Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8728

Search results for: Approximation Distribution Reductions in Multigranulation Rough Set Model

8728 Properties and Approximation Distribution Reductions in Multigranulation Rough Set Model

Authors: Properties, Approximation Distribution Reductions in Multigranulation Rough Set Model

Abstract:

Some properties of approximation sets are studied in multi-granulation optimist model in rough set theory using maximal compatible classes. The relationships between or among lower and upper approximations in single and multiple granulation are compared and discussed. Through designing Boolean functions and discernibility matrices in incomplete information systems, the lower and upper approximation sets and reduction in multi-granulation environments can be found. By using examples, the correctness of computation approach is consolidated. The related conclusions obtained are suitable for further investigating in multiple granulation RSM.

Keywords: Incomplete information system, maximal compatible class, multi-granulation rough set model, reduction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 497
8727 Some Separations in Covering Approximation Spaces

Authors: Xun Ge, Jinjin Li, Ying Ge

Abstract:

Adopting Zakowski-s upper approximation operator C and lower approximation operator C, this paper investigates granularity-wise separations in covering approximation spaces. Some characterizations of granularity-wise separations are obtained by means of Pawlak rough sets and some relations among granularitywise separations are established, which makes it possible to research covering approximation spaces by logical methods and mathematical methods in computer science. Results of this paper give further applications of Pawlak rough set theory in pattern recognition and artificial intelligence.

Keywords: Rough set, covering approximation space, granularitywise separation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1442
8726 RANFIS : Rough Adaptive Neuro-Fuzzy Inference System

Authors: Sandeep Chandana, Rene V. Mayorga

Abstract:

The paper presents a new hybridization methodology involving Neural, Fuzzy and Rough Computing. A Rough Sets based approximation technique has been proposed based on a certain Neuro – Fuzzy architecture. A New Rough Neuron composition consisting of a combination of a Lower Bound neuron and a Boundary neuron has also been described. The conventional convergence of error in back propagation has been given away for a new framework based on 'Output Excitation Factor' and an inverse input transfer function. The paper also presents a brief comparison of performances, of the existing Rough Neural Networks and ANFIS architecture against the proposed methodology. It can be observed that the rough approximation based neuro-fuzzy architecture is superior to its counterparts.

Keywords: Boundary neuron, neuro-fuzzy, output excitation factor, RANFIS, rough approximation, rough neural computing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1523
8725 Covering-based Rough sets Based on the Refinement of Covering-element

Authors: Jianguo Tang, Kun She, William Zhu

Abstract:

Covering-based rough sets is an extension of rough sets and it is based on a covering instead of a partition of the universe. Therefore it is more powerful in describing some practical problems than rough sets. However, by extending the rough sets, covering-based rough sets can increase the roughness of each model in recognizing objects. How to obtain better approximations from the models of a covering-based rough sets is an important issue. In this paper, two concepts, determinate elements and indeterminate elements in a universe, are proposed and given precise definitions respectively. This research makes a reasonable refinement of the covering-element from a new viewpoint. And the refinement may generate better approximations of covering-based rough sets models. To prove the theory above, it is applied to eight major coveringbased rough sets models which are adapted from other literature. The result is, in all these models, the lower approximation increases effectively. Correspondingly, in all models, the upper approximation decreases with exceptions of two models in some special situations. Therefore, the roughness of recognizing objects is reduced. This research provides a new approach to the study and application of covering-based rough sets.

Keywords: Determinate element, indeterminate element, refinementof covering-element, refinement of covering, covering-basedrough sets.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1081
8724 Variable Rough Set Model and Its Knowledge Reduction for Incomplete and Fuzzy Decision Information Systems

Authors: Da-kuan Wei, Xian-zhong Zhou, Dong-jun Xin, Zhi-wei Chen

Abstract:

The information systems with incomplete attribute values and fuzzy decisions commonly exist in practical problems. On the base of the notion of variable precision rough set model for incomplete information system and the rough set model for incomplete and fuzzy decision information system, the variable rough set model for incomplete and fuzzy decision information system is constructed, which is the generalization of the variable precision rough set model for incomplete information system and that of rough set model for incomplete and fuzzy decision information system. The knowledge reduction and heuristic algorithm, built on the method and theory of precision reduction, are proposed.

Keywords: Rough set, Incomplete and fuzzy decision information system, Limited valued tolerance relation, Knowledge reduction, Variable rough set model

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1377
8723 VoIP Source Model based on the Hyperexponential Distribution

Authors: Arkadiusz Biernacki

Abstract:

In this paper we present a statistical analysis of Voice over IP (VoIP) packet streams produced by the G.711 voice coder with voice activity detection (VAD). During telephone conversation, depending whether the interlocutor speaks (ON) or remains silent (OFF), packets are produced or not by a voice coder. As index of dispersion for both ON and OFF times distribution was greater than one, we used hyperexponential distribution for approximation of streams duration. For each stage of the hyperexponential distribution, we tested goodness of our fits using graphical methods, we calculated estimation errors, and performed Kolmogorov-Smirnov test. Obtained results showed that the precise VoIP source model can be based on the five-state Markov process.

Keywords: VoIP source modelling, distribution approximation, hyperexponential distribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1482
8722 Definable Subsets in Covering Approximation Spaces

Authors: Xun Ge, Zhaowen Li

Abstract:

Covering approximation spaces is a class of important generalization of approximation spaces. For a subset X of a covering approximation space (U, C), is X definable or rough? The answer of this question is uncertain, which depends on covering approximation operators endowed on (U, C). Note that there are many various covering approximation operators, which can be endowed on covering approximation spaces. This paper investigates covering approximation spaces endowed ten covering approximation operators respectively, and establishes some relations among definable subsets, inner definable subsets and outer definable subsets in covering approximation spaces, which deepens some results on definable subsets in approximation spaces.

Keywords: Covering approximation space, covering approximation operator, definable subset, inner definable subset, outer definable subset.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1040
8721 Applications of Rough Set Decompositions in Information Retrieval

Authors: Chen Wu, Xiaohua Hu

Abstract:

This paper proposes rough set models with three different level knowledge granules in incomplete information system under tolerance relation by similarity between objects according to their attribute values. Through introducing dominance relation on the discourse to decompose similarity classes into three subclasses: little better subclass, little worse subclass and vague subclass, it dismantles lower and upper approximations into three components. By using these components, retrieving information to find naturally hierarchical expansions to queries and constructing answers to elaborative queries can be effective. It illustrates the approach in applying rough set models in the design of information retrieval system to access different granular expanded documents. The proposed method enhances rough set model application in the flexibility of expansions and elaborative queries in information retrieval.

Keywords: Incomplete information system, Rough set model, tolerance relation, dominance relation, approximation, decomposition, elaborative query.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1404
8720 Some Properties of IF Rough Relational Algebraic Operators in Medical Databases

Authors: Chhaya Gangwal, R. N. Bhaumik, Shishir Kumar

Abstract:

Some properties of Intuitionistic Fuzzy (IF) rough relational algebraic operators under an IF rough relational data model are investigated and illustrated using diabetes and heart disease databases. These properties are important and desirable for processing queries in an effective and efficient manner.

 

Keywords: IF Set, Rough Set, IF Rough Relational Database, IF rough Relational Operators.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1249
8719 A Note on Negative Hypergeometric Distribution and Its Approximation

Authors: S. B. Mansuri

Abstract:

In this paper, at first we explain about negative hypergeometric distribution and its properties. Then we use the w-function and the Stein identity to give a result on the poisson approximation to the negative hypergeometric distribution in terms of the total variation distance between the negative hypergeometric and poisson distributions and its upper bound.

Keywords: Negative hypergeometric distribution, Poisson distribution, Poisson approximation, Stein-Chen identity, w-function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2857
8718 Application of Granular Computing Paradigm in Knowledge Induction

Authors: Iftikhar U. Sikder

Abstract:

This paper illustrates an application of granular computing approach, namely rough set theory in data mining. The paper outlines the formalism of granular computing and elucidates the mathematical underpinning of rough set theory, which has been widely used by the data mining and the machine learning community. A real-world application is illustrated, and the classification performance is compared with other contending machine learning algorithms. The predictive performance of the rough set rule induction model shows comparative success with respect to other contending algorithms.

Keywords: Concept approximation, granular computing, reducts, rough set theory, rule induction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 593
8717 An Improved Limited Tolerance Rough Set Model

Authors: Chen Wu, Komal Narejo, Dandan Li

Abstract:

Some extended rough set models in incomplete information system cannot distinguish the two objects that have few known attributes and more unknown attributes; some cannot make a flexible and accurate discrimination. In order to solve this problem, this paper suggests an improved limited tolerance rough set model using two thresholds to control what two objects have a relationship between them in limited tolerance relation and to classify objects. Our practical study case shows the model can get fine and reasonable decision results.

Keywords: Decision rule, incomplete information system, limited tolerance relation, rough set model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 560
8716 Upgraded Rough Clustering and Outlier Detection Method on Yeast Dataset by Entropy Rough K-Means Method

Authors: P. Ashok, G. M. Kadhar Nawaz

Abstract:

Rough set theory is used to handle uncertainty and incomplete information by applying two accurate sets, Lower approximation and Upper approximation. In this paper, the rough clustering algorithms are improved by adopting the Similarity, Dissimilarity–Similarity and Entropy based initial centroids selection method on three different clustering algorithms namely Entropy based Rough K-Means (ERKM), Similarity based Rough K-Means (SRKM) and Dissimilarity-Similarity based Rough K-Means (DSRKM) were developed and executed by yeast dataset. The rough clustering algorithms are validated by cluster validity indexes namely Rand and Adjusted Rand indexes. An experimental result shows that the ERKM clustering algorithm perform effectively and delivers better results than other clustering methods. Outlier detection is an important task in data mining and very much different from the rest of the objects in the clusters. Entropy based Rough Outlier Factor (EROF) method is seemly to detect outlier effectively for yeast dataset. In rough K-Means method, by tuning the epsilon (ᶓ) value from 0.8 to 1.08 can detect outliers on boundary region and the RKM algorithm delivers better results, when choosing the value of epsilon (ᶓ) in the specified range. An experimental result shows that the EROF method on clustering algorithm performed very well and suitable for detecting outlier effectively for all datasets. Further, experimental readings show that the ERKM clustering method outperformed the other methods.

Keywords: Clustering, Entropy, Outlier, Rough K-Means, validity index.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1161
8715 Multinomial Dirichlet Gaussian Process Model for Classification of Multidimensional Data

Authors: Wanhyun Cho, Soonja Kang, Sangkyoon Kim, Soonyoung Park

Abstract:

We present probabilistic multinomial Dirichlet classification model for multidimensional data and Gaussian process priors. Here, we have considered efficient computational method that can be used to obtain the approximate posteriors for latent variables and parameters needed to define the multiclass Gaussian process classification model. We first investigated the process of inducing a posterior distribution for various parameters and latent function by using the variational Bayesian approximations and important sampling method, and next we derived a predictive distribution of latent function needed to classify new samples. The proposed model is applied to classify the synthetic multivariate dataset in order to verify the performance of our model. Experiment result shows that our model is more accurate than the other approximation methods.

Keywords: Multinomial dirichlet classification model, Gaussian process priors, variational Bayesian approximation, Importance sampling, approximate posterior distribution, Marginal likelihood evidence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1406
8714 An Empirical Validation of the Linear- Hyperbolic Approximation of the I-V Characteristic of a Solar Cell Generator

Authors: A. A. Penin

Abstract:

An empirical linearly-hyperbolic approximation of the I - V characteristic of a solar cell is presented. This approximation is based on hyperbolic dependence of a current of p-n junctions on voltage for large currents. Such empirical approximation is compared with the early proposed formal linearly-hyperbolic approximation of a solar cell. The expressions defining laws of change of parameters of formal approximation at change of a photo current of family of characteristics are received. It allows simplifying a finding of parameters of approximation on actual curves, to specify their values. Analytical calculation of load regime for linearly - hyperbolic model leads to quadratic equation. Also, this model allows to define soundly a deviation from the maximum power regime and to compare efficiency of regimes of solar cells with different parameters.

Keywords: a solar cell generator, I − V characteristic, p − n junction, approximation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1165
8713 Structure of Covering-based Rough Sets

Authors: Shiping Wang, Peiyong Zhu, William Zhu

Abstract:

Rough set theory is a very effective tool to deal with granularity and vagueness in information systems. Covering-based rough set theory is an extension of classical rough set theory. In this paper, firstly we present the characteristics of the reducible element and the minimal description covering-based rough sets through downsets. Then we establish lattices and topological spaces in coveringbased rough sets through down-sets and up-sets. In this way, one can investigate covering-based rough sets from algebraic and topological points of view.

Keywords: Covering, poset, down-set, lattice, topological space, topological base.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1587
8712 The Lower and Upper Approximations in a Group

Authors: Zhaohao Wang, Lan Shu

Abstract:

In this paper, we generalize some propositions in [C.Z. Wang, D.G. Chen, A short note on some properties of rough groups, Comput. Math. Appl. 59(2010)431-436.] and we give some equivalent conditions for rough subgroups. The notion of minimal upper rough subgroups is introduced and a equivalent characterization is given, which implies the rough version of Lagranges Theorem.

Keywords: Lower approximations, Upper approximations, Rough sets, Rough groups, Lagrange

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1930
8711 Rough Neural Networks in Adapting Cellular Automata Rule for Reducing Image Noise

Authors: Yasser F. Hassan

Abstract:

The reduction or removal of noise in a color image is an essential part of image processing, whether the final information is used for human perception or for an automatic inspection and analysis. This paper describes the modeling system based on the rough neural network model to adaptive cellular automata for various image processing tasks and noise remover. In this paper, we consider the problem of object processing in colored image using rough neural networks to help deriving the rules which will be used in cellular automata for noise image. The proposed method is compared with some classical and recent methods. The results demonstrate that the new model is capable of being trained to perform many different tasks, and that the quality of these results is comparable or better than established specialized algorithms.

Keywords: Rough Sets, Rough Neural Networks, Cellular Automata, Image Processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1741
8710 On Generalizing Rough Set Theory via using a Filter

Authors: Serkan Narlı, Ahmet Z. Ozcelik

Abstract:

The theory of rough sets is generalized by using a filter. The filter is induced by binary relations and it is used to generalize the basic rough set concepts. The knowledge representations and processing of binary relations in the style of rough set theory are investigated.

Keywords: Rough set, fuzzy set, membership function, knowledge representation and processing, information theory

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1562
8709 Heterogeneous Attribute Reduction in Noisy System based on a Generalized Neighborhood Rough Sets Model

Authors: Siyuan Jing, Kun She

Abstract:

Neighborhood Rough Sets (NRS) has been proven to be an efficient tool for heterogeneous attribute reduction. However, most of researches are focused on dealing with complete and noiseless data. Factually, most of the information systems are noisy, namely, filled with incomplete data and inconsistent data. In this paper, we introduce a generalized neighborhood rough sets model, called VPTNRS, to deal with the problem of heterogeneous attribute reduction in noisy system. We generalize classical NRS model with tolerance neighborhood relation and the probabilistic theory. Furthermore, we use the neighborhood dependency to evaluate the significance of a subset of heterogeneous attributes and construct a forward greedy algorithm for attribute reduction based on it. Experimental results show that the model is efficient to deal with noisy data.

Keywords: attribute reduction, incomplete data, inconsistent data, tolerance neighborhood relation, rough sets

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1372
8708 Reduction of Linear Time-Invariant Systems Using Routh-Approximation and PSO

Authors: S. Panda, S. K. Tomar, R. Prasad, C. Ardil

Abstract:

Order reduction of linear-time invariant systems employing two methods; one using the advantages of Routh approximation and other by an evolutionary technique is presented in this paper. In Routh approximation method the denominator of the reduced order model is obtained using Routh approximation while the numerator of the reduced order model is determined using the indirect approach of retaining the time moments and/or Markov parameters of original system. By this method the reduced order model guarantees stability if the original high order model is stable. In the second method Particle Swarm Optimization (PSO) is employed to reduce the higher order model. PSO method is based on the minimization of the Integral Squared Error (ISE) between the transient responses of original higher order model and the reduced order model pertaining to a unit step input. Both the methods are illustrated through numerical examples.

Keywords: Model Order Reduction, Markov Parameters, Routh Approximation, Particle Swarm Optimization, Integral Squared Error, Steady State Stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3055
8707 Single Valued Neutrosophic Hesitant Fuzzy Rough Set and Its Application

Authors: K. M. Alsager, N. O. Alshehri

Abstract:

In this paper, we proposed the notion of single valued neutrosophic hesitant fuzzy rough set, by combining single valued neutrosophic hesitant fuzzy set and rough set. The combination of single valued neutrosophic hesitant fuzzy set and rough set is a powerful tool for dealing with uncertainty, granularity and incompleteness of knowledge in information systems. We presented both definition and some basic properties of the proposed model. Finally, we gave a general approach which is applied to a decision making problem in disease diagnoses, and demonstrated the effectiveness of the approach by a numerical example.

Keywords: Single valued neutrosophic hesitant set, single valued neutrosophic hesitant relation, single valued neutrosophic hesitant fuzzy rough set, decision making method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 604
8706 Studies on Properties of Knowledge Dependency and Reduction Algorithm in Tolerance Rough Set Model

Authors: Chen Wu, Lijuan Wang

Abstract:

Relation between tolerance class and indispensable attribute and knowledge dependency in rough set model with tolerance relation is explored. After giving definitions and concepts of knowledge dependency and knowledge dependency degree for incomplete information system in tolerance rough set model by distinguishing decision attribute containing missing attribute value or not, the result of maintaining reflectivity, transitivity, augmentation, decomposition law and merge law for complete knowledge dependency is proved. Knowledge dependency degrees (not complete knowledge dependency degrees) only satisfy some laws after transitivity, augmentation and decomposition operations. An algorithm to solve attribute reduction in an incomplete decision table is designed. The correctness is checked by an example.

Keywords: Incomplete information system, rough set, tolerance relation, knowledge dependence, attribute reduction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 509
8705 Variational EM Inference Algorithm for Gaussian Process Classification Model with Multiclass and Its Application to Human Action Classification

Authors: Wanhyun Cho, Soonja Kang, Sangkyoon Kim, Soonyoung Park

Abstract:

In this paper, we propose the variational EM inference algorithm for the multi-class Gaussian process classification model that can be used in the field of human behavior recognition. This algorithm can drive simultaneously both a posterior distribution of a latent function and estimators of hyper-parameters in a Gaussian process classification model with multiclass. Our algorithm is based on the Laplace approximation (LA) technique and variational EM framework. This is performed in two steps: called expectation and maximization steps. First, in the expectation step, using the Bayesian formula and LA technique, we derive approximately the posterior distribution of the latent function indicating the possibility that each observation belongs to a certain class in the Gaussian process classification model. Second, in the maximization step, using a derived posterior distribution of latent function, we compute the maximum likelihood estimator for hyper-parameters of a covariance matrix necessary to define prior distribution for latent function. These two steps iteratively repeat until a convergence condition satisfies. Moreover, we apply the proposed algorithm with human action classification problem using a public database, namely, the KTH human action data set. Experimental results reveal that the proposed algorithm shows good performance on this data set.

Keywords: Bayesian rule, Gaussian process classification model with multiclass, Gaussian process prior, human action classification, laplace approximation, variational EM algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1359
8704 Best Co-approximation and Best Simultaneous Co-approximation in Fuzzy Normed Spaces

Authors: J. Kavikumar, N. S. Manian, M.B.K. Moorthy

Abstract:

The main purpose of this paper is to consider the t-best co-approximation and t-best simultaneous co-approximation in fuzzy normed spaces. We develop the theory of t-best co-approximation and t-best simultaneous co-approximation in quotient spaces. This new concept is employed us to improve various characterisations of t-co-proximinal and t-co-Chebyshev sets.

Keywords: Fuzzy best co-approximation, fuzzy quotient spaces, proximinality, Chebyshevity, best simultaneous co-approximation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1364
8703 Accurate And Efficient Global Approximation using Adaptive Polynomial RSM for Complex Mechanical and Vehicular Performance Models

Authors: Y. Z. Wu, Z. Dong, S. K. You

Abstract:

Global approximation using metamodel for complex mathematical function or computer model over a large variable domain is often needed in sensibility analysis, computer simulation, optimal control, and global design optimization of complex, multiphysics systems. To overcome the limitations of the existing response surface (RS), surrogate or metamodel modeling methods for complex models over large variable domain, a new adaptive and regressive RS modeling method using quadratic functions and local area model improvement schemes is introduced. The method applies an iterative and Latin hypercube sampling based RS update process, divides the entire domain of design variables into multiple cells, identifies rougher cells with large modeling error, and further divides these cells along the roughest dimension direction. A small number of additional sampling points from the original, expensive model are added over the small and isolated rough cells to improve the RS model locally until the model accuracy criteria are satisfied. The method then combines local RS cells to regenerate the global RS model with satisfactory accuracy. An effective RS cells sorting algorithm is also introduced to improve the efficiency of model evaluation. Benchmark tests are presented and use of the new metamodeling method to replace complex hybrid electrical vehicle powertrain performance model in vehicle design optimization and optimal control are discussed.

Keywords: Global approximation, polynomial response surface, domain decomposition, domain combination, multiphysics modeling, hybrid powertrain optimization

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1705
8702 Some Solid Transportation Models with Crisp and Rough Costs

Authors: Pradip Kundu, Samarjit Kar, Manoranjan Maiti

Abstract:

In this paper, some practical solid transportation models are formulated considering per trip capacity of each type of conveyances with crisp and rough unit transportation costs. This is applicable for the system in which full vehicles, e.g. trucks, rail coaches are to be booked for transportation of products so that transportation cost is determined on the full of the conveyances. The models with unit transportation costs as rough variables are transformed into deterministic forms using rough chance constrained programming with the help of trust measure. Numerical examples are provided to illustrate the proposed models in crisp environment as well as with unit transportation costs as rough variables.

Keywords: Solid transportation problem, Rough set, Rough variable, Trust measure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2323
8701 A New Approach for Controlling Overhead Traveling Crane Using Rough Controller

Authors: Mazin Z. Othman

Abstract:

This paper presents the idea of a rough controller with application to control the overhead traveling crane system. The structure of such a controller is based on a suggested concept of a fuzzy logic controller. A measure of fuzziness in rough sets is introduced. A comparison between fuzzy logic controller and rough controller has been demonstrated. The results of a simulation comparing the performance of both controllers are shown. From these results we infer that the performance of the proposed rough controller is satisfactory.

Keywords: Accuracy measure, Fuzzy Logic Controller (FLC), Overhead Traveling Crane (OTC), Rough Set Theory (RST), Roughness measure

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1480
8700 The Profit Trend of Cosmetics Products Using Bootstrap Edgeworth Approximation

Authors: Edlira Donefski, Lorenc Ekonomi, Tina Donefski

Abstract:

Edgeworth approximation is one of the most important statistical methods that has a considered contribution in the reduction of the sum of standard deviation of the independent variables’ coefficients in a Quantile Regression Model. This model estimates the conditional median or other quantiles. In this paper, we have applied approximating statistical methods in an economical problem. We have created and generated a quantile regression model to see how the profit gained is connected with the realized sales of the cosmetic products in a real data, taken from a local business. The Linear Regression of the generated profit and the realized sales was not free of autocorrelation and heteroscedasticity, so this is the reason that we have used this model instead of Linear Regression. Our aim is to analyze in more details the relation between the variables taken into study: the profit and the finalized sales and how to minimize the standard errors of the independent variable involved in this study, the level of realized sales. The statistical methods that we have applied in our work are Edgeworth Approximation for Independent and Identical distributed (IID) cases, Bootstrap version of the Model and the Edgeworth approximation for Bootstrap Quantile Regression Model. The graphics and the results that we have presented here identify the best approximating model of our study.

Keywords: Bootstrap, Edgeworth approximation, independent and Identical distributed, quantile.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 127
8699 A Simplified Distribution for Nonlinear Seas

Authors: M. A. Tayfun, M. A. Alkhalidi

Abstract:

The exact theoretical expression describing the probability distribution of nonlinear sea-surface elevations derived from the second-order narrowband model has a cumbersome form that requires numerical computations, not well-disposed to theoretical or practical applications. Here, the same narrowband model is reexamined to develop a simpler closed-form approximation suitable for theoretical and practical applications. The salient features of the approximate form are explored, and its relative validity is verified with comparisons to other readily available approximations, and oceanic data.

Keywords: Ocean waves, probability distributions, second-order nonlinearities, skewness coefficient, wave steepness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1748