Experimental Investigation and Constitutive Modeling of Volume Strain under Uniaxial Strain Rate Jump Test in HDPE
Authors: Rida B. Arieby, Hameed N. Hameed
Abstract:
In this work, tensile tests on high density polyethylene have been carried out under various constant strain rate and strain rate jump tests. The dependency of the true stress and specially the variation of volume strain have been investigated, the volume strain due to the phenomena of damage was determined in real time during the tests by an optical extensometer called Videotraction. A modified constitutive equations, including strain rate and damage effects, are proposed, such a model is based on a non-equilibrium thermodynamic approach called (DNLR). The ability of the model to predict the complex nonlinear response of this polymer is examined by comparing the model simulation with the available experimental data, which demonstrate that this model can represent the deformation behavior of the polymer reasonably well.
Keywords: Strain rate jump tests, Volume Strain, High Density Polyethylene, Large strain, Thermodynamics approach.
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1092160
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2128References:
[1] F. Addiego, A. Dahoun, C. G’Sell, JM. Hiver. Characterization of volume strain at large deformation under uniaxial tension in high-density polyethylene. Polym. Vol. 47, pp. 4387-4399, 2006.
[2] S. Hillmansen, S. Hobeika, R. N. Haward, P. S. Leevers. The effect of Strain rate, Temperature, and Molecular mass on the tensile deformation of polyethylene. Polym. Eng. Sci, 40, 2000, 481-489.
[3] K. Hizoum, Yves Re´mond, Stanislav Patlazhan. Coupling of Nanocavitation with Cyclic Deformation Behavior of High-Density Polyethylene below the Yield Point. Journal of Engineering Materials and Technology, vol. 133, pp. 1-5, 2011.
[4] A. D. Drozdov, J. deC. Christiansen. Cyclic viscoplasticity of high-density polyethylene: Experiments and modeling. Computational Materials Science, vol. 39, pp. 465–480, 2007.
[5] S. Hobeika, Y. Men, G. Strobi. Temperature and strain rate independence of critical strains in polyethylene and poly(ethylene-co-vinyl acetate). Macromolecules, 33, 2000, 1827-1833.
[6] C. Zhang, Ian D. Moore. Nonlinear mechanical response of High Density Polyethylene. Part I: experimental investigation and model evaluation. Polym. Eng. Sci, vol. 39, 1997, 404-413.
[7] C. G'Sell, J.M. Hiver, A. Dahoun, A. Souahi. Video-controlled tensile testing of polymers and metals beyond the necking point. J. Mater. Sci., vol. 27, pp. 5031-5039, 1992.
[8] C. G'Sell, J.M. Hiver, A. Dahoun. Experimental characterization of deformation damage in solid polymers under tension, and its interrelation with necking. International Journal of solids and structures. Vol. 39, pp. 3857-3872, 2002.
[9] R. Hiss, S. Hobeika, C. Lynn. G. Strobi. Network stretching, slip processes and fragmentation of crystallites during uniaxial drawing of polyethylene and related copolymers. A comparative study. Macromolecules, 32, 1999, 4390-4403.
[10] A. Pawlak. Cavitation during tensile deformation of high-density polyethylene. Polym., 48, 2007, 1397-1409.
[11] T. Quatravaux, S. Elkounn, C. G’Sell, L. Cangemi, Y. Meimon. Experimental characterization of the volume strain of poly (vinylidene fluoride) in the region of homogenous plastic deformation. J. Polym. Sci : Part B : Polym. Phys., 40, 2002, 2516-2522.
[12] L. Cangemi, S. Elkoun, C. G’Sell, Y. Meimon. Volume strain changes of plasticized Poly(vinylidene fluoride) during tensile and creep tests. J. App. Polym. Sci., 91, 2004, 1784-1791.
[13] S. Castagnet, Y. Deburck. Relative influence of microstructure and macroscopic triaxiality on cavitation damage in semi-crystalline polymer. Mater. Sci. Eng., A 448, 2007, 56-66.
[14] C. Cunat. Approche statistique des propriétés thermodynamiques des états liquides et vitreux – Relaxation des liquides et transition vitreuse – Influence des associations chimiques, Thèse, Nancy I, France, 1985.
[15] C. Cunat. The DNLR approach and relaxation phenomena: Part I – Historical account and DNLR formalism. Mech. of Time-Depend. Mater. Vol. 5, pp. 39–65, 2001.
[16] T. De Donder. Thermodynamic theory of affinity: A Book of principle. Oxford, England, Oxford University Press, 1936.
[17] I. Prigogine. Introduction à la Thermodynamique des Processus Irréversibles, Dunod, Paris, 1968.
[18] M. Aboulfaraj, C. G’Sell, B. Ulrich, A. Dahoun. In situ observation of the plastic deformation of polypropylene spherulites under uniaxial tension and simple shear in the scanning electron microscope. Polym. Vol. 36, pp. 731-742, 1995.
[19] K. Schneider, S. Trabelsi, N. E. Zafeiropoulos, R. Davies, Chr. Riekel, M. Stamm. The study of cavitation in HDPE using time resolved synchrotron X-ray scattering during tensile deformation. Macromol. Symp., vol. 236, pp. 241-248, 2006.
[20] K. Nitta, M. Takayanagi. Tensile yield of isotactic polypropylene in terms of a lamellar-cluster model. J. Polym. Sci., vol. 38, pp. 1037-1044, 2000.
[21] E. Roguet, S. Castagnet, J.C. Grandidier. Mechanical features of the rubbery amorphous phase in tension and torsion in a semi-crystalline polymer. Mechanics of Materials, vol. 39, pp. 380-391, 2007.
[22] K. Marabet. Comportement mécanique en grandes déformations du Polyéthylène haut densité : Approche thermodynamique de l’état relaxé. Thèse, INPL, 2003.
[23] E. F. Toussaint, Z. Ayadi, P. Pilvin, C. Cunat. Modeling of the Mechanical Behavior of a Nickel Alloy by Using a Time-Dependent Thermodynamic Approach to Relaxations of Continuous Media. J. Mech. of Time-Depend. Mater. Vol. 5, pp. 1–25, 2001.
[24] E. M. Arruda, M.C. Boyce. A three-dimensional constitutive model for the large stretch behaviour of rubber elastic materials », J. Mec. Phys. Solids, vol. 41, pp. 389-412, 1993.
[25] R. Arieby, R. Rahouadj, C. Cunat, Caractérisation mécanique et modélisation thermodynamique du comportement anisotrope du polyéthylène à haute densité. Intégration des effets d'endommagemen. CFM 2009.