Search results for: Multiple criteria classification
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3312

Search results for: Multiple criteria classification

2262 Integrating Process Planning and Scheduling for Prismatic Parts Regard to Due Date

Authors: M. Haddadzade, M. R. Razfar, M. Farahnakian

Abstract:

Integration of process planning and scheduling functions is necessary to achieve superior overall system performance. This paper proposes a methodology for integration of process planning and scheduling for prismatic component that can be implemented in a company with existing departments. The developed model considers technological constraints whereas available time for machining in shop floor is the limiting factor to produce multiple process plan (MPP). It takes advantage of MPP while guarantied the fulfillment of the due dates via using overtime. This study has been proposed to determinate machining parameters, tools, machine and amount of over time within the minimum cost objective while overtime is considered for this. At last the illustration shows that the system performance is improved by as measured by cost and compatible with due date.

Keywords: Due date, Integration, Multiple process plan, Process planning, Scheduling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1638
2261 A Multiple Linear Regression Model to Predict the Price of Cement in Nigeria

Authors: Kenneth M. Oba

Abstract:

This study investigated factors affecting the price of cement in Nigeria, and developed a mathematical model that can predict future cement prices. Cement is key in the Nigerian construction industry. The changes in price caused by certain factors could affect economic and infrastructural development; hence there is need for proper proactive planning. Secondary data were collected from published information on cement between 2014 and 2019. In addition, questionnaires were sent to some domestic cement retailers in Port Harcourt in Nigeria, to obtain the actual prices of cement between the same periods. The study revealed that the most critical factors affecting the price of cement in Nigeria are inflation rate, population growth rate, and Gross Domestic Product (GDP) growth rate. With the use of data from United Nations, International Monetary Fund, and Central Bank of Nigeria databases, amongst others, a Multiple Linear Regression model was formulated. The model was used to predict the price of cement for 2020-2025. The model was then tested with 95% confidence level, using a two-tailed t-test and an F-test, resulting in an R2 of 0.8428 and R2 (adj.) of 0.6069. The results of the tests and the correlation factors confirm the model to be fit and adequate. This study will equip researchers and stakeholders in the construction industry with information for planning, monitoring, and management of present and future construction projects that involve the use of cement.

Keywords: Cement price, multiple linear regression model, Nigerian Construction Industry, price prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 791
2260 Reliability Analysis of P-I Diagram Formula for RC Column Subjected to Blast Load

Authors: Masoud Abedini, Azrul A. Mutalib, Shahrizan Baharom, Hong Hao

Abstract:

This study was conducted published to investigate there liability of the equation pressure-impulse (PI) reinforced concrete column inprevious studies. Equation involves three different levels of damage criteria known as D =0. 2, D =0. 5 and D =0. 8.The damage criteria known as a minor when 0-0.2, 0.2-0.5is known as moderate damage, high damage known as 0.5-0.8, and 0.8-1 of the structure is considered a failure. In this study, two types of reliability analyzes conducted. First, using pressure-impulse equation with different parameters. The parameters involved are the concrete strength, depth, width, and height column, the ratio of longitudinal reinforcement and transverse reinforcement ratio. In the first analysis of the reliability of this new equation is derived to improve the previous equations. The second reliability analysis involves three types of columns used to derive the PI curve diagram using the derived equation to compare with the equation derived from other researchers and graph minimum standoff versus weapon yield Federal Emergency Management Agency (FEMA). The results showed that the derived equation is more accurate with FEMA standards than previous researchers.

Keywords: Blast load, RC column, P-I curve, Analytical formulae, Standard FEMA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2913
2259 Properties and Approximation Distribution Reductions in Multigranulation Rough Set Model

Authors: Properties, Approximation Distribution Reductions in Multigranulation Rough Set Model

Abstract:

Some properties of approximation sets are studied in multi-granulation optimist model in rough set theory using maximal compatible classes. The relationships between or among lower and upper approximations in single and multiple granulation are compared and discussed. Through designing Boolean functions and discernibility matrices in incomplete information systems, the lower and upper approximation sets and reduction in multi-granulation environments can be found. By using examples, the correctness of computation approach is consolidated. The related conclusions obtained are suitable for further investigating in multiple granulation RSM.

Keywords: Incomplete information system, maximal compatible class, multi-granulation rough set model, reduction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 859
2258 Grade and Maximum Tumor Dimension as Determinants of Lymphadenectomy in Patients with Endometrioid Endometrial Cancer (EEC)

Authors: Ali A. Bazzi, Ameer Hamza, Riley O’Hara, Kimberly Kado, Karen H. Hagglund, Lamia Fathallah, Robert T. Morris

Abstract:

Introduction: Endometrial Cancer is a common gynecologic malignancy primarily treated with complete surgical staging, which may include complete pelvic and para-aortic lymphadenectomy. The role of lymphadenectomy is controversial, especially the intraoperative indications for the procedure. Three factors are important in decision to proceed with lymphadenectomy: Myometrial invasion, maximum tumor dimension, and histology. Many institutions incorporate these criteria in varying degrees in the decision to proceed with lymphadenectomy. This investigation assesses the use of intraoperatively measured MTD with and without pre-operative histologic grade. Methods: This study compared retrospectively EEC patients with intraoperatively measured MTD ≤2 cm to those with MTD >2 cm from January 1, 2002 to August 31, 2017. This assessment compared those with MTD ≤ 2cm with endometrial biopsy (EB) grade 1-2 to patients with MTD > 2cm with EB grade 3. Lymph node metastasis (LNM), recurrence, and survival were compared in these groups. Results: This study reviewed 222 patient cases. In tumors > 2 cm, LNM occurred in 20% cases while in tumors ≤ 2 cm, LNM was found in 6% cases (p=0.04). Recurrence and mean survival based on last follow up visit in these two groups were not statistically different (p=0.78 and 0.36 respectively). Data demonstrated a trend that when combined with preoperative EB International Federation of Gynecology and Obstetrics (FIGO) grade, a higher proportion of patients with EB FIGO Grade 3 and MTD > 2 cm had LNM compared to those with EB FIGO Grade 1-2 and MTD ≤ 2 cm (43% vs, 11%, p=0.06). LNM was found in 15% of cases in which lymphadenectomy was performed based on current practices, whereas if the criteria of EB FIGO 3 and MTD > 2 cm were used the incidence of LNM would have been 44% cases. However, using this criterion, two patients would not have had their nodal metastases detected. Compared to the current practice, the sensitivity and specificity of the proposed criteria would be 60% and 81%, respectively. The PPV and NPV would be 43% and 90%, respectively. Conclusion: The results indicate that MTD combined with EB FIGO grade can detect LNM in a higher proportion of cases when compared to current practice. MTD combined with EB FIGO grade may eliminate the need of frozen section sampling in a substantial number of cases.

Keywords: Endometrial cancer, FIGO grade, lymphadenectomy, tumor size.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 853
2257 The CommonSense Platform for Conducting Multiple Participant Field-Experiments Using Mobile-Phones

Authors: Y. Hoffner, Y. Rusho, S. Rubach, S. Abargil

Abstract:

This paper presents CommonSense, a platform that provides researchers with the infrastructure and tools that enable the efficient and smooth creation, execution and processing of multiple participant experiments taking place outside the laboratory environment. The platform provides the infrastructure and tools to accompany the researchers throughout the life cycle of an experiment – from its inception, through its execution, to its processing and termination. The approach of our platform is based on providing a comprehensive solution, which puts emphasis on the support for the entire life-cycle of an experiment, starting from its definition, the setting up and the configuration of the platform, through the management of the experiment itself and its post processing. Some of the components that support those processes are constructed and configured automatically from the experiment definition.

Keywords: Mobile applications, mobile experiments, web experiments, software system architecture.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 431
2256 ECG-Based Heartbeat Classification Using Convolutional Neural Networks

Authors: Jacqueline R. T. Alipo-on, Francesca I. F. Escobar, Myles J. T. Tan, Hezerul Abdul Karim, Nouar AlDahoul

Abstract:

Electrocardiogram (ECG) signal analysis and processing are crucial in the diagnosis of cardiovascular diseases which are considered as one of the leading causes of mortality worldwide. However, the traditional rule-based analysis of large volumes of ECG data is time-consuming, labor-intensive, and prone to human errors. With the advancement of the programming paradigm, algorithms such as machine learning have been increasingly used to perform an analysis on the ECG signals. In this paper, various deep learning algorithms were adapted to classify five classes of heart beat types. The dataset used in this work is the synthetic MIT-Beth Israel Hospital (MIT-BIH) Arrhythmia dataset produced from generative adversarial networks (GANs). Various deep learning models such as ResNet-50 convolutional neural network (CNN), 1-D CNN, and long short-term memory (LSTM) were evaluated and compared. ResNet-50 was found to outperform other models in terms of recall and F1 score using a five-fold average score of 98.88% and 98.87%, respectively. 1-D CNN, on the other hand, was found to have the highest average precision of 98.93%.

Keywords: Heartbeat classification, convolutional neural network, electrocardiogram signals, ECG signals, generative adversarial networks, long short-term memory, LSTM, ResNet-50.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 188
2255 Effects of LED Lighting on Visual Comfort with Respect to the Reading Task

Authors: Ayşe Nihan Avcı, İpek Memikoğlu

Abstract:

Lighting systems in interior architecture need to be designed according to the function of the space, the type of task within the space, user comfort and needs. Desired and comfortable lighting levels increase task efficiency. When natural lighting is inadequate in a space, artificial lighting is additionally used to support the level of light. With the technological developments, the characteristics of light are being researched comprehensively and several business segments have focused on its qualitative and quantitative characteristics. These studies have increased awareness and usage of artificial lighting systems and researchers have investigated the effects of lighting on physical and psychological aspects of human in various ways. The aim of this study is to research the effects of illuminance levels of LED lighting on user visual comfort. Eighty participants from the Department of Interior Architecture of Çankaya University participated in three lighting scenarios consisting of 200 lux, 500 lux and 800 lux that are created with LED lighting. Each lighting scenario is evaluated according to six visual comfort criteria in which a reading task is performed. The results of the study indicated that LED lighting with three different illuminance levels affect visual comfort in different ways. The results are limited to the participants and questions that are attended and used in this study.

Keywords: Illuminance levels, LED lighting, reading task, visual comfort criteria.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1153
2254 Masquerade and “What Comes Behind Six Is More Than Seven”: Thoughts on Art History and Visual Culture Research Methods

Authors: Osa D Egonwa

Abstract:

In the 21st century, the disciplinary boundaries of past centuries that we often create through mainstream art historical classification, techniques and sources may have been eroded by visual culture, which seems to provide a more inclusive umbrella for the new ways artists go about the creative process and its resultant commodities. Over the past four decades, artists in Africa have resorted to new materials, techniques and themes which have affected our ways of research on these artists and their art. Frontline artists such as El Anatsui, Yinka Shonibare, Erasmus Onyishi are demonstrating that any material is just suitable for artistic expression. Most of times, these materials come with their own techniques/effects and visual syntax: a combination of materials compounds techniques, formal aesthetic indexes, halo effects, and iconography. This tends to challenge the categories and we lean on to view, think and talk about them. This renders our main stream art historical research methods inadequate, thus suggesting new discursive concepts, terms and theories. This paper proposed the Africanist eclectic methods derived from the dual framework of Masquerade Theory and What Comes Behind Six is More Than Seven. This paper shares thoughts/research on art historical methods, terminological re-alignments on classification/source data, presentational format and interpretation arising from the emergent trends in our subject. The outcome provides useful tools to mediate new thoughts and experiences in recent African art and visual culture.

Keywords: Art Historical Methods, Classifications, Concepts , Re-alignment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 638
2253 Distributed Coordination of Connected and Automated Vehicles at Multiple Interconnected Intersections

Authors: Zhiyuan Du, Baisravan Hom Chaudhuri, Pierluigi Pisu

Abstract:

In connected vehicle systems where wireless communication is available among the involved vehicles and intersection controllers, it is possible to design an intersection coordination strategy that leads the connected and automated vehicles (CAVs) travel through the road intersections without the conventional traffic light control. In this paper, we present a distributed coordination strategy for the CAVs at multiple interconnected intersections that aims at improving system fuel efficiency and system mobility. We present a distributed control solution where in the higher level, the intersection controllers calculate the road desired average velocity and optimally assign reference velocities of each vehicle. In the lower level, every vehicle is considered to use model predictive control (MPC) to track their reference velocity obtained from the higher level controller. The proposed method has been implemented on a simulation-based case with two-interconnected intersection network. Additionally, the effects of mixed vehicle types on the coordination strategy has been explored. Simulation results indicate the improvement on vehicle fuel efficiency and traffic mobility of the proposed method.

Keywords: Connected vehicles, automated vehicles, intersection coordination systems, multiple interconnected intersections, model predictive control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1848
2252 Using Analytic Hierarchy Process as a Decision-Making Tool in Project Portfolio Management

Authors: D. Danesh, M. J. Ryan, A. Abbasi

Abstract:

Project Portfolio Management (PPM) is an essential component of an organisation’s strategic procedures, which requires attention of several factors to envisage a range of long-term outcomes to support strategic project portfolio decisions. To evaluate overall efficiency at the portfolio level, it is essential to identify the functionality of specific projects as well as to aggregate those findings in a mathematically meaningful manner that indicates the strategic significance of the associated projects at a number of levels of abstraction. PPM success is directly associated with the quality of decisions made and poor judgment increases portfolio costs. Hence, various Multi-Criteria Decision Making (MCDM) techniques have been designed and employed to support the decision-making functions. This paper reviews possible options to enhance the decision-making outcomes in organisational portfolio management processes using the Analytic Hierarchy Process (AHP) both from academic and practical perspectives and will examine the usability, certainty and quality of the technique. The results of the study will also provide insight into the technical risk associated with current decision-making model to underpin initiative tracking and strategic portfolio management.

Keywords: Analytic hierarchy process, decision support systems, multi-criteria decision-making, project portfolio management.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4272
2251 The Design of Multiple Detection Parallel Combined Spread Spectrum Communication System

Authors: Lixin Tian, Wei Xue

Abstract:

Many jobs in society go underground, such as mine mining, tunnel construction and subways, which are vital to the development of society. Once accidents occur in these places, the interruption of traditional wired communication is not conducive to the development of rescue work. In order to realize the positioning, early warning and command functions of underground personnel and improve rescue efficiency, it is necessary to develop and design an emergency ground communication system. It is easy to be subjected to narrowband interference when performing conventional underground communication. Spreading communication can be used for this problem. However, general spread spectrum methods such as direct spread communication are inefficient, so it is proposed to use parallel combined spread spectrum (PCSS) communication to improve efficiency. The PCSS communication not only has the anti-interference ability and the good concealment of the traditional spread spectrum system, but also has a relatively high frequency band utilization rate and a strong information transmission capability. So, this technology has been widely used in practice. This paper presents a PCSS communication model-multiple detection parallel combined spread spectrum (MDPCSS) communication system. In this paper, the principle of MDPCSS communication system is described, that is, the sequence at the transmitting end is processed in blocks and cyclically shifted to facilitate multiple detection at the receiving end. The block diagrams of the transmitter and receiver of the MDPCSS communication system are introduced. At the same time, the calculation formula of the system bit error rate (BER) is introduced, and the simulation and analysis of the BER of the system are completed. By comparing with the common parallel PCSS communication, we can draw a conclusion that it is indeed possible to reduce the BER and improve the system performance. Furthermore, the influence of different pseudo-code lengths selected on the system BER is simulated and analyzed, and the conclusion is that the larger the pseudo-code length is, the smaller the system error rate is.

Keywords: Cyclic shift, multiple detection, parallel combined spread spectrum, PN code.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 552
2250 The Influence of Interest, Beliefs, and Identity with Mathematics on Achievement

Authors: Asma Alzahrani, Elizabeth Stojanovski

Abstract:

This study investigated factors that influence mathematics achievement based on a sample of ninth-grade students (N  =  21,444) from the High School Longitudinal Study of 2009 (HSLS09). Key aspects studied included efficacy in mathematics, interest and enjoyment of mathematics, identity with mathematics and future utility beliefs and how these influence mathematics achievement. The predictability of mathematics achievement based on these factors was assessed using correlation coefficients and multiple linear regression. Spearman rank correlations and multiple regression analyses indicated positive and statistically significant relationships between the explanatory variables: mathematics efficacy, identity with mathematics, interest in and future utility beliefs with the response variable, achievement in mathematics.

Keywords: Mathematics achievement, math efficacy, mathematics interest, identity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1133
2249 Non-Methane Hydrocarbons Emission during the Photocopying Process

Authors: Kiurski S. Jelena, Aksentijević M. Snežana, Kecić S. Vesna, Oros B. Ivana

Abstract:

Prosperity of electronic equipment in photocopying environment not only has improved work efficiency, but also has changed indoor air quality. Considering the number of photocopying employed, indoor air quality might be worse than in general office environments. Determining the contribution from any type of equipment to indoor air pollution is a complex matter. Non-methane hydrocarbons are known to have an important role on air quality due to their high reactivity. The presence of hazardous pollutants in indoor air has been detected in one photocopying shop in Novi Sad, Serbia. Air samples were collected and analyzed for five days, during 8-hr working time in three time intervals, whereas three different sampling points were determined. Using multiple linear regression model and software package STATISTICA 10 the concentrations of occupational hazards and microclimates parameters were mutually correlated. Based on the obtained multiple coefficients of determination (0.3751, 0.2389 and 0.1975), a weak positive correlation between the observed variables was determined. Small values of parameter F indicated that there was no statistically significant difference between the concentration levels of nonmethane hydrocarbons and microclimates parameters. The results showed that variable could be presented by the general regression model: y = b0 + b1xi1+ b2xi2. Obtained regression equations allow to measure the quantitative agreement between the variables and thus obtain more accurate knowledge of their mutual relations.

Keywords: Indoor air quality, multiple regression analysis, nonmethane hydrocarbons, photocopying process.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1974
2248 Improving Detection of Illegitimate Scores and Assessment in Most Advantageous Tenders

Authors: Hao-Hsi Tseng, Hsin-Yun Lee

Abstract:

Adopting Most Advantageous Tender (MAT) for the government procurement projects has become popular in Taiwan. As time pass by, the problems of MAT has appeared gradually. People condemn two points that are the result might be manipulated by a single committee member’s partiality and how to make a fair decision when the winner has two or more. Arrow’s Impossibility Theorem proposed that the best scoring method should meet the four reasonable criteria. According to these four criteria this paper constructed an “Illegitimate Scores Checking Scheme” for a scoring method and used the scheme to find out the illegitimate of the current evaluation method of MAT. This paper also proposed a new scoring method that is called the “Standardizing Overall Evaluated Score Method”. This method makes each committee member’s influence tend to be identical. Thus, the committee members can scoring freely according to their partiality without losing the fairness. Finally, it was examined by a large-scale simulation, and the experiment revealed that the it improved the problem of dictatorship and perfectly avoided the situation of cyclical majorities, simultaneously. This result verified that the Standardizing Overall Evaluated Score Method is better than any current evaluation method of MAT.

Keywords: Arrow’s impossibility theorem, most advantageous tender, illegitimate scores checking scheme, standard score.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1469
2247 Diagnosis of the Abdominal Aorta Aneurysm in Magnetic Resonance Imaging Images

Authors: W. Kultangwattana, K. Somkantha, P. Phuangsuwan

Abstract:

This paper presents a technique for diagnosis of the abdominal aorta aneurysm in magnetic resonance imaging (MRI) images. First, our technique is designed to segment the aorta image in MRI images. This is a required step to determine the volume of aorta image which is the important step for diagnosis of the abdominal aorta aneurysm. Our proposed technique can detect the volume of aorta in MRI images using a new external energy for snakes model. The new external energy for snakes model is calculated from Law-s texture. The new external energy can increase the capture range of snakes model efficiently more than the old external energy of snakes models. Second, our technique is designed to diagnose the abdominal aorta aneurysm by Bayesian classifier which is classification models based on statistical theory. The feature for data classification of abdominal aorta aneurysm was derived from the contour of aorta images which was a result from segmenting of our snakes model, i.e., area, perimeter and compactness. We also compare the proposed technique with the traditional snakes model. In our experiment results, 30 images are trained, 20 images are tested and compared with expert opinion. The experimental results show that our technique is able to provide more accurate results than 95%.

Keywords: Adbominal Aorta Aneurysm, Bayesian Classifier, Snakes Model, Texture Feature.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1592
2246 Hand Gesture Recognition Based on Combined Features Extraction

Authors: Mahmoud Elmezain, Ayoub Al-Hamadi, Bernd Michaelis

Abstract:

Hand gesture is an active area of research in the vision community, mainly for the purpose of sign language recognition and Human Computer Interaction. In this paper, we propose a system to recognize alphabet characters (A-Z) and numbers (0-9) in real-time from stereo color image sequences using Hidden Markov Models (HMMs). Our system is based on three main stages; automatic segmentation and preprocessing of the hand regions, feature extraction and classification. In automatic segmentation and preprocessing stage, color and 3D depth map are used to detect hands where the hand trajectory will take place in further step using Mean-shift algorithm and Kalman filter. In the feature extraction stage, 3D combined features of location, orientation and velocity with respected to Cartesian systems are used. And then, k-means clustering is employed for HMMs codeword. The final stage so-called classification, Baum- Welch algorithm is used to do a full train for HMMs parameters. The gesture of alphabets and numbers is recognized using Left-Right Banded model in conjunction with Viterbi algorithm. Experimental results demonstrate that, our system can successfully recognize hand gestures with 98.33% recognition rate.

Keywords: Gesture Recognition, Computer Vision & Image Processing, Pattern Recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4032
2245 ANN Based Currency Recognition System using Compressed Gray Scale and Application for Sri Lankan Currency Notes - SLCRec

Authors: D. A. K. S. Gunaratna, N. D. Kodikara, H. L. Premaratne

Abstract:

Automatic currency note recognition invariably depends on the currency note characteristics of a particular country and the extraction of features directly affects the recognition ability. Sri Lanka has not been involved in any kind of research or implementation of this kind. The proposed system “SLCRec" comes up with a solution focusing on minimizing false rejection of notes. Sri Lankan currency notes undergo severe changes in image quality in usage. Hence a special linear transformation function is adapted to wipe out noise patterns from backgrounds without affecting the notes- characteristic images and re-appear images of interest. The transformation maps the original gray scale range into a smaller range of 0 to 125. Applying Edge detection after the transformation provided better robustness for noise and fair representation of edges for new and old damaged notes. A three layer back propagation neural network is presented with the number of edges detected in row order of the notes and classification is accepted in four classes of interest which are 100, 500, 1000 and 2000 rupee notes. The experiments showed good classification results and proved that the proposed methodology has the capability of separating classes properly in varying image conditions.

Keywords: Artificial intelligence, linear transformation and pattern recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2833
2244 Hybrid Multipath Congestion Control

Authors: Akshit Singhal, Xuan Wang, Zhijun Wang, Hao Che, Hong Jiang

Abstract:

Multiple Path Transmission Control Protocols (MPTCPs) allow flows to explore path diversity to improve the throughput, reliability and network resource utilization. However, the existing solutions may discourage users to adopt the solutions in the face of multipath scenario where different paths are charged based on different pricing structures, e.g., WiFi vs. cellular connections, widely available for mobile phones. In this paper, we propose a Hybrid MPTCP (H-MPTCP) with a built-in mechanism to incentivize users to use multiple paths with different pricing structures. In the meantime, H-MPTCP preserves the nice properties enjoyed by the state-of-the-art MPTCP solutions. Extensive real Linux implementation results verify that H-MPTCP can indeed achieve the design objectives.

Keywords: Congestion control, Network Utility Maximization, Multipath TCP, network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 382
2243 Performance Analysis of Traffic Classification with Machine Learning

Authors: Htay Htay Yi, Zin May Aye

Abstract:

Network security is role of the ICT environment because malicious users are continually growing that realm of education, business, and then related with ICT. The network security contravention is typically described and examined centrally based on a security event management system. The firewalls, Intrusion Detection System (IDS), and Intrusion Prevention System are becoming essential to monitor or prevent of potential violations, incidents attack, and imminent threats. In this system, the firewall rules are set only for where the system policies are needed. Dataset deployed in this system are derived from the testbed environment. The traffic as in DoS and PortScan traffics are applied in the testbed with firewall and IDS implementation. The network traffics are classified as normal or attacks in the existing testbed environment based on six machine learning classification methods applied in the system. It is required to be tested to get datasets and applied for DoS and PortScan. The dataset is based on CICIDS2017 and some features have been added. This system tested 26 features from the applied dataset. The system is to reduce false positive rates and to improve accuracy in the implemented testbed design. The system also proves good performance by selecting important features and comparing existing a dataset by machine learning classifiers.

Keywords: False negative rate, intrusion detection system, machine learning methods, performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1070
2242 Machine Learning Based Approach for Measuring Promotion Effectiveness in Multiple Parallel Promotions’ Scenarios

Authors: Revoti Prasad Bora, Nikita Katyal

Abstract:

Promotion is a key element in the retail business. Thus, analysis of promotions to quantify their effectiveness in terms of Revenue and/or Margin is an essential activity in the retail industry. However, measuring the sales/revenue uplift is based on estimations, as the actual sales/revenue without the promotion is not present. Further, the presence of Halo and Cannibalization in a multiple parallel promotions’ scenario complicates the problem. Calculating Baseline by considering inter-brand/competitor items or using Halo and Cannibalization's impact on Revenue calculations by considering Baseline as an interpretation of items’ unit sales in neighboring nonpromotional weeks individually may not capture the overall Revenue uplift in the case of multiple parallel promotions. Hence, this paper proposes a Machine Learning based method for calculating the Revenue uplift by considering the Halo and Cannibalization impact on the Baseline and the Revenue. In the first section of the proposed methodology, Baseline of an item is calculated by incorporating the impact of the promotions on its related items. In the later section, the Revenue of an item is calculated by considering both Halo and Cannibalization impacts. Hence, this methodology enables correct calculation of the overall Revenue uplift due a given promotion.

Keywords: Halo, cannibalization, promotion, baseline, temporary price reduction, retail, elasticity, cross price elasticity, machine learning, random forest, linear regression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1324
2241 Mining Network Data for Intrusion Detection through Naïve Bayesian with Clustering

Authors: Dewan Md. Farid, Nouria Harbi, Suman Ahmmed, Md. Zahidur Rahman, Chowdhury Mofizur Rahman

Abstract:

Network security attacks are the violation of information security policy that received much attention to the computational intelligence society in the last decades. Data mining has become a very useful technique for detecting network intrusions by extracting useful knowledge from large number of network data or logs. Naïve Bayesian classifier is one of the most popular data mining algorithm for classification, which provides an optimal way to predict the class of an unknown example. It has been tested that one set of probability derived from data is not good enough to have good classification rate. In this paper, we proposed a new learning algorithm for mining network logs to detect network intrusions through naïve Bayesian classifier, which first clusters the network logs into several groups based on similarity of logs, and then calculates the prior and conditional probabilities for each group of logs. For classifying a new log, the algorithm checks in which cluster the log belongs and then use that cluster-s probability set to classify the new log. We tested the performance of our proposed algorithm by employing KDD99 benchmark network intrusion detection dataset, and the experimental results proved that it improves detection rates as well as reduces false positives for different types of network intrusions.

Keywords: Clustering, detection rate, false positive, naïveBayesian classifier, network intrusion detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5536
2240 Adaptive Filtering in Subbands for Supervised Source Separation

Authors: Bruna Luisa Ramos Prado Vasques, Mariane Rembold Petraglia, Antonio Petraglia

Abstract:

This paper investigates MIMO (Multiple-Input Multiple-Output) adaptive filtering techniques for the application of supervised source separation in the context of convolutive mixtures. From the observation that there is correlation among the signals of the different mixtures, an improvement in the NSAF (Normalized Subband Adaptive Filter) algorithm is proposed in order to accelerate its convergence rate. Simulation results with mixtures of speech signals in reverberant environments show the superior performance of the proposed algorithm with respect to the performances of the NLMS (Normalized Least-Mean-Square) and conventional NSAF, considering both the convergence speed and SIR (Signal-to-Interference Ratio) after convergence.

Keywords: Adaptive filtering, multirate processing, normalized subband adaptive filter, source separation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 962
2239 The Relationship between Conceptual Organizational Culture and the Level of Tolerance in Employees

Authors: M. Sadoughi, R. Ehsani

Abstract:

The aim of the present study is examining the relationship between conceptual organizational culture and the level of tolerance in employees of Islamic Azad University of Shahre Ghods. This research is a correlational and analytic-descriptive one. The samples included 144 individuals. A 24-item standard questionnaire of organizational culture by Cameron and Queen was used in this study. This questionnaire has six criteria and each criterion includes four items that each item indicates one cultural dimension. Reliability coefficient of this questionnaire was normed using Cronbach's alpha of 0.91. Also, the 25-item questionnaire of tolerance by Conor and Davidson was used. This questionnaire is in a five-degree Likert scale form. It has seven criteria and is designed to measure the power of coping with pressure and threat. It has the needed content reliability and its reliability coefficient is normed using Cronbach's alpha of 0.87. Data were analyzed using Pearson correlation coefficient and multivariable regression. The results showed among various dimensions of organizational culture, there is a positive significant relationship between three dimensions (family, adhocracy, bureaucracy) and tolerance, there is a negative significant relationship between dimension of market and tolerance and components of organizational culture have the power of prediction and explaining the tolerance. In this explanation, the component of family is the most effective and the best predictor of tolerance.

Keywords: Adhocracy, bureaucracy, organizational culture, tolerance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1032
2238 Performance Optimization of Data Mining Application Using Radial Basis Function Classifier

Authors: M. Govindarajan, R. M.Chandrasekaran

Abstract:

Text data mining is a process of exploratory data analysis. Classification maps data into predefined groups or classes. It is often referred to as supervised learning because the classes are determined before examining the data. This paper describes proposed radial basis function Classifier that performs comparative crossvalidation for existing radial basis function Classifier. The feasibility and the benefits of the proposed approach are demonstrated by means of data mining problem: direct Marketing. Direct marketing has become an important application field of data mining. Comparative Cross-validation involves estimation of accuracy by either stratified k-fold cross-validation or equivalent repeated random subsampling. While the proposed method may have high bias; its performance (accuracy estimation in our case) may be poor due to high variance. Thus the accuracy with proposed radial basis function Classifier was less than with the existing radial basis function Classifier. However there is smaller the improvement in runtime and larger improvement in precision and recall. In the proposed method Classification accuracy and prediction accuracy are determined where the prediction accuracy is comparatively high.

Keywords: Text Data Mining, Comparative Cross-validation, Radial Basis Function, runtime, accuracy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1554
2237 How Valid Are Our Language Test Interpretations? A Demonstrative Example

Authors: Masoud Saeedi, Shirin Rahimi Kazerooni, Vahid Parvaresh

Abstract:

Validity is an overriding consideration in language testing. If a test score is intended for a particular purpose, this must be supported through empirical evidence. This article addresses the validity of a multiple-choice achievement test (MCT). The test is administered at the end of each semester to decide about students' mastery of a course in general English. To provide empirical evidence pertaining to the validity of this test, two criterion measures were used. In so doing, a Cloze test and a C-test which are reported to gauge general English proficiency were utilized. The results of analyses show that there is a statistically significant correlation among participants' scores on the MCT, Cloze, and Ctest. Drawing on the findings of the study, it can be cautiously deduced that these tests measure the same underlying trait. However, allowing for the limitations of using criterion measures to validate tests, we cannot make any absolute claim as to the validity of this MCT test.

Keywords: C-test, cloze test, multiple-choice test, validity argument.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1924
2236 Change Point Analysis in Average Ozone Layer Temperature Using Exponential Lomax Distribution

Authors: Amjad Abdullah, Amjad Yahya, Bushra Aljohani, Amani S. Alghamdi

Abstract:

Change point detection is an important part of data analysis. The presence of a change point refers to a significant change in the behavior of a time series. In this article, we examine the detection of multiple change points of parameters of the exponential Lomax distribution, which is broad and flexible compared with other distributions while fitting data. We used the Schwarz information criterion and binary segmentation to detect multiple change points in publicly available data on the average temperature in the ozone layer. The change points were successfully located.

Keywords: Binary segmentation, change point, exponential Lomax distribution, information criterion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 341
2235 Discovering Complex Regularities: from Tree to Semi-Lattice Classifications

Authors: A. Faro, D. Giordano, F. Maiorana

Abstract:

Data mining uses a variety of techniques each of which is useful for some particular task. It is important to have a deep understanding of each technique and be able to perform sophisticated analysis. In this article we describe a tool built to simulate a variation of the Kohonen network to perform unsupervised clustering and support the entire data mining process up to results visualization. A graphical representation helps the user to find out a strategy to optimize classification by adding, moving or delete a neuron in order to change the number of classes. The tool is able to automatically suggest a strategy to optimize the number of classes optimization, but also support both tree classifications and semi-lattice organizations of the classes to give to the users the possibility of passing from one class to the ones with which it has some aspects in common. Examples of using tree and semi-lattice classifications are given to illustrate advantages and problems. The tool is applied to classify macroeconomic data that report the most developed countries- import and export. It is possible to classify the countries based on their economic behaviour and use the tool to characterize the commercial behaviour of a country in a selected class from the analysis of positive and negative features that contribute to classes formation. Possible interrelationships between the classes and their meaning are also discussed.

Keywords: Unsupervised classification, Kohonen networks, macroeconomics, Visual data mining, Cluster interpretation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1542
2234 Integration of Image and Patient Data, Software and International Coding Systems for Use in a Mammography Research Project

Authors: V. Balanica, W. I. D. Rae, M. Caramihai, S. Acho, C. P. Herbst

Abstract:

Mammographic images and data analysis to facilitate modelling or computer aided diagnostic (CAD) software development should best be done using a common database that can handle various mammographic image file formats and relate these to other patient information. This would optimize the use of the data as both primary reporting and enhanced information extraction of research data could be performed from the single dataset. One desired improvement is the integration of DICOM file header information into the database, as an efficient and reliable source of supplementary patient information intrinsically available in the images. The purpose of this paper was to design a suitable database to link and integrate different types of image files and gather common information that can be further used for research purposes. An interface was developed for accessing, adding, updating, modifying and extracting data from the common database, enhancing the future possible application of the data in CAD processing. Technically, future developments envisaged include the creation of an advanced search function to selects image files based on descriptor combinations. Results can be further used for specific CAD processing and other research. Design of a user friendly configuration utility for importing of the required fields from the DICOM files must be done.

Keywords: Database Integration, Mammogram Classification, Tumour Classification, Computer Aided Diagnosis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1945
2233 Development of Monitoring and Simulation System of Human Tracking System Based On Mobile Agent Technologies

Authors: Kozo Tanigawa, Toshihiko Sasama, Kenichi Takahashi, Takao Kawamura, Kazunori Sugahara

Abstract:

In recent years, the number of the cases of information leaks is increasing. Companies and Research Institutions make various actions against information thefts and security accidents. One of the actions is adoption of the crime prevention system, including the monitoring system by surveillance cameras. In order to solve difficulties of multiple cameras monitoring, we develop the automatic human tracking system using mobile agents through multiple surveillance cameras to track target persons. In this paper, we develop the monitor which confirms mobile agents tracing target persons, and the simulator of video picture analysis to construct the tracking algorithm.

Keywords: Human tracking, mobile agent, monitoring, simulate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1715