Search results for: Density of Electromagnetic Flow
2303 New Multisensor Data Fusion Method Based on Probabilistic Grids Representation
Authors: Zhichao Zhao, Yi Liu, Shunping Xiao
Abstract:
A new data fusion method called joint probability density matrix (JPDM) is proposed, which can associate and fuse measurements from spatially distributed heterogeneous sensors to identify the real target in a surveillance region. Using the probabilistic grids representation, we numerically combine the uncertainty regions of all the measurements in a general framework. The NP-hard multisensor data fusion problem has been converted to a peak picking problem in the grids map. Unlike most of the existing data fusion method, the JPDM method dose not need association processing, and will not lead to combinatorial explosion. Its convergence to the CRLB with a diminishing grid size has been proved. Simulation results are presented to illustrate the effectiveness of the proposed technique.
Keywords: Cramer-Rao lower bound (CRLB), data fusion, probabilistic grids, joint probability density matrix, localization, sensor network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18032302 Effect of Natural Fibres Inclusion in Clay Bricks: Physico-Mechanical Properties
Authors: Chee-Ming Chan
Abstract:
In spite of the advent of new materials, clay bricks remain, arguably, the most popular construction materials today. Nevertheless the low cost and versatility of clay bricks cannot always be associated with high environmental and sustainable values, especially in terms of raw material sources and manufacturing processes. At the same time, the worldwide agricultural footprint is fast growing, with vast agricultural land cultivation and active expansion of the agro-based industry. The resulting large quantities of agricultural wastes, unfortunately, are not always well managed or utilised. These wastes can be recycled, such as by retrieving fibres from disposed leaves and fruit bunches, and then incorporated in brick-making. This way the clay bricks are made a 'greener' building material and the discarded natural wastes can be reutilised, avoiding otherwise wasteful landfill and harmful open incineration. This study examined the physical and mechanical properties of clay bricks made by adding two natural fibres to a clay-water mixture, with baked and non-baked conditions. The fibres were sourced from pineapple leaves (PF) and oil palm fruit bunch (OF), and added within the range of 0.25-0.75 %. Cement was added as a binder to the mixture at 5-15 %. Although the two fibres had different effects on the bricks produced, cement appeared to dominate the compressive strength. The non-baked bricks disintegrated when submerged in water, while the baked ones displayed cement-dependent characteristics in water-absorption and density changes. Interestingly, further increase in fibre content did not cause significant density decrease in both the baked and non-baked bricks.Keywords: natural fibres, clay bricks, strength, water absorption, density.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 46622301 Scale Effects on the Wake Airflow of a Heavy Truck
Authors: A. Pérard Lecomte, G. Fokoua, A. Mehel, A. Tanière
Abstract:
Automotive experimental measurements in wind tunnel are often conducted on reduced scale. Depending on the study, different similitude parameters are used by researchers to best reproduce the flow at full scale. In this paper, two parameters are investigated, which are Reynolds number and upstream velocity when dealing with airflow of typical urban speed range, below 15 m.s-1. Their impact on flow structures and aerodynamic drag in the wake of a heavy truck model are explored. To achieve this, Computational Fluid Dynamics (CFD) simulations have been conducted with the aim of modeling the wake airflow of full- and reduced-scaled heavy trucks (1/4 and 1/28). The Reynolds Average Navier-Stokes (RANS) approach combined to the Reynolds Stress Model (RSM) as the turbulence model closure was used. Both drag coefficients and upstream velocity profiles (flow topology) were found to be close one another for the three investigated scales, when the dynamical similitude Reynolds is achieved. Moreover, the difference is weak for the simulations based on the same inlet air velocity. Hence, for the relative low velocity range investigated here, the impact of the scale factor is limited.
Keywords: Aerodynamics, CFD, heavy truck, recirculation area, scale effects, similitude parameters.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5012300 Experimental Investigation and Constitutive Modeling of Volume Strain under Uniaxial Strain Rate Jump Test in HDPE
Authors: Rida B. Arieby, Hameed N. Hameed
Abstract:
In this work, tensile tests on high density polyethylene have been carried out under various constant strain rate and strain rate jump tests. The dependency of the true stress and specially the variation of volume strain have been investigated, the volume strain due to the phenomena of damage was determined in real time during the tests by an optical extensometer called Videotraction. A modified constitutive equations, including strain rate and damage effects, are proposed, such a model is based on a non-equilibrium thermodynamic approach called (DNLR). The ability of the model to predict the complex nonlinear response of this polymer is examined by comparing the model simulation with the available experimental data, which demonstrate that this model can represent the deformation behavior of the polymer reasonably well.
Keywords: Strain rate jump tests, Volume Strain, High Density Polyethylene, Large strain, Thermodynamics approach.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21232299 Investigations of Natural Convective Heat Transfer in Rectangular Thermal Passages
Authors: Hussain H. Al-Kayiem, Ahmed K. Hussein, Toh Seng Peow
Abstract:
The evaluation of the convective heat transfer of flow in passages with rectangular cross section is still of interest for the heat transfer investigators, as in the air heater solar collectors. The aim of this paper is to present investigation results on the natural convection heat transfer in a solar air heater. The effect of the channel length as heat transfer surface and the inclination of the passage were investigated. The results were obtained experimentally and theoretically. For that, an experimental test rig was fabricated with channel lengths of 1m, 1.5m, and 2m. For each length, the air outlet and inlet temperatures, absorber and cover temperatures, solar radiation intensity and air flow rate were measured at 10o, 30o, 50o, 70o, and 90o tilt angles. Measurements were recorded every 2 hours interval to investigate the transient behavior of the system. The experimental and theoretical results are presented in terms of Nu number versus Ra number and discussed. The percentages of differences between experimental and theoretical results are within the margin of 6% to 13%, effectively. It is recommended to extend the investigation to study the same configurations with different artificial surface roughing by ribs or pins.
Keywords: Convective heat transfer, Flat plate, Natural convection, Passage flow, Solar energy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20662298 Stability Analysis of Three-Dimensional Flow and Heat Transfer over a Permeable Shrinking Surface in a Cu-Water Nanofluid
Authors: Roslinda Nazar, Amin Noor, Khamisah Jafar, Ioan Pop
Abstract:
In this paper, the steady laminar three-dimensional boundary layer flow and heat transfer of a copper (Cu)-water nanofluid in the vicinity of a permeable shrinking flat surface in an otherwise quiescent fluid is studied. The nanofluid mathematical model in which the effect of the nanoparticle volume fraction is taken into account is considered. The governing nonlinear partial differential equations are transformed into a system of nonlinear ordinary differential equations using a similarity transformation which is then solved numerically using the function bvp4c from Matlab. Dual solutions (upper and lower branch solutions) are found for the similarity boundary layer equations for a certain range of the suction parameter. A stability analysis has been performed to show which branch solutions are stable and physically realizable. The numerical results for the skin friction coefficient and the local Nusselt number as well as the velocity and temperature profiles are obtained, presented and discussed in detail for a range of various governing parameters.
Keywords: Heat Transfer, Nanofluid, Shrinking Surface, Stability Analysis, Three-Dimensional Flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21942297 Power Performance Improvement of 500W Vertical Axis Wind Turbine with Salient Design Parameters
Authors: Young-Tae Lee, Hee-Chang Lim
Abstract:
This paper presents the performance characteristics of Darrieus-type vertical axis wind turbine (VAWT) with NACA airfoil blades. The performance of Darrieus-type VAWT can be characterized by torque and power. There are various parameters affecting the performance such as chord length, helical angle, pitch angle and rotor diameter. To estimate the optimum shape of Darrieustype wind turbine in accordance with various design parameters, we examined aerodynamic characteristics and separated flow occurring in the vicinity of blade, interaction between flow and blade, and torque and power characteristics derived from it. For flow analysis, flow variations were investigated based on the unsteady RANS (Reynolds-averaged Navier-Stokes) equation. Sliding mesh algorithm was employed in order to consider rotational effect of blade. To obtain more realistic results we conducted experiment and numerical analysis at the same time for three-dimensional shape. In addition, several parameters (chord length, rotor diameter, pitch angle, and helical angle) were considered to find out optimum shape design and characteristics of interaction with ambient flow. Since the NACA airfoil used in this study showed significant changes in magnitude of lift and drag depending on an angle of attack, the rotor with low drag, long cord length and short diameter shows high power coefficient in low tip speed ratio (TSR) range. On the contrary, in high TSR range, drag becomes high. Hence, the short-chord and long-diameter rotor produces high power coefficient. When a pitch angle at which airfoil directs toward inside equals to -2° and helical angle equals to 0°, Darrieus-type VAWT generates maximum power.Keywords: Darrieus wind turbine, VAWT, NACA airfoil, performance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29802296 The Fabrication and Characterization of a Honeycomb Ceramic Electric Heater with a Conductive Coating
Authors: Siming Wang, Qing Ni, Yu Wu, Ruihai Xu, Hong Ye
Abstract:
Porous electric heaters, compared to conventional electric heaters, exhibit excellent heating performance due to their large specific surface area. Porous electric heaters employ porous metallic materials or conductive porous ceramics as the heating element. The former attains a low heating power with a fixed current due to the low electrical resistivity of metal. Although the latter can bypass the inherent challenges of porous metallic materials, the fabrication process of the conductive porous ceramics is complicated and high cost. This work proposed a porous ceramic electric heater with dielectric honeycomb ceramic as a substrate and surface conductive coating as a heating element. The conductive coating was prepared by the sol-gel method using silica sol and methyl trimethoxysilane as raw materials and graphite powder as conductive fillers. The conductive mechanism and degradation reason of the conductive coating was studied by electrical resistivity and thermal stability analysis. The heating performance of the proposed heater was experimentally investigated by heating air and deionized water. The results indicate that the electron transfer is achieved by forming the conductive network through the contact of the graphite flakes. With 30 wt% of graphite, the electrical resistivity of the conductive coating can be as low as 0.88 Ω∙cm. The conductive coating exhibits good electrical stability up to 500 °C but degrades beyond 600 °C due to the formation of many cracks in the coating caused by the weight loss and thermal expansion. The results also show that the working medium has a great influence on the volume power density of the heater. With air under natural convection as the working medium, the volume power density attains 640.85 kW/m3, which can be increased by 5 times when using deionized water as the working medium. The proposed honeycomb ceramic electric heater has the advantages of the simple fabrication method, low cost, and high-volume power density, demonstrating great potential in the fluid heating field.
Keywords: Conductive coating, honeycomb ceramic electric heater, high specific surface area, high volume power density.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4562295 Development System for Emotion Detection Based on Brain Signals and Facial Images
Authors: Suprijanto, Linda Sari, Vebi Nadhira , IGN. Merthayasa. Farida I.M
Abstract:
Detection of human emotions has many potential applications. One of application is to quantify attentiveness audience in order evaluate acoustic quality in concern hall. The subjective audio preference that based on from audience is used. To obtain fairness evaluation of acoustic quality, the research proposed system for multimodal emotion detection; one modality based on brain signals that measured using electroencephalogram (EEG) and the second modality is sequences of facial images. In the experiment, an audio signal was customized which consist of normal and disorder sounds. Furthermore, an audio signal was played in order to stimulate positive/negative emotion feedback of volunteers. EEG signal from temporal lobes, i.e. T3 and T4 was used to measured brain response and sequence of facial image was used to monitoring facial expression during volunteer hearing audio signal. On EEG signal, feature was extracted from change information in brain wave, particularly in alpha and beta wave. Feature of facial expression was extracted based on analysis of motion images. We implement an advance optical flow method to detect the most active facial muscle form normal to other emotion expression that represented in vector flow maps. The reduce problem on detection of emotion state, vector flow maps are transformed into compass mapping that represents major directions and velocities of facial movement. The results showed that the power of beta wave is increasing when disorder sound stimulation was given, however for each volunteer was giving different emotion feedback. Based on features derived from facial face images, an optical flow compass mapping was promising to use as additional information to make decision about emotion feedback.
Keywords: Multimodal Emotion Detection, EEG, Facial Image, Optical Flow, compass mapping, Brain Wave
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22922294 Human Action Recognition System Based on Silhouette
Authors: S. Maheswari, P. Arockia Jansi Rani
Abstract:
Human action is recognized directly from the video sequences. The objective of this work is to recognize various human actions like run, jump, walk etc. Human action recognition requires some prior knowledge about actions namely, the motion estimation, foreground and background estimation. Region of interest (ROI) is extracted to identify the human in the frame. Then, optical flow technique is used to extract the motion vectors. Using the extracted features similarity measure based classification is done to recognize the action. From experimentations upon the Weizmann database, it is found that the proposed method offers a high accuracy.Keywords: Background subtraction, human silhouette, optical flow, classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10002293 Enhancing the Error-Correcting Performance of LDPC Codes through an Efficient Use of Decoding Iterations
Authors: Insah Bhurtah, P. Clarel Catherine, K. M. Sunjiv Soyjaudah
Abstract:
The decoding of Low-Density Parity-Check (LDPC) codes is operated over a redundant structure known as the bipartite graph, meaning that the full set of bit nodes is not absolutely necessary for decoder convergence. In 2008, Soyjaudah and Catherine designed a recovery algorithm for LDPC codes based on this assumption and showed that the error-correcting performance of their codes outperformed conventional LDPC Codes. In this work, the use of the recovery algorithm is further explored to test the performance of LDPC codes while the number of iterations is progressively increased. For experiments conducted with small blocklengths of up to 800 bits and number of iterations of up to 2000, the results interestingly demonstrate that contrary to conventional wisdom, the error-correcting performance keeps increasing with increasing number of iterations.
Keywords: Error-correcting codes, information theory, low-density parity-check codes, sum-product algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17092292 Investigation of Hydraulic and Thermal Performances of Fin Array at Different Shield Positions without By-Pass
Authors: Ramy H. Mohammed
Abstract:
In heat sinks, the flow within the core exhibits separation and hence does not lend itself to simple analytical boundary layer or duct flow analysis of the wall friction. In this paper, we present some findings from an experimental and numerical study aimed to obtain physical insight into the influence of the presence of the shield and its position on the hydraulic and thermal performance of square pin fin heat sink without top by-pass. The variations of the Nusselt number and friction factor are obtained under varied parameters, such as the Reynolds number and the shield position. The numerical code is validated by comparing the numerical results with the available experimental data. It is shown that, there is a good agreement between the temperature predictions based on the model and the experimental data. Results show that, as the presence of the shield, the heat transfer of fin array is enhanced and the flow resistance increased. The surface temperature distribution of the heat sink base is more uniform when the dimensionless shield position equals to 1/3 or 2/3. The comprehensive performance evaluation approach based on identical pumping power criteria is adopted and shows that the optimum shield position is at x/l=0.43.
Keywords: Shield, Fin array, Performance evaluation, Heat transfer, Validation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18382291 Introduction to Electron Spectroscopy for Surfaces Characterization
Authors: Abdelkader Benzian
Abstract:
Spectroscopy is the study of the spectrum produced by the radiation-matter interaction which requires the study of electromagnetic radiation (or electrons) emitted, absorbed, or scattered by matter. Thus, the spectral analysis is using spectrometers which enables us to obtain curves that express the distribution of the energy emitted (spectrum). Analysis of emission spectra can therefore constitute several methods depending on the range of radiation energy. The most common methods used are Auger electron spectroscopy (AES) and Electron Energy Losses Spectroscopy (EELS), which allow the determination of the atomic structure on the surface. This paper focalized essentially on the Electron Energy Loss Spectroscopy.
Keywords: Dielectric, plasmon, mean free path, spectroscopy of electron energy losses.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7732290 The Investigation of Motor Cooling Performance
Authors: Chih-Chung Chang, Sy-Chi Kuo, Chen-Kang Huang, Sih-Li Chen
Abstract:
This study experimentally and numerically investigates motor cooling performance. The motor consists of a centrifugal fan, two axial fans, a shaft, a stator, a rotor and a heat exchanger with 637 cooling tubes. The pressure rise-flow rate (P-Q) performance curves of the cooling fans at 1800 rpm are tested using a test apparatus complying with the Chinese National Standard (CNS) 2726. Compared with the experimental measurements, the numerical analysis results show that the P-Q performance curves of the axial fan and centrifugal fan can be estimated within about 2% and 6%, respectively. By using the simplified model, setting up the heat exchanger and stator as porous media, the flow field in the motor is calculated. By using the results of the flow field near the rotor and stator, and subjecting the heat generation rate as a boundary condition, the temperature distributions of the stator and rotor are also calculated. The simulation results show that the calculated temperature of the stator winding near the axial fans is lower by about 5% than the measured value, and the calculated temperature of the stator core located at the center of the stator is about 1% higher than the measured value. Besides, discussion is made to improve the motor cooling performance.Keywords: Motor cooling, P-Q performance curves, CNS, porous media.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16372289 A Scenario-Based Approach for the Air Traffic Flow Management Problem with Stochastic Capacities
Authors: Soumia Ichoua
Abstract:
In this paper, we investigate the strategic stochastic air traffic flow management problem which seeks to balance airspace capacity and demand under weather disruptions. The goal is to reduce the need for myopic tactical decisions that do not account for probabilistic knowledge about the NAS near-future states. We present and discuss a scenario-based modeling approach based on a time-space stochastic process to depict weather disruption occurrences in the NAS. A solution framework is also proposed along with a distributed implementation aimed at overcoming scalability problems. Issues related to this implementation are also discussed.
Keywords: Air traffic management, sample average approximation, scenario-based approach, stochastic capacity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20862288 Impact of Node Density and Transmission Range on the Performance of OLSR and DSDV Routing Protocols in VANET City Scenarios
Authors: Yassine Meraihi, Dalila Acheli, Rabah Meraihi
Abstract:
Vehicular Ad hoc Network (VANET) is a special case of Mobile Ad hoc Network (MANET) used to establish communications and exchange information among nearby vehicles and between vehicles and nearby fixed infrastructure. VANET is seen as a promising technology used to provide safety, efficiency, assistance and comfort to the road users. Routing is an important issue in Vehicular Ad Hoc Network to find and maintain communication between vehicles due to the highly dynamic topology, frequently disconnected network and mobility constraints.
This paper evaluates the performance of two most popular proactive routing protocols OLSR and DSDV in real city traffic scenario on the basis of three metrics namely Packet delivery ratio, throughput and average end to end delay by varying vehicles density and transmission range.
Keywords: DSDV, OLSR, Quality of service, Routing protocols, VANET.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22762287 Effect of Exit Annular Area on the Flow Field Characteristics of an Unconfined Premixed Annular Swirl Burner
Authors: Vishnu Raj, Chockalingam Prathap
Abstract:
The objective of this study was to explore the impact of variation in the exit annular area on the local flow field features and the flame stability of an annular premixed swirl burner (unconfined) operated with a premixed n-butane air mixture at an equivalence ratio (Φ) = 1, 1 bar, and 300K. A swirl burner with an axial swirl generator having a swirl number of 1.5 was used. Three different burner heads were chosen to have the exit area increased from 100%, 160%, and 220% resulting in inner and outer diameters and cross-sectional areas as (1) 10 mm & 15 mm, 98 mm2 (2) 17.5 mm & 22.5 mm, 157 mm2 and (3) 25 mm & 30 mm, 216 mm2. The bulk velocity and Reynolds number based on the hydraulic diameter and unburned gas properties were kept constant at 12 m/s and 4000. (i) Planar Particle Image Velocimetry (PIV) with TiO2 seeding particles and (ii) CH* chemiluminescence was used to measure the velocity fields and reaction zones of the swirl flames at 5 Hz, respectively. Velocity fields and the jet spreading rates measured at the isothermal and reactive conditions revealed that the presence of a flame significantly altered the flow field in the radial direction due to the gas expansion. Important observations from the flame measurements were: the height and maximum width of the recirculation bubbles normalized by the hydraulic diameter, and the jet spreading angles for the flames for the three exit area cases were: (a) 4.52, 1.95, 34◦, (b) 6.78, 2.37, 26◦, and (c) 8.73, 2.32, 22◦. The lean blowout (LBO) was also measured, and the respective equivalence ratios were: 0.80, 0.92, and 0.82. LBO was relatively narrow for the 157 mm2 case. For this case, PIV measurements showed that Turbulent Kinetic Energy and turbulent intensity were relatively high compared to the other two cases, resulting in higher stretch rates and narrower LBO.
Keywords: Chemiluminescence, jet spreading rate, lean blow out, swirl flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2692286 Power of Involvement over Rewards for Retention Likelihood in IT Professionals
Authors: Humayun Rashid, Lin Zhao
Abstract:
Retention in the IT profession is critical for organizations to stay competitive and operate reliably in the dynamic business environment. Most organizations rely on compensation and rewards as primary tools to enhance retention of employees. In this quantitative survey-based study conducted at a large global bank, we analyze the perceptions of 575 information technology (IT) software professionals in India and Malaysia and find that fairness of rewards has very little impact on retention likelihood. It is far more important to actively involve employees in organizational activities. In addition, our findings indicate that involvement is far more important than information flow: the typical organizational communication to keep employees informed.Keywords: fairness of rewards, information flow, informationinvolvement, retention
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14372285 Applications of AUSM+ Scheme on Subsonic, Supersonic and Hypersonic Flows Fields
Authors: Muhammad Yamin Younis, Muhammad Amjad Sohail, Tawfiqur Rahman, Zaka Muhammad, Saifur Rahman Bakaul
Abstract:
The performance of Advection Upstream Splitting Method AUSM schemes are evaluated against experimental flow fields at different Mach numbers and results are compared with experimental data of subsonic, supersonic and hypersonic flow fields. The turbulent model used here is SST model by Menter. The numerical predictions include lift coefficient, drag coefficient and pitching moment coefficient at different mach numbers and angle of attacks. This work describes a computational study undertaken to compute the Aerodynamic characteristics of different air vehicles configurations using a structured Navier-Stokes computational technique. The CFD code bases on the idea of upwind scheme for the convective (convective-moving) fluxes. CFD results for GLC305 airfoil and cone cylinder tail fined missile calculated on above mentioned turbulence model are compared with the available data. Wide ranges of Mach number from subsonic to hypersonic speeds are simulated and results are compared. When the computation is done by using viscous turbulence model the above mentioned coefficients have a very good agreement with the experimental values. AUSM scheme is very efficient in the regions of very high pressure gradients like shock waves and discontinuities. The AUSM versions simulate the all types of flows from lower subsonic to hypersonic flow without oscillations.Keywords: Subsonic, supersonic, Hypersonic, AUSM+, Drag Coefficient, lift Coefficient, Pitching moment coefficient, pressure Coefficient, turbulent flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32442284 Physical Properties of Uranium Dinitride UN2 by Using Density Functional Theory (DFT and DFT+U)
Authors: T. Zergoug, S.H. Abaidia, A. Nedjar, M. Y. Mokeddem
Abstract:
Physical properties of uranium dinitride (UN2) were investigated in detail using first principle calculations based on density functional theory (DFT). To study the strong correlation effects due to 5f uranium valence electrons, the on-site coulomb interaction correction U via the Hubbard-like term (DFT+U) was employed. The UN2 structural, mechanical and thermodynamic properties were calculated within DFT and Various U of DFT+U approach. The Perdew–Burke–Ernzerhof (PBE.5.2) version of the generalized gradient approximation (GGA) is used to describe the exchange-correlation with the projector-augmented wave (PAW) pseudo potentials. A comparative study shows that results are improved by using the Hubbard formalism for a certain U value correction like the structural parameter. For some physical properties the variation versus Hubbard-U is strong like Young modulus but for others it is weakly noticeable such as bulk modulus. We noticed also that from U=7.5 eV, elastic results don’t agree with the cubic cell because of the C44 values which turn out to be negative.
Keywords: Ab initio, bulk modulus, DFT, DFT + U.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25582283 Simulation of Fluid Flow and Heat Transfer in Inclined Cavity using Lattice Boltzmann Method
Authors: Arash Karimipour, A. Hossein Nezhad, E. Shirani, A. Safaei
Abstract:
In this paper, Lattice Boltzmann Method (LBM) is used to study laminar flow with mixed convection heat transfer inside a two-dimensional inclined lid-driven rectangular cavity with aspect ratio AR = 3. Bottom wall of the cavity is maintained at lower temperature than the top lid, and its vertical walls are assumed insulated. Top lid motion results in fluid motion inside the cavity. Inclination of the cavity causes horizontal and vertical components of velocity to be affected by buoyancy force. To include this effect, calculation procedure of macroscopic properties by LBM is changed and collision term of Boltzmann equation is modified. A computer program is developed to simulate this problem using BGK model of lattice Boltzmann method. The effects of the variations of Richardson number and inclination angle on the thermal and flow behavior of the fluid inside the cavity are investigated. The results are presented as velocity and temperature profiles, stream function contours and isotherms. It is concluded that LBM has good potential to simulate mixed convection heat transfer problems.
Keywords: gravity, inclined lid driven cavity, lattice Boltzmannmethod, mixed convection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19542282 Porous Particles Drying in a Vertical Upward Pneumatic Conveying Dryer
Authors: Samy M. El-Behery, W. A. El-Askary, K. A. Ibrahim, Mofreh H. Hamed
Abstract:
A steady two-phase flow model has been developed to simulate the drying process of porous particle in a pneumatic conveying dryer. The model takes into account the momentum, heat and mass transfer between the continuous phase and the dispersed phase. A single particle model was employed to calculate the evaporation rate. In this model the pore structure is simplified to allow the dominant evaporation mechanism to be readily identified at all points within the duct. The predominant mechanism at any time depends upon the pressure, temperature and the diameter of pore from which evaporating is occurring. The model was validated against experimental studies of pneumatic transport at low and high speeds as well as pneumatic drying. The effects of operating conditions on the dryer parameters are studied numerically. The present results show that the drying rate is enhanced as the inlet gas temperature and the gas flow rate increase and as the solid mass flow rate deceases. The present results also demonstrate the necessity of measuring the inlet gas velocity or the solid concentration in any experimental analysis.
Keywords: Two-phase, gas-solid, pneumatic drying, pneumatic conveying, heat and mass transfer
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32682281 Phase Transition and Molecular Polarizability Studies in Liquid Crystalline Mixtures
Authors: M. Shahina, K. Fakruddin, C. M. Subhan, S. Rangappa
Abstract:
In this work, two mixtures with equal concentrations of 1) 4ꞌ-(6-(4-(pentylamino) methyl)-3-hydroxyphenoxy) hexyloxy) biphenyl-4-carbonitrile+-4-((4-(hexyloxy) benzylidene) amino) phenyl 4-butoxy benzoate and 2) 4ꞌ - (6-(4-(hexylamino) methyl)-3-hydroxyphenoxy) hexyloxy) biphenyl-4-carbonitrile+-4-((4-(octyloxy) benzylidene) amino) phenyl 4-butoxy benzoate, have been prepared. The transition temperature and optical texture are observed by using thermal microscopy. Density and birefringence studies are carried out on the above liquid crystalline mixtures. Using density and refractive indices data, the molecular polarizabilities are evaluated by using well-known Vuks and Neugebauer models. The molecular polarizability is also evaluated theoretically by Lippincott δ function model. The results reveal that the polarizability values are same in both experimental and theoretical methods.Keywords: Liquid crystals, optical textures, transition temperature, birefringence, polarizability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10982280 Ablation, Mechanical and Thermal Properties of Fiber/Phenolic Matrix Composites
Authors: N. Winya, S. Chankapoe, C. Kiriratnikom
Abstract:
In this study, an ablation, mechanical and thermal properties of a rocket motor insulation from phenolic/ fiber matrix composites forming a laminate with different fiber between fiberglass and locally available synthetic fibers. The phenolic/ fiber matrix composites was mechanics and thermal properties by means of tensile strength, ablation, TGA and DSC. The design of thermal insulation involves several factors.Determined the mechanical properties according to MIL-I-24768: Density >1.3 g/cm3, Tensile strength >103 MPa and Ablation <0.14 mm/s to optimization formulation of phenolic binder, fiber glass reinforcement and other ingredients were conducted after that the insulation prototype was formed and cured. It was found that the density of phenolic/fiberglass composites and phenolic/ synthetic fiber composite was 1.66 and 1.41 g/cm3 respectively. The ablative of phenolic/fiberglass composites and phenolic/ synthetic fiber composite was 0.13 and 0.06 mm/s respectively.
Keywords: Phenolic Resin, Ablation, Rocket Motor, Insulation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 43892279 Flow around Two Cam Shaped Cylinders in Tandem Arrangement
Authors: Arash Mir Abdolah Lavasani, Hamidreza Bayat
Abstract:
In this paper flow around two cam shaped cylinders had been studied numerically. The equivalent diameter of cylinders is 27.6 mm. The space between center to center of two cam shaped cylinders is define as longitudinal pitch ratio and it varies in range of
2
Keywords: Cam shaped, tandem cylinders, numerical, drag coefficient.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16402278 Cr Induced Magnetization in Zinc-Blende ZnO Based Diluted Magnetic Semiconductors
Authors: Bakhtiar Ul Haq, R. Ahmed, A. Shaari, Mazmira Binti Mohamed, Nisar Ali
Abstract:
The capability of exploiting the electronic charge and spin properties simultaneously in a single material has made diluted magnetic semiconductors (DMS) remarkable in the field of spintronics. We report the designing of DMS based on zinc-blend ZnO doped with Cr impurity. The full potential linearized augmented plane wave plus local orbital FP-L(APW+lo) method in density functional theory (DFT) has been adapted to carry out these investigations. For treatment of exchange and correlation energy, generalized gradient approximations have been used. Introducing Cr atoms in the matrix of ZnO has induced strong magnetic moment with ferromagnetic ordering at stable ground state. Cr:ZnO was found to favor the short range magnetic interaction that reflect tendency of Cr clustering. The electronic structure of ZnO is strongly influenced in the presence of Cr impurity atoms where impurity bands appear in the band gap.
Keywords: ZnO, Density functional theory, Diluted magnetic semiconductors, Ferromagnetic materials, FP-L(APW+lo).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18872277 Bioleaching of Spent Catalyst using Moderate Thermophiles with Different Pulp Densities and Varying Size Fractions without Fe Supplemented Growth Medium
Authors: Haragobinda Srichandan, Chandra Sekhar Gahan, Dong-Jin Kim, Seoung-Won Lee
Abstract:
Bioleaching of spent catalyst using moderate thermophilic chemolithotrophic acidophiles in growth medium without Fe source was investigated with two different pulp densities and three different size fractions. All the experiments were conducted on shake flasks at a temperature of 65 °C. The leaching yield of Ni and Al was found to be promising with very high leaching yield of 92-96% followed by Al as 41-76%, which means both Ni and Al leaching were favored by the moderate thermophilic bioleaching compared to the mesophilic bioleaching. The acid consumption was comparatively higher for the 10% pulp density experiments. Comparatively minimal difference in the leaching yield with different size fractions and different pulp densities show no requirement of grinding and using low pulp density less than 10%. This process would rather be economical as well as eco-friendly process for future optimization of the recovery of metal values from spent catalyst.
Keywords: Bioleaching, spent catalyst, leaching yield, thermophile.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23312276 Efficient Block Matching Algorithm for Motion Estimation
Authors: Zong Chen
Abstract:
Motion estimation is a key problem in video processing and computer vision. Optical flow motion estimation can achieve high estimation accuracy when motion vector is small. Three-step search algorithm can handle large motion vector but not very accurate. A joint algorithm was proposed in this paper to achieve high estimation accuracy disregarding whether the motion vector is small or large, and keep the computation cost much lower than full search.Keywords: Motion estimation, Block Matching, Optical flow, Three step search.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21672275 Numerical Heat Transfer Performance of Water-Based Graphene Nanoplatelets
Authors: Ahmad Amiri, Hamed K. Arzani, S. N. Kazi, B. T. Chew
Abstract:
Since graphene nanoplatelet (GNP) is a promising material due to desirable thermal properties, this paper is related to the thermophysical and heat transfer performance of covalently functionalized GNP-based water/ethylene glycol nanofluid through an annular channel. After experimentally measuring thermophysical properties of prepared samples, a computational fluid dynamics study has been carried out to examine the heat transfer and pressure drop of well-dispersed and stabilized nanofluids. The effect of concentration of GNP and Reynolds number at constant wall temperature boundary condition under turbulent flow regime on convective heat transfer coefficient has been investigated. Based on the results, for different Reynolds numbers, the convective heat transfer coefficient of the prepared nanofluid is higher than that of the base fluid. Also, the enhancement of convective heat transfer coefficient and thermal conductivity increase with the increase of GNP concentration in base-fluid. Based on the results of this investigation, there is a significant enhancement on the heat transfer rate associated with loading well-dispersed GNP in base-fluid.Keywords: Nanofluid, turbulent flow, forced convection flow, graphene, annular, annulus.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15882274 Nonlinear Simulation of Harmonically Coupled Two-Beam Free-Electron Laser
Authors: M. Zahedian, B. Maraghechi, M. H. Rouhani
Abstract:
A nonlinear model of two-beam free-electron laser (FEL) in the absence of slippage is presented. The two beams are assumed to be cold with different energies and the fundamental resonance of the higher energy beam is at the third harmonic of lower energy beam. By using Maxwell-s equations and full Lorentz force equations of motion for the electron beams, coupled differential equations are derived and solved numerically by the fourth order Runge–Kutta method. In this method a considerable growth of third harmonic electromagnetic field in the XUV and X-ray regions is predicted.Keywords: Free-electron laser, Higher energy beam, Lowerenergy beam, Two-beam
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1345