Search results for: Foveation Filtering
181 Empirical Process Monitoring Via Chemometric Analysis of Partially Unbalanced Data
Authors: Hyun-Woo Cho
Abstract:
Real-time or in-line process monitoring frameworks are designed to give early warnings for a fault along with meaningful identification of its assignable causes. In artificial intelligence and machine learning fields of pattern recognition various promising approaches have been proposed such as kernel-based nonlinear machine learning techniques. This work presents a kernel-based empirical monitoring scheme for batch type production processes with small sample size problem of partially unbalanced data. Measurement data of normal operations are easy to collect whilst special events or faults data are difficult to collect. In such situations, noise filtering techniques can be helpful in enhancing process monitoring performance. Furthermore, preprocessing of raw process data is used to get rid of unwanted variation of data. The performance of the monitoring scheme was demonstrated using three-dimensional batch data. The results showed that the monitoring performance was improved significantly in terms of detection success rate of process fault.
Keywords: Process Monitoring, kernel methods, multivariate filtering, data-driven techniques, quality improvement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1746180 Adaptive Weighted Averaging Filter Using the Appropriate Number of Consecutive Frames
Authors: Mahmoud Saeidi, Ali Nazemipour
Abstract:
In this paper, we propose a novel adaptive spatiotemporal filter that utilizes image sequences in order to remove noise. The consecutive frames include: current, previous and next noisy frames. The filter proposed in this paper is based upon the weighted averaging pixels intensity and noise variance in image sequences. It utilizes the Appropriate Number of Consecutive Frames (ANCF) based on the noisy pixels intensity among the frames. The number of consecutive frames is adaptively calculated for each region in image and its value may change from one region to another region depending on the pixels intensity within the region. The weights are determined by a well-defined mathematical criterion, which is adaptive to the feature of spatiotemporal pixels of the consecutive frames. It is experimentally shown that the proposed filter can preserve image structures and edges under motion while suppressing noise, and thus can be effectively used in image sequences filtering. In addition, the AWA filter using ANCF is particularly well suited for filtering sequences that contain segments with abruptly changing scene content due to, for example, rapid zooming and changes in the view of the camera.Keywords: Appropriate Number of Consecutive Frames, Adaptive Weighted Averaging, Motion Estimation, Noise Variance, Motion Compensation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1819179 Machine Vision System for Automatic Weeding Strategy in Oil Palm Plantation using Image Filtering Technique
Authors: Kamarul Hawari Ghazali, Mohd. Marzuki Mustafa, Aini Hussain
Abstract:
Machine vision is an application of computer vision to automate conventional work in industry, manufacturing or any other field. Nowadays, people in agriculture industry have embarked into research on implementation of engineering technology in their farming activities. One of the precision farming activities that involve machine vision system is automatic weeding strategy. Automatic weeding strategy in oil palm plantation could minimize the volume of herbicides that is sprayed to the fields. This paper discusses an automatic weeding strategy in oil palm plantation using machine vision system for the detection and differential spraying of weeds. The implementation of vision system involved the used of image processing technique to analyze weed images in order to recognized and distinguished its types. Image filtering technique has been used to process the images as well as a feature extraction method to classify the type of weed images. As a result, the image processing technique contributes a promising result of classification to be implemented in machine vision system for automated weeding strategy.Keywords: Machine vision, Automatic Weeding Strategy, filter, feature extraction
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1867178 New Nonlinear Filtering Strategies for Eliminating Short and Long Tailed Noise in Images with Edge Preservation Properties
Authors: E. Srinivasan, D. Ebenezer
Abstract:
Midpoint filter is quite effective in recovering the images confounded by the short-tailed (uniform) noise. It, however, performs poorly in the presence of additive long-tailed (impulse) noise and it does not preserve the edge structures of the image signals. Median smoother discards outliers (impulses) effectively, but it fails to provide adequate smoothing for images corrupted with nonimpulse noise. In this paper, two nonlinear techniques for image filtering, namely, New Filter I and New Filter II are proposed based on a nonlinear high-pass filter algorithm. New Filter I is constructed using a midpoint filter, a highpass filter and a combiner. It suppresses uniform noise quite well. New Filter II is configured using an alpha trimmed midpoint filter, a median smoother of window size 3x3, the high pass filter and the combiner. It is robust against impulse noise and attenuates uniform noise satisfactorily. Both the filters are shown to exhibit good response at the image boundaries (edges). The proposed filters are evaluated for their performance on a test image and the results obtained are included.Keywords: Image filters, Midpoint filter, Nonlinear filters, Nonlinear highpass filter, Order-statistic filters, Rank-order filters.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1450177 High Accuracy ESPRIT-TLS Technique for Wind Turbine Fault Discrimination
Authors: Saad Chakkor, Mostafa Baghouri, Abderrahmane Hajraoui
Abstract:
ESPRIT-TLS method appears a good choice for high resolution fault detection in induction machines. It has a very high effectiveness in the frequency and amplitude identification. Contrariwise, it presents a high computation complexity which affects its implementation in real time fault diagnosis. To avoid this problem, a Fast-ESPRIT algorithm that combined the IIR band-pass filtering technique, the decimation technique and the original ESPRIT-TLS method was employed to enhance extracting accurately frequencies and their magnitudes from the wind stator current with less computation cost. The proposed algorithm has been applied to verify the wind turbine machine need in the implementation of an online, fast, and proactive condition monitoring. This type of remote and periodic maintenance provides an acceptable machine lifetime, minimize its downtimes and maximize its productivity. The developed technique has evaluated by computer simulations under many fault scenarios. Study results prove the performance of Fast- ESPRIT offering rapid and high resolution harmonics recognizing with minimum computation time and less memory cost.
Keywords: Spectral Estimation, ESPRIT-TLS, Real Time, Diagnosis, Wind Turbine Faults, Band-Pass Filtering, Decimation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2259176 A New Fast Skin Color Detection Technique
Authors: Tarek M. Mahmoud
Abstract:
Skin color can provide a useful and robust cue for human-related image analysis, such as face detection, pornographic image filtering, hand detection and tracking, people retrieval in databases and Internet, etc. The major problem of such kinds of skin color detection algorithms is that it is time consuming and hence cannot be applied to a real time system. To overcome this problem, we introduce a new fast technique for skin detection which can be applied in a real time system. In this technique, instead of testing each image pixel to label it as skin or non-skin (as in classic techniques), we skip a set of pixels. The reason of the skipping process is the high probability that neighbors of the skin color pixels are also skin pixels, especially in adult images and vise versa. The proposed method can rapidly detect skin and non-skin color pixels, which in turn dramatically reduce the CPU time required for the protection process. Since many fast detection techniques are based on image resizing, we apply our proposed pixel skipping technique with image resizing to obtain better results. The performance evaluation of the proposed skipping and hybrid techniques in terms of the measured CPU time is presented. Experimental results demonstrate that the proposed methods achieve better result than the relevant classic method.Keywords: Adult images filtering, image resizing, skin color detection, YcbCr color space.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4006175 Optimal Duty-Cycle Modulation Scheme for Analog-To-Digital Conversion Systems
Authors: G. Sonfack, J. Mbihi, B. Lonla Moffo
Abstract:
This paper presents an optimal duty-cycle modulation (ODCM) scheme for analog-to-digital conversion (ADC) systems. The overall ODCM-Based ADC problem is decoupled into optimal DCM and digital filtering sub-problems, while taking into account constraints of mutual design parameters between the two. Using a set of three lemmas and four morphological theorems, the ODCM sub-problem is modelled as a nonlinear cost function with nonlinear constraints. Then, a weighted least pth norm of the error between ideal and predicted frequency responses is used as a cost function for the digital filtering sub-problem. In addition, MATLAB fmincon and MATLAB iirlnorm tools are used as optimal DCM and least pth norm solvers respectively. Furthermore, the virtual simulation scheme of an overall prototyping ODCM-based ADC system is implemented and well tested with the help of Simulink tool according to relevant set of design data, i.e., 3 KHz of modulating bandwidth, 172 KHz of maximum modulation frequency and 25 MHZ of sampling frequency. Finally, the results obtained and presented show that the ODCM-based ADC achieves under 3 KHz of modulating bandwidth: 57 dBc of SINAD (signal-to-noise and distorsion), 58 dB of SFDR (Surpious free dynamic range) -80 dBc of THD (total harmonic distorsion), and 10 bits of minimum resolution. These performance levels appear to be a great challenge within the class of oversampling ADC topologies, with 2nd order IIR (infinite impulse response) decimation filter.
Keywords: Digital IIR filter, morphological lemmas and theorems, optimal DCM-based DAC, virtual simulation, weighted least pth norm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 933174 Adaptive Kalman Filter for Noise Estimation and Identification with Bayesian Approach
Authors: Farhad Asadi, S. Hossein Sadati
Abstract:
Bayesian approach can be used for parameter identification and extraction in state space models and its ability for analyzing sequence of data in dynamical system is proved in different literatures. In this paper, adaptive Kalman filter with Bayesian approach for identification of variances in measurement parameter noise is developed. Next, it is applied for estimation of the dynamical state and measurement data in discrete linear dynamical system. This algorithm at each step time estimates noise variance in measurement noise and state of system with Kalman filter. Next, approximation is designed at each step separately and consequently sufficient statistics of the state and noise variances are computed with a fixed-point iteration of an adaptive Kalman filter. Different simulations are applied for showing the influence of noise variance in measurement data on algorithm. Firstly, the effect of noise variance and its distribution on detection and identification performance is simulated in Kalman filter without Bayesian formulation. Then, simulation is applied to adaptive Kalman filter with the ability of noise variance tracking in measurement data. In these simulations, the influence of noise distribution of measurement data in each step is estimated, and true variance of data is obtained by algorithm and is compared in different scenarios. Afterwards, one typical modeling of nonlinear state space model with inducing noise measurement is simulated by this approach. Finally, the performance and the important limitations of this algorithm in these simulations are explained.
Keywords: adaptive filtering, Bayesian approach Kalman filtering approach, variance tracking
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 619173 Low Cost IMU \ GPS Integration Using Kalman Filtering for Land Vehicle Navigation Application
Authors: Othman Maklouf, Abdurazag Ghila, Ahmed Abdulla, Ameer Yousef
Abstract:
Land vehicle navigation system technology is a subject of great interest today. Global Positioning System (GPS) is a common choice for positioning in such systems. However, GPS alone is incapable of providing continuous and reliable positioning, because of its inherent dependency on external electromagnetic signals. Inertial Navigation is the implementation of inertial sensors to determine the position and orientation of a vehicle. As such, inertial navigation has unbounded error growth since the error accumulates at each step. Thus in order to contain these errors some form of external aiding is required. The availability of low cost Micro-Electro-Mechanical-System (MEMS) inertial sensors is now making it feasible to develop Inertial Navigation System (INS) using an inertial measurement unit (IMU), in conjunction with GPS to fulfill the demands of such systems. Typically IMU’s are very expensive systems; however this INS will use “low cost” components. Unfortunately with low cost also comes low performance and is the main reason for the inclusion of GPS and Kalman filtering into the system. The aim of this paper is to develop a GPS/MEMS INS integrated system, which is able to provide a navigation solution with accuracy levels appropriate for land vehicle navigation. The primary piece of equipment used was a MEMS-based Crista IMU (from Cloud Cap Technology Inc.) and a Garmin GPS 18 PC (which is both a receiver and antenna). The integration of GPS with INS can be implemented using a Kalman filter in loosely coupled mode. In this integration mode the INS error states, together with any navigation state (position, velocity, and attitude) and other unknown parameters of interest, are estimated using GPS measurements. All important equations regarding navigation are presented along with discussion.
Keywords: GPS, IMU, Kalman Filter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7533172 Performance Evaluation of GPS \ INS Main Integration Approach
Authors: Othman Maklouf, Ahmed Adwaib
Abstract:
This paper introduces a comparative study between the main GPS\INS coupling schemes, this will include the loosely coupled and tightly coupled configurations, several types of situations and operational conditions, in which the data fusion process is done using Kalman filtering. This will include the importance of sensors calibration as well as the alignment of the strap down inertial navigation system. The limitations of the inertial navigation systems are investigated.
Keywords: GPS, INS, Kalman Filter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2801171 Implementation of an On-Line PD Measurement System Using HFCT
Authors: F. Haghjoo, M. Sarlak, S.M. Shahrtash
Abstract:
In order to perform on-line measuring and detection of PD signals, a total solution composing of an HFCT, A/D converter and a complete software package is proposed. The software package includes compensation of HFCT contribution, filtering and noise reduction using wavelet transform and soft calibration routines. The results have shown good performance and high accuracy.Keywords: Partial Discharge, Measurement, On-line, HFCT
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1819170 Removal of Hydrogen Sulphide from Air by Means of Fibrous Ion Exchangers
Authors: H. Wasag
Abstract:
The removal of hydrogen sulphide is required for reasons of health, odour problems, safety and corrosivity problems. The means of removing hydrogen sulphide mainly depend on its concentration and kind of medium to be purified. The paper deals with a method of hydrogen sulphide removal from the air by its catalytic oxidation to elemental sulphur with the use of Fe-EDTA complex. The possibility of obtaining fibrous filtering materials able to remove small concentrations of H2S from the air were described. The base of these materials is fibrous ion exchanger with Fe(III)- EDTA complex immobilized on their functional groups. The complex of trivalent iron converts hydrogen sulphide to elemental sulphur. Bivalent iron formed in the reaction is oxidized by the atmospheric oxygen, so complex of trivalent iron is continuously regenerated and the overall process can be accounted as pseudocatalytic. In the present paper properties of several fibrous catalysts based on ion exchangers with different chemical nature (weak acid,weak base and strong base) were described. It was shown that the main parameters affecting the process of catalytic oxidation are:concentration of hydrogen sulphide in the air, relative humidity of the purified air, the process time and the content of Fe-EDTA complex in the fibres. The data presented show that the filtering layers with anion exchange package are much more active in the catalytic processes of hydrogen sulphide removal than cation exchanger and inert materials. In the addition to the nature of the fibres relative air humidity is a critical factor determining efficiency of the material in the air purification from H2S. It was proved that the most promising carrier of the Fe-EDTA catalyst for hydrogen sulphide oxidation are Fiban A-6 and Fiban AK-22 fibres.
Keywords: hydrogen sulphide, catalytic oxidation, odour control, ion exchange, fibrous ion exchangers, air deodorization
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2499169 Analysis of Filtering in Stochastic Systems on Continuous-Time Memory Observations in the Presence of Anomalous Noises
Authors: S. Rozhkova, O. Rozhkova, A. Harlova, V. Lasukov
Abstract:
For optimal unbiased filter as mean-square and in the case of functioning anomalous noises in the observation memory channel, we have proved insensitivity of filter to inaccurate knowledge of the anomalous noise intensity matrix and its equivalence to truncated filter plotted only by non anomalous components of an observation vector.
Keywords: Mathematical expectation, filtration, anomalous noise, memory.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2048168 A New Approach Defining Angular DMD Using Near Field Aperturing
Authors: S. Al-Sowayan, K. L. Lear
Abstract:
A new technique to quantify the differential mode delay (DMD) in multimode fiber (MMF) is been presented. The technique measures DMD based on angular launch and measurements of the difference in modal delay using variable apertures at the fiber face. The result of the angular spatial filtering revealed less excitation of higher order modes when the laser beam is filtered at higher angles. This result would indicate that DMD profiles would experience a data pattern dependency.
Keywords: Fiber measurements, Fiber optic communications
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1632167 HSV Image Watermarking Scheme Based on Visual Cryptography
Authors: Rawan I. Zaghloul, Enas F. Al-Rawashdeh
Abstract:
In this paper a simple watermarking method for color images is proposed. The proposed method is based on watermark embedding for the histograms of the HSV planes using visual cryptography watermarking. The method has been proved to be robust for various image processing operations such as filtering, compression, additive noise, and various geometrical attacks such as rotation, scaling, cropping, flipping, and shearing.Keywords: Histogram, HSV image, Visual Cryptography, Watermark.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1970166 Compression and Filtering of Random Signals under Constraint of Variable Memory
Authors: Anatoli Torokhti, Stan Miklavcic
Abstract:
We study a new technique for optimal data compression subject to conditions of causality and different types of memory. The technique is based on the assumption that some information about compressed data can be obtained from a solution of the associated problem without constraints of causality and memory. This allows us to consider two separate problem related to compression and decompression subject to those constraints. Their solutions are given and the analysis of the associated errors is provided.Keywords: stochastic signals, optimization problems in signal processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1331165 Object Detection in Digital Images under Non-Standardized Conditions Using Illumination and Shadow Filtering
Authors: Waqqas-ur-Rehman Butt, Martin Servin, Marion Pause
Abstract:
In recent years, object detection has gained much attention and very encouraging research area in the field of computer vision. The robust object boundaries detection in an image is demanded in numerous applications of human computer interaction and automated surveillance systems. Many methods and approaches have been developed for automatic object detection in various fields, such as automotive, quality control management and environmental services. Inappropriately, to the best of our knowledge, object detection under illumination with shadow consideration has not been well solved yet. Furthermore, this problem is also one of the major hurdles to keeping an object detection method from the practical applications. This paper presents an approach to automatic object detection in images under non-standardized environmental conditions. A key challenge is how to detect the object, particularly under uneven illumination conditions. Image capturing conditions the algorithms need to consider a variety of possible environmental factors as the colour information, lightening and shadows varies from image to image. Existing methods mostly failed to produce the appropriate result due to variation in colour information, lightening effects, threshold specifications, histogram dependencies and colour ranges. To overcome these limitations we propose an object detection algorithm, with pre-processing methods, to reduce the interference caused by shadow and illumination effects without fixed parameters. We use the Y CrCb colour model without any specific colour ranges and predefined threshold values. The segmented object regions are further classified using morphological operations (Erosion and Dilation) and contours. Proposed approach applied on a large image data set acquired under various environmental conditions for wood stack detection. Experiments show the promising result of the proposed approach in comparison with existing methods.Keywords: Image processing, Illumination equalization, Shadow filtering, Object detection, Colour models, Image segmentation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1020164 Approximate Solutions to Large Stein Matrix Equations
Authors: Khalide Jbilou
Abstract:
In the present paper, we propose numerical methods for solving the Stein equation AXC - X - D = 0 where the matrix A is large and sparse. Such problems appear in discrete-time control problems, filtering and image restoration. We consider the case where the matrix D is of full rank and the case where D is factored as a product of two matrices. The proposed methods are Krylov subspace methods based on the block Arnoldi algorithm. We give theoretical results and we report some numerical experiments.
Keywords: IEEEtran, journal, LATEX, paper, template.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1905163 Depth Camera Aided Dead-Reckoning Localization of Autonomous Mobile Robots in Unstructured Global Navigation Satellite System Denied Environments
Authors: David L. Olson, Stephen B. H. Bruder, Adam S. Watkins, Cleon E. Davis
Abstract:
In global navigation satellite system (GNSS) denied settings, such as indoor environments, autonomous mobile robots are often limited to dead-reckoning navigation techniques to determine their position, velocity, and attitude (PVA). Localization is typically accomplished by employing an inertial measurement unit (IMU), which, while precise in nature, accumulates errors rapidly and severely degrades the localization solution. Standard sensor fusion methods, such as Kalman filtering, aim to fuse precise IMU measurements with accurate aiding sensors to establish a precise and accurate solution. In indoor environments, where GNSS and no other a priori information is known about the environment, effective sensor fusion is difficult to achieve, as accurate aiding sensor choices are sparse. However, an opportunity arises by employing a depth camera in the indoor environment. A depth camera can capture point clouds of the surrounding floors and walls. Extracting attitude from these surfaces can serve as an accurate aiding source, which directly combats errors that arise due to gyroscope imperfections. This configuration for sensor fusion leads to a dramatic reduction of PVA error compared to traditional aiding sensor configurations. This paper provides the theoretical basis for the depth camera aiding sensor method, initial expectations of performance benefit via simulation, and hardware implementation thus verifying its veracity. Hardware implementation is performed on the Quanser Qbot 2™ mobile robot, with a Vector-Nav VN-200™ IMU and Kinect™ camera from Microsoft.
Keywords: Autonomous mobile robotics, dead reckoning, depth camera, inertial navigation, Kalman filtering, localization, sensor fusion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 721162 Synthesis of Filtering in Stochastic Systems on Continuous-Time Memory Observations in the Presence of Anomalous Noises
Authors: S. Rozhkova, O. Rozhkova, A. Harlova, V. Lasukov
Abstract:
We have conducted the optimal synthesis of rootmean- squared objective filter to estimate the state vector in the case if within the observation channel with memory the anomalous noises with unknown mathematical expectation are complement in the function of the regular noises. The synthesis has been carried out for linear stochastic systems of continuous - time.
Keywords: Mathematical expectation, filtration, anomalous noise, memory.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1969161 Convergence Analysis of a Prediction based Adaptive Equalizer for IIR Channels
Authors: Miloje S. Radenkovic, Tamal Bose
Abstract:
This paper presents the convergence analysis of a prediction based blind equalizer for IIR channels. Predictor parameters are estimated by using the recursive least squares algorithm. It is shown that the prediction error converges almost surely (a.s.) toward a scalar multiple of the unknown input symbol sequence. It is also proved that the convergence rate of the parameter estimation error is of the same order as that in the iterated logarithm law.Keywords: Adaptive blind equalizer, Recursive leastsquares, Adaptive Filtering, Convergence analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1454160 A Family of Affine Projection Adaptive Filtering Algorithms With Selective Regressors
Authors: Mohammad Shams Esfand Abadi, Nader Hadizadeh Kashani, Vahid Mehrdad
Abstract:
In this paper we present a general formalism for the establishment of the family of selective regressor affine projection algorithms (SR-APA). The SR-APA, the SR regularized APA (SR-RAPA), the SR partial rank algorithm (SR-PRA), the SR binormalized data reusing least mean squares (SR-BNDR-LMS), and the SR normalized LMS with orthogonal correction factors (SR-NLMS-OCF) algorithms are established by this general formalism. We demonstrate the performance of the presented algorithms through simulations in acoustic echo cancellation scenario.Keywords: Adaptive filter, affine projection, selective regressor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1574159 Comparison of Performance between Different SVM Kernels for the Identification of Adult Video
Authors: Hajar Bouirouga, Sanaa El Fkihi , Abdeilah Jilbab, Driss Aboutajdine
Abstract:
In this paper we propose a method for recognition of adult video based on support vector machine (SVM). Different kernel features are proposed to classify adult videos. SVM has an advantage that it is insensitive to the relative number of training example in positive (adult video) and negative (non adult video) classes. This advantage is illustrated by comparing performance between different SVM kernels for the identification of adult video.Keywords: Skin detection, Support vector machine, Pornographic videos, Feature extraction, Video filtering, Classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2306158 A New Spectral-based Approach to Query-by-Humming for MP3 Songs Database
Authors: Leon Fu, Xiangyang Xue
Abstract:
In this paper, we propose a new approach to query-by-humming, focusing on MP3 songs database. Since MP3 songs are much more difficult in melody representation than symbolic performance data, we adopt to extract feature descriptors from the vocal sounds part of the songs. Our approach is based on signal filtering, sub-band spectral processing, MDCT coefficients analysis and peak energy detection by ignorance of the background music as much as possible. Finally, we apply dual dynamic programming algorithm for feature similarity matching. Experiments will show us its online performance in precision and efficiency. Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1781157 Triple-input Single-output Voltage-mode Multifunction Filter Using Only Two Current Conveyors
Authors: Mehmet Sagbas, Kemal Fidanboylu, M. Can Bayram
Abstract:
A new voltage-mode triple-input single-output multifunction filter using only two current conveyors is presented. The proposed filter which possesses three inputs and single-output can generate all biquadratic filtering functions at the output terminal by selecting different input signal combinations. The validity of the proposed filter is verified through PSPICE simulations.Keywords: Active Filters, Voltage mode, Current conveyor
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1757156 A High Precision Temperature Insensitive Current and Voltage Reference Generator
Authors: Kimberly Jane S. Uy, Patricia Angela Reyes-Abu, Wen Yaw Chung
Abstract:
A high precision temperature insensitive current and voltage reference generator is presented. It is specifically developed for temperature compensated oscillator. The circuit, designed using MXIC 0.5um CMOS technology, has an operating voltage that ranges from 2.6V to 5V and generates a voltage of 1.21V and a current of 6.38 ӴA. It exhibits a variation of ±0.3nA for the current reference and a stable output for voltage reference as the temperature is varied from 0°C to 70°C. The power supply rejection ratio obtained without any filtering capacitor at 100Hz and 10MHz is -30dB and -12dB respectively.
Keywords: Current reference, voltage reference, threshold voltage, temperature compensation, mobility.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2351155 Fast Extraction of Edge Histogram in DCT Domain based on MPEG7
Authors: Minyoung Eom, Yoonsik Choe
Abstract:
In these days, multimedia data is transmitted and processed in compressed format. Due to the decoding procedure and filtering for edge detection, the feature extraction process of MPEG-7 Edge Histogram Descriptor is time-consuming as well as computationally expensive. To improve efficiency of compressed image retrieval, we propose a new edge histogram generation algorithm in DCT domain in this paper. Using the edge information provided by only two AC coefficients of DCT coefficients, we can get edge directions and strengths directly in DCT domain. The experimental results demonstrate that our system has good performance in terms of retrieval efficiency and effectiveness.Keywords: DCT, Descriptor, EHD, MPEG7.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2127154 Detection of Diabetic Symptoms in Retina Images Using Analog Algorithms
Authors: Daniela Matei, Radu Matei
Abstract:
In this paper a class of analog algorithms based on the concept of Cellular Neural Network (CNN) is applied in some processing operations of some important medical images, namely retina images, for detecting various symptoms connected with diabetic retinopathy. Some specific processing tasks like morphological operations, linear filtering and thresholding are proposed, the corresponding template values are given and simulations on real retina images are provided.Keywords: Diabetic retinopathy, pathology detection, cellular neural networks, analog algorithms.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2080153 Compensation–Based Current Decomposition
Authors: Mihaela Popescu, Alexandru Bitoleanu, Mircea Dobriceanu
Abstract:
This paper deals with the current space-vector decomposition in three-phase, three-wire systems on the basis of some case studies. We propose four components of the current spacevector in terms of DC and AC components of the instantaneous active and reactive powers. The term of supplementary useless current vector is also pointed out. The analysis shows that the current decomposition which respects the definition of the instantaneous apparent power vector is useful for compensation reasons only if the supply voltages are sinusoidal. A modified definition of the components of the current is proposed for the operation under nonsinusoidal voltage conditions.Keywords: Active current, Active filtering, p–q theory, Reactive current.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1516152 Grid Artifacts Suppression in Computed Radiographic Images
Authors: Igor Belykh
Abstract:
Anti-scatter grids used in radiographic imaging for the contrast enhancement leave specific artifacts. Those artifacts may be visible or may cause Moiré effect when digital image is resized on a diagnostic monitor. In this paper we propose an automated grid artifactsdetection and suppression algorithm which is still an actual problem. Grid artifacts detection is based on statistical approach in spatial domain. Grid artifacts suppression is based on Kaiser bandstop filter transfer function design and application avoiding ringing artifacts. Experimental results are discussed and concluded with description of advantages over existing approaches.
Keywords: Computed radiography, grid artifacts, image filtering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4292