Search results for: Finite Ring
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1647

Search results for: Finite Ring

567 Numerical Analysis and Experimental Validation of Detector Pressure Housing Subject to HPHT

Authors: Hafeez Syed, Harit Naik

Abstract:

Reservoirs with high pressures and temperatures (HPHT) that were considered to be atypical in the past are now frequent targets for exploration. For downhole oilfield drilling tools and components, the temperature and pressure affect the mechanical strength. To address this issue, a finite element analysis (FEA) for 206.84 MPa (30 ksi) pressure and 165°C has been performed on the pressure housing of the measurement-while-drilling/logging-whiledrilling (MWD/LWD) density tool. The density tool is a MWD/LWD sensor that measures the density of the formation. One of the components of the density tool is the pressure housing that is positioned in the tool. The FEA results are compared with the experimental test performed on the pressure housing of the density tool. Past results show a close match between the numerical results and the experimental test. This FEA model can be used for extreme HPHT and ultra HPHT analyses, and/or optimal design changes.

Keywords: FEA, HPHT, M/LWD, Oil & Gas

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1625
566 Multimodal Biometric System Based on Near- Infra-Red Dorsal Hand Geometry and Fingerprints for Single and Whole Hands

Authors: Mohamed K. Shahin, Ahmed M. Badawi, Mohamed E. M. Rasmy

Abstract:

Prior research evidenced that unimodal biometric systems have several tradeoffs like noisy data, intra-class variations, restricted degrees of freedom, non-universality, spoof attacks, and unacceptable error rates. In order for the biometric system to be more secure and to provide high performance accuracy, more than one form of biometrics are required. Hence, the need arise for multimodal biometrics using combinations of different biometric modalities. This paper introduces a multimodal biometric system (MMBS) based on fusion of whole dorsal hand geometry and fingerprints that acquires right and left (Rt/Lt) near-infra-red (NIR) dorsal hand geometry (HG) shape and (Rt/Lt) index and ring fingerprints (FP). Database of 100 volunteers were acquired using the designed prototype. The acquired images were found to have good quality for all features and patterns extraction to all modalities. HG features based on the hand shape anatomical landmarks were extracted. Robust and fast algorithms for FP minutia points feature extraction and matching were used. Feature vectors that belong to similar biometric traits were fused using feature fusion methodologies. Scores obtained from different biometric trait matchers were fused using the Min-Max transformation-based score fusion technique. Final normalized scores were merged using the sum of scores method to obtain a single decision about the personal identity based on multiple independent sources. High individuality of the fused traits and user acceptability of the designed system along with its experimental high performance biometric measures showed that this MMBS can be considered for med-high security levels biometric identification purposes.

Keywords: Unimodal, Multi-Modal, Biometric System, NIR Imaging, Dorsal Hand Geometry, Fingerprint, Whole Hands, Feature Extraction, Feature Fusion, Score Fusion

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2191
565 The Effect of Correlated Service and Inter-arrival Times on System Performance

Authors: Gang Uk Hwang

Abstract:

In communication networks where communication nodes are connected with finite capacity transmission links, the packet inter-arrival times are strongly correlated with the packet length and the link capacity (or the packet service time). Such correlation affects the system performance significantly, but little attention has been paid to this issue. In this paper, we propose a mathematical framework to study the impact of the correlation between the packet service times and the packet inter-arrival times on system performance. With our mathematical model, we analyze the system performance, e.g., the unfinished work of the system, and show that the correlation affects the system performance significantly. Some numerical examples are also provided.

Keywords: Performance analysis, Correlated queueing system, Unfinished work, PH-type distribution, Communicationsystem.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1359
564 Simulation of Dynamics of a Permanent Magnet Linear Actuator

Authors: Ivan Yatchev, Ewen Ritchie

Abstract:

Comparison of two approaches for the simulation of the dynamic behaviour of a permanent magnet linear actuator is presented. These are full coupled model, where the electromagnetic field, electric circuit and mechanical motion problems are solved simultaneously, and decoupled model, where first a set of static magnetic filed analysis is carried out and then the electric circuit and mechanical motion equations are solved employing bi-cubic spline approximations of the field analysis results. The results show that the proposed decoupled model is of satisfactory accuracy and gives more flexibility when the actuator response is required to be estimated for different external conditions, e.g. external circuit parameters or mechanical loads.

Keywords: Coupled problems, dynamic models, finite elementanalysis, linear actuators, permanent magnets.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2738
563 Arbitrary Amplitude Ion-Acoustic Solitary Waves in Electron-Ion-Positron Plasma with Nonthermal Electrons

Authors: Basudev Ghosh, Sreyasi Banerjee

Abstract:

Using pseudo potential method arbitrary amplitude ion-acoustic solitary waves have been theoretically studied in a collisionless plasma consisting of warm drifting positive ions, Boltzmann positrons and nonthermal electrons. Ion-acoustic solitary wave solutions have been obtained and the dependence of the solitary wave profile on different plasma parameters has been studied numerically. Lower and higher order compressive and rarefactive solitary waves are observed in presence of positrons, nonthermal electrons, ion drift velocity and finite ion temperature. Inclusion of higher order nonlinearity is shown to have significant correction to the solitary wave profile for the same values of plasma parameters.

Keywords: Ion-acoustic waves, Nonthermal electrons, Sagdeev potential, Solitary waves.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2162
562 Comparison of Different Data Acquisition Techniques for Shape Optimization Problems

Authors: Attila Vámosi, Tamás Mankovits, Dávid Huri, Imre Kocsis, Tamás Szabó

Abstract:

Non-linear FEM calculations are indispensable when important technical information like operating performance of a rubber component is desired. For example rubber bumpers built into air-spring structures may undergo large deformations under load, which in itself shows non-linear behavior. The changing contact range between the parts and the incompressibility of the rubber increases this non-linear behavior further. The material characterization of an elastomeric component is also a demanding engineering task. The shape optimization problem of rubber parts led to the study of FEM based calculation processes. This type of problems was posed and investigated by several authors. In this paper the time demand of certain calculation methods are studied and the possibilities of time reduction is presented.

Keywords: Rubber bumper, data acquisition, finite element analysis, support vector regression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2114
561 Design Development, Fabrication, and Preliminary Specifications of Multi-Fingered Prosthetic Hand

Authors: Mogeeb A. El-Sheikh

Abstract:

The study has developed the previous design of an artificial anthropomorphic humanoid hand and accustomed it as a prosthetic hand. The main specifications of this design are determined. The development of our previous design involves the main artificial hand’s parts and subassemblies, palm, fingers, and thumb. In addition, the study presents an adaptable socket design for a transradial amputee. This hand has 3 fingers and thumb. It is more reliable, cosmetics, modularity, and ease of assembly. Its size and weight are almost as a natural hand. The socket cavity has the capability for different sizes of a transradial amputee. The study implements the developed design by using rapid prototype and specifies its main specifications by using a data glove and finite element method.

Keywords: Adaptable socket, prosthetic hand, transradial amputee.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 860
560 Effects of the Wavy Surface on Free Convection-Radiation along an Inclined Plate

Authors: M. Si Abdallah, B. Zeghmati

Abstract:

A numerical analysis used to simulate the effects of wavy surfaces and thermal radiation on natural convection heat transfer boundary layer flow over an inclined wavy plate has been investigated. A simple coordinate transformation is employed to transform the complex wavy surface into a flat plate. The boundary layer equations and the boundary conditions are discretized by the finite difference scheme and solved numerically using the Gauss-Seidel algorithm with relaxation coefficient. Effects of the wavy geometry, the inclination angle of the wavy plate and the thermal radiation on the velocity profiles, temperature profiles and the local Nusselt number are presented and discussed in detail.

Keywords: Free convection, wavy surface, inclined surface, thermal radiation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2291
559 Bearing Behavior of a Hybrid Monopile Foundation for Offshore Wind Turbines

Authors: Zicheng Wang

Abstract:

Offshore wind energy provides a huge potential for the expansion of renewable energies to the coastal countries. High demands are required concerning the shape and type of foundations for offshore wind turbines (OWTs) to find an economically, technically and environmentally-friendly optimal solution. A promising foundation concept is the hybrid foundation system, which consists of a steel plate attached to the outer side of a hollow steel pipe pile. In this study, the bearing behavior of a large diameter foundation is analyzed using a 3-dimensional finite element (FE) model. Non-linear plastic soil behavior is considered. The results of the numerical simulations are compared to highlight the priority of the hybrid foundation to the conventional monopile foundation.

Keywords: Hybrid foundation system, mechanical parameters, plastic soil behaviors, numerical simulations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 582
558 Efficient Hardware Implementation of an Elliptic Curve Cryptographic Processor Over GF (2 163)

Authors: Massoud Masoumi, Hosseyn Mahdizadeh

Abstract:

A new and highly efficient architecture for elliptic curve scalar point multiplication which is optimized for a binary field recommended by NIST and is well-suited for elliptic curve cryptographic (ECC) applications is presented. To achieve the maximum architectural and timing improvements we have reorganized and reordered the critical path of the Lopez-Dahab scalar point multiplication architecture such that logic structures are implemented in parallel and operations in the critical path are diverted to noncritical paths. With G=41, the proposed design is capable of performing a field multiplication over the extension field with degree 163 in 11.92 s with the maximum achievable frequency of 251 MHz on Xilinx Virtex-4 (XC4VLX200) while 22% of the chip area is occupied, where G is the digit size of the underlying digit-serial finite field multiplier.

Keywords: Elliptic curve cryptography, FPGA implementation, scalar point multiplication.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2524
557 Radiation Effect on MHD Casson Fluid Flow over a Power-Law Stretching Sheet with Chemical Reaction

Authors: Motahar Reza, Rajni Chahal, Neha Sharma

Abstract:

This article addresses the boundary layer flow and heat transfer of Casson fluid over a nonlinearly permeable stretching surface with chemical reaction in the presence of variable magnetic field. The effect of thermal radiation is considered to control the rate of heat transfer at the surface. Using similarity transformations, the governing partial differential equations of this problem are reduced into a set of non-linear ordinary differential equations which are solved by finite difference method. It is observed that the velocity at fixed point decreases with increasing the nonlinear stretching parameter but the temperature increases with nonlinear stretching parameter.

Keywords: Boundary layer flow, nonlinear stretching, Casson fluid, heat transfer, radiation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1758
556 Warning about the Risk of Blood Flow Stagnation after Transcatheter Aortic Valve Implantation

Authors: Aymen Laadhari, Gábor Székely

Abstract:

In this work, the hemodynamics in the sinuses of Valsalva after Transcatheter Aortic Valve Implantation is numerically examined. We focus on the physical results in the two-dimensional case. We use a finite element methodology based on a Lagrange multiplier technique that enables to couple the dynamics of blood flow and the leaflets’ movement. A massively parallel implementation of a monolithic and fully implicit solver allows more accuracy and significant computational savings. The elastic properties of the aortic valve are disregarded, and the numerical computations are performed under physiologically correct pressure loads. Computational results depict that blood flow may be subject to stagnation in the lower domain of the sinuses of Valsalva after Transcatheter Aortic Valve Implantation.

Keywords: Hemodynamics, Transcatheter Aortic Valve Implantation, blood flow stagnation, numerical simulations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1065
555 Active Control Improvement of Smart Cantilever Beam by Piezoelectric Materials and On-Line Differential Artificial Neural Networks

Authors: P. Karimi, A. H. Khedmati Bazkiaei

Abstract:

The main goal of this study is to test differential neural network as a controller of smart structure and is to enumerate its advantages and disadvantages in comparison with other controllers. In this study, the smart structure has been considered as a Euler Bernoulli cantilever beam and it has been tried that it be under control with the use of vibration neural network resulting from movement. Also, a linear observer has been considered as a reference controller and has been compared its results. The considered vibration charts and the controlled state have been recounted in the final part of this text. The obtained result show that neural observer has better performance in comparison to the implemented linear observer.

Keywords: Smart material, on-line differential artificial neural network, active control, finite element method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 787
554 Active Vibration Control of Flexible Beam using Differential Evolution Optimisation

Authors: Mohd Sazli Saad, Hishamuddin Jamaluddin, Intan Zaurah Mat Darus

Abstract:

This paper presents the development of an active vibration control using direct adaptive controller to suppress the vibration of a flexible beam system. The controller is realized based on linear parametric form. Differential evolution optimisation algorithm is used to optimize the controller using single objective function by minimizing the mean square error of the observed vibration signal. Furthermore, an alternative approach is developed to systematically search for the best controller model structure together with it parameter values. The performance of the control scheme is presented and analysed in both time and frequency domain. Simulation results demonstrate that the proposed scheme is able to suppress the unwanted vibration effectively.

Keywords: flexible beam, finite difference method, active vibration control, differential evolution, direct adaptive controller

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2535
553 Fusion of Finger Inner Knuckle Print and Hand Geometry Features to Enhance the Performance of Biometric Verification System

Authors: M. L. Anitha, K. A. Radhakrishna Rao

Abstract:

With the advent of modern computing technology, there is an increased demand for developing recognition systems that have the capability of verifying the identity of individuals. Recognition systems are required by several civilian and commercial applications for providing access to secured resources. Traditional recognition systems which are based on physical identities are not sufficiently reliable to satisfy the security requirements due to the use of several advances of forgery and identity impersonation methods. Recognizing individuals based on his/her unique physiological characteristics known as biometric traits is a reliable technique, since these traits are not transferable and they cannot be stolen or lost. Since the performance of biometric based recognition system depends on the particular trait that is utilized, the present work proposes a fusion approach which combines Inner knuckle print (IKP) trait of the middle, ring and index fingers with the geometrical features of hand. The hand image captured from a digital camera is preprocessed to find finger IKP as region of interest (ROI) and hand geometry features. Geometrical features are represented as the distances between different key points and IKP features are extracted by applying local binary pattern descriptor on the IKP ROI. The decision level AND fusion was adopted, which has shown improvement in performance of the combined scheme. The proposed approach is tested on the database collected at our institute. Proposed approach is of significance since both hand geometry and IKP features can be extracted from the palm region of the hand. The fusion of these features yields a false acceptance rate of 0.75%, false rejection rate of 0.86% for verification tests conducted, which is less when compared to the results obtained using individual traits. The results obtained confirm the usefulness of proposed approach and suitability of the selected features for developing biometric based recognition system based on features from palmar region of hand.

Keywords: Biometrics, hand geometry features, inner knuckle print, recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1132
552 An Empirical Formula for Seismic Test of Telecommunication Equipments

Authors: Young Hoon Lee, Bong Jin Kang, Won Ho Kang

Abstract:

Antiseismic property of telecommunication equipment is very important for the grasp of the damage and the restoration after earthquake. Telecommunication business operators are regulating seismic standard for their equipments. These standards are organized to simulate the real seismic situations and usually define the minimum value of first natural frequency of the equipments or the allowable maximum displacement of top of the equipments relative to bottom. Using the finite element analysis, natural frequency can be obtained with high accuracy but the relative displacement of top of the equipments is difficult to predict accurately using the analysis. Furthermore, in the case of simulating the equipments with access floor, predicting the relative displacement of top of the equipments become more difficult. In this study, using enormous experimental datum, an empirical formula is suggested to forecast the relative displacement of top of the equipments. Also it can be known that which physical quantities are related with the relative displacement.

Keywords: Empirical formula, First natural frequency, Seismic test, Telecommunication equipments.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1771
551 Transient Stress Analysis on Medium Modules Spur Gear by Using Mode Super Position Technique

Authors: Ali Raad Hassan

Abstract:

Natural frequencies and dynamic response of a spur gear sector are investigated using a two dimensional finite element model that offers significant advantages for dynamic gear analyses. The gear teeth are analyzed for different operating speeds. A primary feature of this modeling is determination of mesh forces using a detailed contact analysis for each time step as the gears roll through the mesh. ANSYS software has been used on the proposed model to find the natural frequencies by Block Lanczos technique and displacements and dynamic stresses by transient mode super position method. The effect of rotational speed of the gear on the dynamic response of gear tooth has been studied and design limits have been discussed.

Keywords: Spur gear, Natural frequency, transient analysis, Mode super position technique.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2959
550 A Finite Element Model for Estimating Young-s Modulus of Carbon Nanotube Reinforced Composites Incorporating Elastic Cross-Links

Authors: Kaveh PourAkbar Saffar, Nima JamilPour, Ahmad Raeisi Najafi, Gholamreza Rouhi, Ahmad Reza Arshi, Abdolhossein Fereidoon

Abstract:

The presence of chemical bonding between functionalized carbon nanotubes and matrix in carbon nanotube reinforced composites is modeled by elastic beam elements representing covalent bonding characteristics. Neglecting other reinforcing mechanisms in the composite such as relatively weak interatomic Van der Waals forces, this model shows close results to the Rule of Mixtures model-s prediction for effective Young-s modulus of a Representative Volume Element of composite for small volume fractions (~1%) and high aspect ratios (L/D>200) of CNTs.

Keywords: Beam Element, Carbon Nanotube Reinforced Composite, Cross-link, Young's modulus.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2306
549 Numerical Investigation on the Effects of Deep Excavation on Adjacent Pile Groups Subjected to Inclined Loading

Authors: Ashkan Shafee, Ahmad Fahimifar

Abstract:

There is a growing demand for construction of high-rise buildings and infrastructures in large cities, which sometimes require deep excavations in the vicinity of pile foundations. In this study, a two-dimensional finite element analysis is used to gain insight into the response of pile groups adjacent to deep excavations in sand. The numerical code was verified by available experimental works, and a parametric study was performed on different working load combinations, excavation depth and supporting system. The results show that the simple two-dimensional plane strain model can accurately simulate the excavation induced changes on adjacent pile groups. It was found that further excavation than pile toe level and also inclined loading on adjacent pile group can severely affect the serviceability of the foundation.

Keywords: Deep excavation, pile group, inclined loading, lateral deformation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 968
548 Effect of Concrete Nonlinear Parameters on the Seismic Response of Concrete Gravity Dams

Authors: Z. Heirany, M. Ghaemian

Abstract:

Behavior of dams against the seismic loads has been studied by many researchers. Most of them proposed new numerical methods to investigate the dam safety. In this paper, to study the effect of nonlinear parameters of concrete in gravity dams, a twodimensional approach was used including the finite element method, staggered method and smeared crack approach. Effective parameters in the models are physical properties of concrete such as modulus of elasticity, tensile strength and specific fracture energy. Two different models were used in foundation (mass-less and massed) in order to determine the seismic response of concrete gravity dams. Results show that when the nonlinear analysis includes the dam- foundation interaction, the foundation-s mass, flexibility and radiation damping are important in gravity dam-s response.

Keywords: Numerical methods; concrete gravity dams; finiteelement method; boundary condition

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2311
547 Seismic Analysis of Structurally Hybrid Wind Mill Tower

Authors: Atul K. Desai, Hemal J. Shah

Abstract:

The tall windmill towers are designed as monopole tower or lattice tower. In the present research, a 125-meter high hybrid tower which is a combination of lattice and monopole type is proposed. The response of hybrid tower is compared with conventional monopole tower. The towers were analyzed in finite element method software considering nonlinear seismic time history load. The synthetic seismic time history for different soil is derived using the SeismoARTIF software. From the present research, it is concluded that, in the hybrid tower, we are not getting resonance condition. The base shear is less in hybrid tower compared to monopole tower for different soil conditions.

Keywords: Dynamic analysis, hybrid wind mill tower, resonance condition, synthetic time history.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 727
546 Two-Stage Approach for Solving the Multi-Objective Optimization Problem on Combinatorial Configurations

Authors: Liudmyla Koliechkina, Olena Dvirna

Abstract:

The statement of the multi-objective optimization problem on combinatorial configurations is formulated, and the approach to its solution is proposed. The problem is of interest as a combinatorial optimization one with many criteria, which is a model of many applied tasks. The approach to solving the multi-objective optimization problem on combinatorial configurations consists of two stages; the first is the reduction of the multi-objective problem to the single criterion based on existing multi-objective optimization methods, the second stage solves the directly replaced single criterion combinatorial optimization problem by the horizontal combinatorial method. This approach provides the optimal solution to the multi-objective optimization problem on combinatorial configurations, taking into account additional restrictions for a finite number of steps.

Keywords: Discrete set, linear combinatorial optimization, multi-objective optimization, multipermutation, Pareto solutions, partial permutation set, permutation, structural graph.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 631
545 Elastic Failure of Web-Cracked Plate Girder

Authors: Sebastian B. Mendes

Abstract:

The presence of a vertical fatigue crack in the web of a plate girder subjected to pure bending influences the bending moment capacity of the girder. The growth of the crack may lead to premature elastic failure due to flange local yielding, flange local buckling, or web local buckling. Approximate expressions for the bending moment capacities corresponding to these failure modes were formulated. Finite element analyses were then used to validate the expressions. The expressions were employed to assess the effects of crack length on the capacity. Neglecting brittle fracture, tension buckling, and ductile failure modes, it was found that typical girders are governed by the capacity associated with flange local yielding as influenced by the crack. Concluding, a possible use of the capacity expressions in girder design was demonstrated.

Keywords: Fatigue crack, flange yielding, flange buckling, web buckling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2223
544 A CTL Specification of Serializability for Transactions Accessing Uniform Data

Authors: Rafat Alshorman, Walter Hussak

Abstract:

Existing work in temporal logic on representing the execution of infinitely many transactions, uses linear-time temporal logic (LTL) and only models two-step transactions. In this paper, we use the comparatively efficient branching-time computational tree logic CTL and extend the transaction model to a class of multistep transactions, by introducing distinguished propositional variables to represent the read and write steps of n multi-step transactions accessing m data items infinitely many times. We prove that the well known correspondence between acyclicity of conflict graphs and serializability for finite schedules, extends to infinite schedules. Furthermore, in the case of transactions accessing the same set of data items in (possibly) different orders, serializability corresponds to the absence of cycles of length two. This result is used to give an efficient encoding of the serializability condition into CTL.

Keywords: computational tree logic, serializability, multi-step transactions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1149
543 Modeling and Simulations of Complex Low- Dimensional systems: Testing the Efficiency of Parallelization

Authors: Ryszard Matysiak, Grzegorz Kamieniarz

Abstract:

The deterministic quantum transfer-matrix (QTM) technique and its mathematical background are presented. This important tool in computational physics can be applied to a class of the real physical low-dimensional magnetic systems described by the Heisenberg hamiltonian which includes the macroscopic molecularbased spin chains, small size magnetic clusters embedded in some supramolecules and other interesting compounds. Using QTM, the spin degrees of freedom are accurately taken into account, yielding the thermodynamical functions at finite temperatures. In order to test the application for the susceptibility calculations to run in the parallel environment, the speed-up and efficiency of parallelization are analyzed on our platform SGI Origin 3800 with p = 128 processor units. Using Message Parallel Interface (MPI) system libraries we find the efficiency of the code of 94% for p = 128 that makes our application highly scalable.

Keywords: Deterministic simulations, low-dimensional magnets, modeling of complex systems, parallelization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1590
542 Comparison of the Thermal Characteristics of Induction Motor, Switched Reluctance Motor and Inset Permanent Magnet Motor for Electric Vehicle Application

Authors: Sadeep Sasidharan, T. B. Isha

Abstract:

Modern day electric vehicles require compact high torque/power density motors for electric propulsion. This necessitates proper thermal management of the electric motors. The main focus of this paper is to compare the steady state thermal analysis of a conventional 20 kW 8/6 Switched Reluctance Motor (SRM) with that of an Induction Motor and Inset Permanent Magnet (IPM) motor of the same rating. The goal is to develop a proper thermal model of the three types of models for Finite Element Thermal Analysis. JMAG software is used for the development and simulation of the thermal models. The results show that the induction motor is subjected to more heating when used for electric vehicle application constantly, compared to the SRM and IPM.

Keywords: SRM, induction motor, IPM, thermal analysis, loss models, electric vehicles.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1001
541 Identifying Unknown Dynamic Forces Applied on Two Dimensional Frames

Authors: H. Katkhuda

Abstract:

A time domain approach is used in this paper to identify unknown dynamic forces applied on two dimensional frames using the measured dynamic structural responses for a sub-structure in the two dimensional frame. In this paper a sub-structure finite element model with short length of measurement from only three or four accelerometers is required, and an iterative least-square algorithm is used to identify the unknown dynamic force applied on the structure. Validity of the method is demonstrated with numerical examples using noise-free and noise-contaminated structural responses. Both harmonic and impulsive forces are studied. The results show that the proposed approach can identify unknown dynamic forces within very limited iterations with high accuracy and shows its robustness even noise- polluted dynamic response measurements are utilized.

Keywords: Dynamic Force Identification, Dynamic Responses, Sub-structure and Time Domain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1505
540 Simulation of the Performance of Novel Nonlinear Optimal Control Technique on Two Cart-inverted Pendulum System

Authors: B. Baigzadeh, V.Nazarzehi, H.Khaloozadeh

Abstract:

The two cart inverted pendulum system is a good bench mark for testing the performance of system dynamics and control engineering principles. Devasia introduced this system to study the asymptotic tracking problem for nonlinear systems. In this paper the problem of asymptotic tracking of the two-cart with an inverted-pendulum system to a sinusoidal reference inputs via introducing a novel method for solving finite-horizon nonlinear optimal control problems is presented. In this method, an iterative method applied to state dependent Riccati equation (SDRE) to obtain a reliable algorithm. The superiority of this technique has been shown by simulation and comparison with the nonlinear approach.

Keywords: Nonlinear optimal control, State dependent Riccatiequation, Asymptotic tracking, inverted pendulum

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1563
539 Modeling User Behaviour by Planning

Authors: Alfredo Milani, Silvia Suriani

Abstract:

A model of user behaviour based automated planning is introduced in this work. The behaviour of users of web interactive systems can be described in term of a planning domain encapsulating the timed actions patterns representing the intended user profile. The user behaviour recognition is then posed as a planning problem where the goal is to parse a given sequence of user logs of the observed activities while reaching a final state. A general technique for transforming a timed finite state automata description of the behaviour into a numerical parameter planning model is introduced. Experimental results show that the performance of a planning based behaviour model is effective and scalable for real world applications. A major advantage of the planning based approach is to represent in a single automated reasoning framework problems of plan recognitions, plan synthesis and plan optimisation.

Keywords: User behaviour, Timed Transition Automata, Automated Planning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1320
538 A Meshfree Solution of Tow-Dimensional Potential Flow Problems

Authors: I. V. Singh, A. Singh

Abstract:

In this paper, mesh-free element free Galerkin (EFG) method is extended to solve two-dimensional potential flow problems. Two ideal fluid flow problems (i.e. flow over a rigid cylinder and flow over a sphere) have been formulated using variational approach. Penalty and Lagrange multiplier techniques have been utilized for the enforcement of essential boundary conditions. Four point Gauss quadrature have been used for the integration on two-dimensional domain (Ω) and nodal integration scheme has been used to enforce the essential boundary conditions on the edges (┌). The results obtained by EFG method are compared with those obtained by finite element method. The effects of scaling and penalty parameters on EFG results have also been discussed in detail.

Keywords: Meshless, EFG method, potential flow, Lagrange multiplier method, penalty method, penalty parameter and scaling parameter

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1472