizing L-Band Horn Antenna in Landmine Detection

Authors: Ahmad H. Abdelgwad, Ahmed A. Nashat

Abstract:

Landmine detection is an important and yet challenging problem remains to be solved. Ground Penetrating Radar (GPR) is a powerful and rapidly maturing technology for subsurface threat identification. The detection methodology of GPR depends mainly on the contrast of the dielectric properties of the searched target and its surrounding soil. This contrast produces a partial reflection of the electromagnetic pulses that are being transmitted into the soil and then being collected by the GPR.  One of the most critical hardware components for the performance of GPR is the antenna system. The current paper explores the design and simulation of a pyramidal horn antenna operating at L-band frequencies (1- 2 GHz) to detect a landmine. A prototype model of the GPR system setup is developed to simulate full wave analysis of the electromagnetic fields in different soil types. The contrast in the dielectric permittivity of the landmine and the sandy soil is the most important parameter to be considered for detecting the presence of landmine. L-band horn antenna is proved to be well-versed in the investigation of landmine detection.

Keywords: Full wave analysis, ground penetrating radar, horn antenna design, landmine detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1003
570 Effect of Eccentricity on Conjugate Natural Convection in Vertical Eccentric Annuli

Authors: A. Jamal, M. A. I. El-Shaarawi, E. M. A. Mokheimer

Abstract:

Combined conduction-free convection heat transfer in vertical eccentric annuli is numerically investigated using a finitedifference technique. Numerical results, representing the heat transfer parameters such as annulus walls temperature, heat flux, and heat absorbed in the developing region of the annulus, are presented for a Newtonian fluid of Prandtl number 0.7, fluid-annulus radius ratio 0.5, solid-fluid thermal conductivity ratio 10, inner and outer wall dimensionless thicknesses 0.1 and 0.2, respectively, and dimensionless eccentricities 0.1, 0.3, 0.5, and 0.7. The annulus walls are subjected to thermal boundary conditions, which are obtained by heating one wall isothermally whereas keeping the other wall at inlet fluid temperature. In the present paper, the annulus heights required to achieve thermal full development for prescribed eccentricities are obtained. Furthermore, the variation in the height of thermal full development as function of the geometrical parameter, i.e., eccentricity is also investigated.

Keywords: Conjugate natural convection, eccentricity, heat transfer, vertical eccentric annuli.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2222
569 Artificial Intelligence in Penetration Testing of a Connected and Autonomous Vehicle Network

Authors: Phillip Garrad, Saritha Unnikrishnan

Abstract:

The increase in connected and autonomous vehicles (CAV) creates more opportunities for cyber-attacks. Cyber-attacks can be performed with malicious intent or for research and testing purposes. As connected vehicles approach full autonomy, the possible impact of these cyber-attacks also grows. This review analyses the challenges faced in CAV cybersecurity testing. This includes access and cost of the representative test setup and lack of experts in the field A review of potential solutions to overcome these challenges is presented. Studies have demonstrated Artificial Intelligence (AI) as a promising technique to reduce runtime, enhance effectiveness and comprehensively cover all the standard test aspects in penetration testing in other industries. However, this review has identified a significant gap in the systematic implementation of AI for penetration testing in the CAV cybersecurity domain. The expectation from this review is to investigate potential AI algorithms, which can demonstrate similar improvements in runtime and efficiency for a CAV model. If proven to be an effective means of penetration test for CAV, this methodology may be used on a full CAV test network.

Keywords: Cybersecurity, connected vehicles, software simulation, artificial intelligence, penetration testing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 490
568 Development and Assessment of Measuring/Rehabilitation Device for Myelopathy Patients with Lower Extremity Function

Authors: Hironobu Murayama, Shohei Shimizu, Masakazu Ohnuki, Hisanori Mihara, Tohru Kanada

Abstract:

Disordered function of maniphalanx and difficulty with ambulation will occur insofar as a human has a failure in the spinal marrow. Cervical spondylotic myelopathy as one of the myelopathy emanates from not only external factors but also increased age. In addition, the diacrisis is difficult since cervical spondylotic myelopathy is evaluated by a doctor-s neurological remark and imaging findings. As a quantitative method for measuring the degree of disability, hand-operated triangle step test (for short, TST) has formulated. In this research, a full automatic triangle step counter apparatus is designed and developed to measure the degree of disability in an accurate fashion according to the principle of TST. The step counter apparatus whose shape is a low triangle pole displays the number of stepping upon each corner. Furthermore, the apparatus has two modes of operation. Namely, one is for measuring the degree of disability and the other for rehabilitation exercise. In terms of usefulness, clinical practice should be executed before too long.

Keywords: Cervical spondylotic myelopathy, disorder of lower limbs, measuringfunction, rehabilitation function, full automatic apparatus, triangle step test.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1520
567 Analysis of Three-Dimensional Longitudinal Rolls Induced by Double Diffusive Poiseuille-Rayleigh-Benard Flows in Rectangular Channels

Authors: O. Rahli, N. Mimouni, R. Bennacer, K. Bouhadef

Abstract:

This numerical study investigates the travelling wave’s appearance and the behavior of Poiseuille-Rayleigh-Benard (PRB) flow induced in 3D thermosolutale mixed convection (TSMC) in horizontal rectangular channels. The governing equations are discretized by using a control volume method with third order Quick scheme in approximating the advection terms. Simpler algorithm is used to handle coupling between the momentum and continuity equations. To avoid the excessively high computer time, full approximation storage (FAS) with full multigrid (FMG) method is used to solve the problem. For a broad range of dimensionless controlling parameters, the contribution of this work is to analyzing the flow regimes of the steady longitudinal thermoconvective rolls (noted R//) for both thermal and mass transfer (TSMC). The transition from the opposed volume forces to cooperating ones, considerably affects the birth and the development of the longitudinal rolls. The heat and mass transfers distribution are also examined.

Keywords: Heat and mass transfer, mixed convection, Poiseuille-Rayleigh-Benard flow, rectangular duct.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1087
566 Simulation on Fuel Metering Unit Used for TurboShaft Engine Model

Authors: Bin Wang, Hengyu Ji, Zhifeng Ye

Abstract:

Fuel Metering Unit (FMU) in fuel system of an aeroengine sometimes has direct influence on the engine performance, which is neglected for the sake of easy access to mathematical model of the engine in most cases. In order to verify the influence of FMU on an engine model, this paper presents a co-simulation of a stepping motor driven FMU (digital FMU) in a turboshaft aeroengine, using AMESim and MATLAB to obtain the steady and dynamic characteristics of the FMU. For this method, mechanical and hydraulic section of the unit is modeled through AMESim, while the stepping motor is mathematically modeled through MATLAB/Simulink. Combining these two sub-models yields an AMESim/MATLAB co-model of the FMU. A simplified component level model for the turboshaft engine is established and connected with the FMU model. Simulation results on the full model show that the engine model considering FMU characteristics describes the engine more precisely especially in its transition state. An FMU dynamics will cut down the rotation speed of the high pressure shaft and the inlet pressure of the combustor during the step response. The work in this paper reveals the impact of FMU on engine operation characteristics and provides a reference to an engine model for ground tests.

Keywords: Fuel metering unit, stepping motor, AMESim/MATLAB, full digital simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1193
565 Scale Effects on the Wake Airflow of a Heavy Truck

Authors: A. Pérard Lecomte, G. Fokoua, A. Mehel, A. Tanière

Abstract:

Automotive experimental measurements in wind tunnel are often conducted on reduced scale. Depending on the study, different similitude parameters are used by researchers to best reproduce the flow at full scale. In this paper, two parameters are investigated, which are Reynolds number and upstream velocity when dealing with airflow of typical urban speed range, below 15 m.s-1. Their impact on flow structures and aerodynamic drag in the wake of a heavy truck model are explored. To achieve this, Computational Fluid Dynamics (CFD) simulations have been conducted with the aim of modeling the wake airflow of full- and reduced-scaled heavy trucks (1/4 and 1/28). The Reynolds Average Navier-Stokes (RANS) approach combined to the Reynolds Stress Model (RSM) as the turbulence model closure was used. Both drag coefficients and upstream velocity profiles (flow topology) were found to be close one another for the three investigated scales, when the dynamical similitude Reynolds is achieved. Moreover, the difference is weak for the simulations based on the same inlet air velocity. Hence, for the relative low velocity range investigated here, the impact of the scale factor is limited.

Keywords: Aerodynamics, CFD, heavy truck, recirculation area, scale effects, similitude parameters.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 500
564 Fingerprint Compression Using Contourlet Transform and Multistage Vector Quantization

Authors: S. Esakkirajan, T. Veerakumar, V. Senthil Murugan, R. Sudhakar

Abstract:

This paper presents a new fingerprint coding technique based on contourlet transform and multistage vector quantization. Wavelets have shown their ability in representing natural images that contain smooth areas separated with edges. However, wavelets cannot efficiently take advantage of the fact that the edges usually found in fingerprints are smooth curves. This issue is addressed by directional transforms, known as contourlets, which have the property of preserving edges. The contourlet transform is a new extension to the wavelet transform in two dimensions using nonseparable and directional filter banks. The computation and storage requirements are the major difficulty in implementing a vector quantizer. In the full-search algorithm, the computation and storage complexity is an exponential function of the number of bits used in quantizing each frame of spectral information. The storage requirement in multistage vector quantization is less when compared to full search vector quantization. The coefficients of contourlet transform are quantized by multistage vector quantization. The quantized coefficients are encoded by Huffman coding. The results obtained are tabulated and compared with the existing wavelet based ones.

Keywords: Contourlet Transform, Directional Filter bank, Laplacian Pyramid, Multistage Vector Quantization

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2012
563 Zero Voltage Switched Full Bridge Converters for the Battery Charger of Electric Vehicle

Authors: Rizwan Ullah, Abdar Ali, Zahid Ullah

Abstract:

This paper illustrates the study of three isolated zero voltage switched (ZVS) PWM full bridge (FB) converters to charge the high voltage battery in the charger of electric vehicle (EV). EV battery chargers have several challenges such as high efficiency, high reliability, low cost, isolation, and high power density. The cost of magnetic and filter components in the battery charger is reduced when switching frequency is increased. The increase in the switching frequency increases switching losses. ZVS is used to reduce switching losses and to operate the converter in the battery charger at high frequency. The performance of each of the three converters is evaluated on the basis of ZVS range, dead times of the switches, conduction losses of switches, circulating current stress, circulating energy, duty cycle loss, and efficiency. The limitations and merits of each PWM FB converter are reviewed. The converter with broader ZVS range, high efficiency and low switch stresses is selected for battery charger applications in EV.

Keywords: Electric vehicle, PWM FB converter, zero voltage switching, circulating energy, duty cycle loss, battery charger.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2428
562 Fast Adjustable Threshold for Uniform Neural Network Quantization

Authors: Alexander Goncharenko, Andrey Denisov, Sergey Alyamkin, Evgeny Terentev

Abstract:

The neural network quantization is highly desired procedure to perform before running neural networks on mobile devices. Quantization without fine-tuning leads to accuracy drop of the model, whereas commonly used training with quantization is done on the full set of the labeled data and therefore is both time- and resource-consuming. Real life applications require simplification and acceleration of quantization procedure that will maintain accuracy of full-precision neural network, especially for modern mobile neural network architectures like Mobilenet-v1, MobileNet-v2 and MNAS. Here we present a method to significantly optimize training with quantization procedure by introducing the trained scale factors for discretization thresholds that are separate for each filter. Using the proposed technique, we quantize the modern mobile architectures of neural networks with the set of train data of only ∼ 10% of the total ImageNet 2012 sample. Such reduction of train dataset size and small number of trainable parameters allow to fine-tune the network for several hours while maintaining the high accuracy of quantized model (accuracy drop was less than 0.5%). Ready-for-use models and code are available in the GitHub repository.

Keywords: Distillation, machine learning, neural networks, quantization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 732
561 Automated Vehicle Traffic Control Tower: A Solution to Support the Next Level Automation

Authors: Xiaoyun Zhao, Rami Darwish, Anna Pernestål

Abstract:

Automated vehicles (AVs) have the potential to enhance road capacity, improving road safety and traffic efficiency. Research and development on AVs have been going on for many years. However, when the complicated traffic rules and real situations interacted, AVs fail to make decisions on contradicting situations, and are not able to have control in all conditions due to highly dynamic driving scenarios. This limits AVs’ usage and restricts the full potential benefits that they can bring. Furthermore, regulations, infrastructure development, and public acceptance cannot keep up at the same pace as technology breakthroughs. Facing these challenges, this paper proposes automated vehicle traffic control tower (AVTCT) acting as a safe, efficient and integrated solution for AV control. It introduces a concept of AVTCT for control, management, decision-making, communication and interaction with various aspects in transportation. With the prototype demonstrations and simulations, AVTCT has the potential to overcome the control challenges with AVs and can facilitate AV reaching their full potential. Possible functionalities, benefits as well as challenges of AVTCT are discussed, which set the foundation for the conceptual model, simulation and real application of AVTCT.

Keywords: Automated vehicle, connectivity and automation, intelligent transport system, traffic control, traffic safety.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1073
560 Rational Chebyshev Tau Method for Solving Natural Convection of Darcian Fluid About a Vertical Full Cone Embedded in Porous Media Whit a Prescribed Wall Temperature

Authors: Kourosh Parand, Zahra Delafkar, Fatemeh Baharifard

Abstract:

The problem of natural convection about a cone embedded in a porous medium at local Rayleigh numbers based on the boundary layer approximation and the Darcy-s law have been studied before. Similarity solutions for a full cone with the prescribed wall temperature or surface heat flux boundary conditions which is the power function of distance from the vertex of the inverted cone give us a third-order nonlinear differential equation. In this paper, an approximate method for solving higher-order ordinary differential equations is proposed. The approach is based on a rational Chebyshev Tau (RCT) method. The operational matrices of the derivative and product of rational Chebyshev (RC) functions are presented. These matrices together with the Tau method are utilized to reduce the solution of the higher-order ordinary differential equations to the solution of a system of algebraic equations. We also present the comparison of this work with others and show that the present method is applicable.

Keywords: Tau method, semi-infinite, nonlinear ODE, rational Chebyshev, porous media.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1933
559 Effect of Supplemental Irrigation, Nitrogen Chemical Fertilizer, and Inoculation with Rhizobium Bacteria on Grain Yield and Its Components of Chickpea (Cicer arietinum L.) Under Rainfed Conditions

Authors: Abbas Maleki, Maryam Pournajaf, Rahim Naseri, Reza Rashnavadi

Abstract:

In order to study the effects of supplemental irrigation, different levels of nitrogen chemical fertilizer and inoculation with rhizobium bacteria on the grain yield of chickpea, an experiment was carried out using split plot arrangement in randomize complete block design with three replication in agricultural researches station of Zanjan, Iran during 2009-2010 cropping season. The factors of experiment consisted of irritation (without irrigation (I1), irrigation at flowering stage (I2), irrigation at flowering and grain filling stages (I3) and full irrigation (I4)) and different levels of nitrogen fertilizer (without using of nitrogen fertilizer (N0), 75 kg.ha-1 (N75), 150 kg.ha-1 (N150) and inoculation with rhizobium bacteria (N4). The results of the analysis of variance showed that the effects of irrigation, nitrogen fertilizer levels and bacterial inoculation, were significant affect on number of pods per plant, number grains per plant, grain weight, grain yield, biological yield and harvest index at 1% probability level. Also Results showed that the grain yield in full irrigation treatment and inoculated with rhizobium bacteria was significantly higher than the other treatments.

Keywords: Chickpea, Nitrogen, Supplemental irrigation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1966
558 A New Solution for Natural Convection of Darcian Fluid about a Vertical Full Cone Embedded in Porous Media Prescribed Wall Temperature by using a Hybrid Neural Network-Particle Swarm Optimization Method

Authors: M.A.Behrang, M. Ghalambaz, E. Assareh, A.R. Noghrehabadi

Abstract:

Fluid flow and heat transfer of vertical full cone embedded in porous media is studied in this paper. Nonlinear differential equation arising from similarity solution of inverted cone (subjected to wall temperature boundary conditions) embedded in porous medium is solved using a hybrid neural network- particle swarm optimization method. To aim this purpose, a trial solution of the differential equation is defined as sum of two parts. The first part satisfies the initial/ boundary conditions and does contain an adjustable parameter and the second part which is constructed so as not to affect the initial/boundary conditions and involves adjustable parameters (the weights and biases) for a multi-layer perceptron neural network. Particle swarm optimization (PSO) is applied to find adjustable parameters of trial solution (in first and second part). The obtained solution in comparison with the numerical ones represents a remarkable accuracy.

Keywords: Porous Media, Ordinary Differential Equations (ODE), Particle Swarm Optimization (PSO), Neural Network (NN).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1727
557 Modeling and Control of Direct Driven PMSG for Ultra Large Wind Turbines

Authors: Ahmed M. Hemeida, Wael A. Farag, Osama A. Mahgoub

Abstract:

This paper focuses on developing an integrated reliable and sophisticated model for ultra large wind turbines And to study the performance and analysis of vector control on large wind turbines. With the advance of power electronics technology, direct driven multi-pole radial flux PMSG (Permanent Magnet Synchronous Generator) has proven to be a good choice for wind turbines manufacturers. To study the wind energy conversion systems, it is important to develop a wind turbine simulator that is able to produce realistic and validated conditions that occur in real ultra MW wind turbines. Three different packages are used to simulate this model, namely, Turbsim, FAST and Simulink. Turbsim is a Full field wind simulator developed by National Renewable Energy Laboratory (NREL). The wind turbine mechanical parts are modeled by FAST (Fatigue, Aerodynamics, Structures and Turbulence) code which is also developed by NREL. Simulink is used to model the PMSG, full scale back to back IGBT converters, and the grid.

Keywords: FAST, Permanent Magnet Synchronous Generator(PMSG), TurbSim, Vector Control and Pitch Control

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5609
556 Effect of Testing Device Calibration on Liquid Limit Assessment

Authors: M. O. Bayram, H. B. Gencdal, N. O. Fercan, B. Basbug

Abstract:

Liquid limit, which is used as a measure of soil strength, can be detected by Casagrande and fall-cone testing methods. The two methods majorly diverge from each other in terms of operator dependency. The Casagrande method that is applied according to ASTM D4318-17 standards may give misleading results, especially if the calibration process is not performed well. In this study, to reveal the effect of calibration for drop height and amount of soil paste placement in the Casagrande cup, a series of tests were carried out by multipoint method as it is specified in the ASTM standards. The tests include the combination of 6 mm, 8 mm, 10 mm, and 12 mm drop heights and under-filled, half-filled, and full-filled Casagrande cups by kaolin samples. It was observed that during successive tests, the drop height of the cup deteriorated; hence the device was recalibrated before and after each test to provide the accuracy of the results. Besides, the tests by under-filled and full-filled samples for higher drop heights revealed lower liquid limit values than the lower drop heights revealed. For the half-filled samples, it was clearly seen that the liquid limit values did not change at all as the drop height increased, and this explains the function of standard specifications.

Keywords: Calibration, Casagrande cup method, drop height, kaolin, liquid limit, placing form.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 360
555 Automatic Generation Control Design Based on Full State Vector Feedback for a Multi-Area Energy System Connected via Parallel AC/DC Lines

Authors: Gulshan Sharma

Abstract:

This article presents the design of optimal automatic generation control (AGC) based on full state feedback control for a multi-area interconnected power system. An extra high voltage AC transmission line in parallel with a high voltage DC link is considered as an area interconnection between the areas. The optimal AGC are designed and implemented in the wake of 1% load perturbation in one of the areas and the system dynamic response plots for various system states are obtained to investigate the system dynamic performance. The pattern of closed-loop eigenvalues are also determined to analyze the system stability. From the investigations carried out in the work, it is revealed that the dynamic performance of the system under consideration has an appreciable improvement when a high voltage DC line is paralleled with an extra high voltage AC line as an interconnection between the areas. The investigation of closed-loop eigenvalues reveals that the system stability is ensured in all case studies carried out with the designed optimal AGC.

Keywords: Automatic generation control, area control error, DC link, optimal AGC regulator, closed-loop eigenvalues.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 826
554 Comparison of Two Airfoil Sections for Application in Straight-Bladed Darrieus VAWT

Authors: Marco Raciti Castelli, Ernesto Benini

Abstract:

This paper presents a model for the evaluation of energy performance and aerodynamic forces acting on a small straight-bladed Darrieus-type vertical axis wind turbine depending on blade geometrical section. It consists of an analytical code coupled to a solid modeling software, capable of generating the desired blade geometry based on the desired blade design geometric parameters. Such module is then linked to a finite volume commercial CFD code for the calculation of rotor performance by integration of the aerodynamic forces along the perimeter of each blade for a full period of revolution.After describing and validating the computational model with experimental data, the results of numerical simulations are proposed on the bases of two candidate airfoil sections, that is a classical symmetrical NACA 0021 blade profile and the recently developed DU 06-W-200 non-symmetric and laminar blade profile.Through a full CFD campaign of analysis, the effects of blade geometrical section on angle of attack are first investigated and then the overall rotor torque and power are analyzed as a function of blade azimuthal position, achieving a numerical quantification of the influence of airfoil geometry on overall rotor performance.

Keywords: Wind turbine, NACA 0021, DU 06-W-200.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3824
553 CNC Wire-Cut Parameter Optimized Determination of the Stair Shape Workpiece

Authors: Chana Raksiri, Pornchai Chatchaikulsiri

Abstract:

The objective of this research is parameters optimized of the stair shape workpiece which is cut by CNC Wire-Cut EDM (WEDW). The experiment material is SKD-11 steel of stair-shaped with variable height workpiece 10, 20, 30 and 40 mm. with the same 10 mm. thickness are cut by Sodick's CNC Wire-Cut EDM model AD325L. The experiments are designed by 3k full factorial experimental design at 3 level 2 factors and 9 experiments with 2 replicate. The selected two factor are servo voltage (SV) and servo feed rate (SF) and the response is cutting thickness error. The experiment is divided in two experiments. The first experiment determines the significant effective factor at confidential interval 95%. The SV factor is the significant effective factor from first result. In order to result smallest cutting thickness error of workpieces is 17 micron with the SV value is 46 volt. Also show that the lower SV value, the smaller different thickness error of workpiece. Then the second experiment is done to reduce different cutting thickness error of workpiece as small as possible by lower SV. The second experiment result show the significant effective factor at confidential interval 95% is the SV factor and the smallest cutting thickness error of workpieces reduce to 11 micron with the experiment SV value is 36 volt.

Keywords: CNC Wire-Cut, Variable Thickness Workpiece, Design of Experiments, Full Factorial Design

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4821
552 Model Order Reduction of Linear Time Variant High Speed VLSI Interconnects using Frequency Shift Technique

Authors: J.V.R.Ravindra, M.B.Srinivas,

Abstract:

Accurate modeling of high speed RLC interconnects has become a necessity to address signal integrity issues in current VLSI design. To accurately model a dispersive system of interconnects at higher frequencies; a full-wave analysis is required. However, conventional circuit simulation of interconnects with full wave models is extremely CPU expensive. We present an algorithm for reducing large VLSI circuits to much smaller ones with similar input-output behavior. A key feature of our method, called Frequency Shift Technique, is that it is capable of reducing linear time-varying systems. This enables it to capture frequency-translation and sampling behavior, important in communication subsystems such as mixers, RF components and switched-capacitor filters. Reduction is obtained by projecting the original system described by linear differential equations into a lower dimension. Experiments have been carried out using Cadence Design Simulator cwhich indicates that the proposed technique achieves more % reduction with less CPU time than the other model order reduction techniques existing in literature. We also present applications to RF circuit subsystems, obtaining size reductions and evaluation speedups of orders of magnitude with insignificant loss of accuracy.

Keywords: Model order Reduction, RLC, crosstalk

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1652
551 Computational Prediction of Complicated Atmospheric Motion for Spinning or non- Spinning Projectiles

Authors: Dimitrios N. Gkritzapis, Elias E. Panagiotopoulos, Dionissios P. Margaris, Dimitrios G. Papanikas

Abstract:

A full six degrees of freedom (6-DOF) flight dynamics model is proposed for the accurate prediction of short and long-range trajectories of high spin and fin-stabilized projectiles via atmospheric flight to final impact point. The projectiles is assumed to be both rigid (non-flexible), and rotationally symmetric about its spin axis launched at low and high pitch angles. The mathematical model is based on the full equations of motion set up in the no-roll body reference frame and is integrated numerically from given initial conditions at the firing site. The projectiles maneuvering motion depends on the most significant force and moment variations, in addition to wind and gravity. The computational flight analysis takes into consideration the Mach number and total angle of attack effects by means of the variable aerodynamic coefficients. For the purposes of the present work, linear interpolation has been applied from the tabulated database of McCoy-s book. The developed computational method gives satisfactory agreement with published data of verified experiments and computational codes on atmospheric projectile trajectory analysis for various initial firing flight conditions.

Keywords: Constant-Variable aerodynamic coefficients, low and high pitch angles, wind.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2422
550 The Wavelet-Based DFT: A New Interpretation, Extensions and Applications

Authors: Abdulnasir Hossen, Ulrich Heute

Abstract:

In 1990 [1] the subband-DFT (SB-DFT) technique was proposed. This technique used the Hadamard filters in the decomposition step to split the input sequence into low- and highpass sequences. In the next step, either two DFTs are needed on both bands to compute the full-band DFT or one DFT on one of the two bands to compute an approximate DFT. A combination network with correction factors was to be applied after the DFTs. Another approach was proposed in 1997 [2] for using a special discrete wavelet transform (DWT) to compute the discrete Fourier transform (DFT). In the first step of the algorithm, the input sequence is decomposed in a similar manner to the SB-DFT into two sequences using wavelet decomposition with Haar filters. The second step is to perform DFTs on both bands to obtain the full-band DFT or to obtain a fast approximate DFT by implementing pruning at both input and output sides. In this paper, the wavelet-based DFT (W-DFT) with Haar filters is interpreted as SB-DFT with Hadamard filters. The only difference is in a constant factor in the combination network. This result is very important to complete the analysis of the W-DFT, since all the results concerning the accuracy and approximation errors in the SB-DFT are applicable. An application example in spectral analysis is given for both SB-DFT and W-DFT (with different filters). The adaptive capability of the SB-DFT is included in the W-DFT algorithm to select the band of most energy as the band to be computed. Finally, the W-DFT is extended to the two-dimensional case. An application in image transformation is given using two different types of wavelet filters.

Keywords: Image Transform, Spectral Analysis, Sub-Band DFT, Wavelet DFT.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1669