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Abstract—Change point detection is an important part of data
analysis. The presence of a change point refers to a significant change
in the behavior of a time series. In this article, we examine the
detection of multiple change points of parameters of the exponential
Lomax distribution, which is broad and flexible compared with other
distributions while fitting data. We used the Schwarz information
criterion and binary segmentation to detect multiple change points in
publicly available data on the average temperature in the ozone layer.
The change points were successfully located.

Keywords—Binary segmentation, change point, exponential
Lomax distribution, information criterion.

I. INTRODUCTION

T IME series data have become increasingly relevant in

numerous fields, including medicine, modeling, finance,

industry, meteorology, and entertainment. They are sequences

obtained through measurements over time demonstrating a

system’s behavior. Those patterns may shift gradually due to

external occurrences and/or changes in internal organizational

dynamics or distribution (see [1]). Change point detection

(CPD) refers to the problem of identifying a time series change

due to an abrupt change in data. There are several approaches

to conducting change point analysis, including the information

approach, the likelihood ratio test, and the Bayesian method. In

this paper, we study CPD by applying the Schwarz information

criterion (SIC) for the exponential Lomax (EL) distribution to

data on the average ozone layer temperature. Our goal is to

show that these time series data can serve in the development

of new methodologies for CPD.

A. Concept of an Information Approach

According to [2], the change point problem can be defined

as follows. Let X1, X2, ..., Xn be a sequence of independent

random variables with distribution functions F1, F2, .., Fn,

respectively. In general, the change point problem is thus to

test the following null hypothesis:

H0 : F1 = F2 = ..Fn

versus the alternative:

H1 : F1 = .. = Fk1 �= Fk1+1 = .. = Fkq
�= Fkq+1 = .. = Fn

where 1 < k1 < k2 < ... < kq < n; q is the unknown number

of change points; and k1, k2, .., kq are the respective unknown
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positions that need to be estimated. The change point problem

is to test the null hypothesis about the population parameter

θi, i = 1, .., n, if the distributions F1, F2, .., Fn belong to a

common parametric family F (θ), where θ ∈ Rp:

H0 : θ1 = θ2 = .. = θn = θ (unknown),

versus the alternative hypothesis:

H1 : θ1 = .. = θk1 �= θk1+1 = .. = θk2 �= θk2+1 = .. =
θkq−1 �= θkq = .. = θn

where q and k1, k2..., kq need to be estimated. Detecting a
change point using these hypotheses involves determining the
occurrence of the change point in a dataset and estimating
the number and location of change points. The SIC technique
is to find the model that minimizes the

SIC(k) = −2 logL
(
θ̂k
)
+ dim

(
θ̂k
)
log(n), for k = 1, 2, . . . ,K,

(1)

where n is the sample size and K is the number of the model

parameters.

Under the null hypothesis H0, SIC(n) can be defined as

follows:

SIC(n) = −2 logL
(
θ̂
)
+ dim

(
θ̂
)
log(n), (2)

Therefore, we do not reject H0 if:

SIC(n) ≤ min
k0≤k≤n−k0

SIC(k), (3)

where k0 is selected such that the maximum likelihood

estimation (MLE) can be calculated accurately. We reject H0

if:

SIC(n) > SIC(k), (4)

The change point location is determined to be k̂, such that:

SIC(k̂) = min
k0≤k≤n−k0

SIC(k) (5)

for some k. We note that the SIC’s general penalty affects

only the dataset and the number of parameters to be estimated.

Zhang and Siegmund [3] suggested that the SIC will identify

change points more efficiently when the change points are

in the center of the data. However, if the change points are

located at the beginning or the end of the data, the approach

applied in the change point problem may not detect them. For

these reasons, we need sufficient observations to compute the

parameters, and we calculate the SIC(k) for k0 ≤ k ≤ n−k0,
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where k0 is chosen to be large enough that the MLE can be

calculated rigorously.

B. Literature Review

Some statisticians have contributed to solving the change

point problem to detect change points, if they exist. Chernof

and Zacks [4] studied the Bayes estimator for the current mean

of a normal distribution. Worsley [5] studied the identification

of a single change point when variance is known and unknown.

Kim and White [6] detected a single change point in a simple

linear regression model using the likelihood ratio test. Ning

and Gupta [7] investigated the change point problem for

the generalized lambda distribution. Matteson and James [8]

applied multiple change point analysis of multivariate data

using none-parametric approach.

Detecting multiple change points is an important challenge

that has attracted many researchers, as it can solve real-life

problems. Vostrikova [9] suggested using binary segmentation

to detect multiple change points and their positions. This

process has the benefits of simultaneously detecting more than

one change point and the corresponding positions and reducing

computational time by a great amount. The method of binary

segmentation can be explained as follows.

Step 1. Test the null hypothesis given by:

H0 : θ1 = θ2 = . . . = θn = θ(unknown) (6)

versus the alternative:

H1 : θ1 = . . . = θk �= θk+1 = . . . = θn (7)

where k is the position of the change point at this step. If the

null hypothesis H0 is not rejected, we conclude that there is

no change point, and we stop the detection. However, if we

reject H0, a change point has occurred, and we move on to

the next step.

Step 2.Separately check the two sections of the data before

and after the change point detected in Step 1 to identify any

other change point, if such change points exist.

Step 3. Repeat the previous steps until we find that there is no

change point.

Step 4. All of the change points obtained in the previous steps

are denoted by
{
k̂1, . . . k̂2, . . . k̂q

}
with estimated number of

change points q.

The rest of this paper is organized as follows. Section II

introduces the EL distribution and the change point problem of

its three parameters. Application to a real dataset is explained

in Section III. Finally, Section IV presents the results of the

study.

II. EXPONENTIAL LOMAX DISTRIBUTION

The Lomax distribution is a known heavy-tailed distribution

that models non-negative data. It is named according to

[10] and is also conditionally known as the Pareto Type

II distribution. The Lomax distribution can be derived from

the generalized Pareto distribution as a special case that is

used in a variety of forms throughout the literature. The

equilibrium of the Lomax probability distribution and its

order statistics was analyzed in [11]. However, in modeling

results, this distribution is not flexible in modeling data.

Thus, shape, location, or scale parameters can be added

to derive a new generalized distribution, which may be

more flexible, and subsequently study the behavior of the

new proposed distribution. Many generalized distributions

have been suggested in the literature. Al-Awadhi and

Ghitany [12] presented a Lomax mixing distribution for the

Poisson parameters and obtained the discrete Poisson–Lomax

distribution. Zubair et al. [13] studied the logistic Lomax

distribution and its applications to real data. The EL

distribution is another extension of the Lomax distribution that

was derived and studied by [14].

Let G(x) denote the cumulative density function (CDF)

of the Lomax distribution and f(t) the probability density

function (PDF) of the exponential distribution. The CDF for

the EL distribution is given by:

F (x;α, λ, β) =

∫ 1
1−G(x;α,λ)

0

f(t;β)dt

=

∫ 1

( λ
x+λ )

α

0

βe−βtdt, α, β, λ > 0,

(8)

and the corresponding PDF, is given by:

f(x) =
αβ

λ

(
λ

x+ λ

)−α+1

e−β( λ
x+λ )

−α

, x ≥ −λ, α, λ, β > 0,

(9)

where α is the shape parameter and λ and β are the scale

parameters of the EL distribution.

A. Change Point Problem

Change points are abrupt changes in time series data.

Detecting change points is very helpful in time series

forecasting and simulations in many fields, such as medical

tracking, climate change identification, picture and language

processing, and human interaction. The change point problem

for the shape and scale parameters of the EL distribution using

the SIC can be explained as follows.

Let X1, X2, . . . , Xn be a sequence of independent random

variables from the EL distribution with scale parameters λ
and β and shape parameter α. The change point is detected

by checking the following null hypothesis:

α1 = α2 = . . . = αn = α
H0 : λ1 = λ2 = . . . = λn = λ

β1 = β2 = . . . = βn = β

⎫⎬
⎭ (unknown) (10)

versus the alternative:

α1 = . . . = αk = α‘ �= αk+1 = . . . = αn = α“

H1 : λ1 = . . . = λk = λ‘ �= λk+1 = . . . = λn = λ“

β1 = . . . = βk = β‘ �= βk+1 = . . . = βn = β“,
(11)

where 1 < k < n is the unknown location of the change point.

Under the null hypothesis, the SIC is defined as:

SIC(n) = −2

n∑
i=1

log(f(xi; α̂, λ̂, β̂)) + 3log(n), (12)
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where λ̂, β̂ and α̂ are the MLEs of the scale parameters λ
and β and the shape parameter α, respectively. Under the

alternative hypothesis, SIC is defined as follows:

SIC(k) = −2

k∑
i=1

log(f(xi; α̂‘, λ̂‘, β̂‘)) (13)

− 2
n∑

i=k+1

log(f(xi; α̂“, λ̂“, β̂“)) + 6log(n),

where α̂‘, λ̂‘ and β̂‘ and α̂“, λ̂“ and β̂“ are the MLEs of α,

λ and β fitted to the two sections of the data before and after

the change point, respectively. Therefore, binary segmentation

can be applied to detect multiple change points.

III. APPLICATION TO REAL DATA

A. Conversion of DataSet to Independent

In this section, we demonstrate the significance of CPD

using the dataset of the average temperature of the ozone layer

between January 1, 1998, and December 31, 1998. These data

were collected in the Houston, Galveston, and Brazoria areas

of Texas and are available at [3]. We consider several change

points using the binary segmentation method by applying an

SIC testing procedure. The package bbmle in the R statistical

software developed by [16] was implemented. We note that

the data of the average ozone layer temperature may not be

independent. Hence, according to [17], the following data

transformation into a separate Rt series was considered as

follows:

Rt =
Pt+1 − Pt

Pt
, for t = 1, 2, . . . , 360 (14)

After transforming the data, we tested whether they were

independent using the Portmanteau test provided by [18]:

Qk = n
k∑

i=1

r2i (15)

where ri is the autocorrelation function (ACF) at lag i, and k
is the number of lags for which the ACF is considered. Under

the null hypothesis of independence, the test statistic has an

asymptotic χ2distribution with degree of freedom k. Using the

Portmanteau test, we get:

Q25 = 360×
25∑
i=1

r2i = 360× 0.08411352 (16)

= 30.19675 < χ2
0.95(25) = 37.65248

Therefore, the null hypothesis H0 is not rejected, and the data

are independent. Fig. 1 shows the ACF of the transformed

data.

B. Result

To detect change points in the average ozone layer

temperature dataset, we applied the test statistics described in

(12) and (13) using the EL distribution. We get SIC(n) =
−3.370954 > min2≤k≤358 SIC(k) = SIC(335) =
−238.1777, which shows that a change point is located at

Fig. 1 The autocorrelation function of the transformed Ozone average
temperation data

position 335 (corresponding to December 6, 1998). Another

change point can be observed using binary segmentation

by checking the subsequences before and after the change

point k̂ =335. We found that SIC(n) = −290.9045
>min2≤k≤333 SIC(k)= SIC(108) = −330.1299. Therefore,

there is a change point at location 108, corresponding to

April 18, 1998. The period of January to April 1998 was the

warmest of the century, according to the National Climatic

Data Center. This occurred due to a phenomenon called sudden

stratospheric warming, which is the result of air being pushed

in a downward motion in the late winter and spring at high

latitudes. Sudden stratospheric warming can considerably alter

temperature-dependent chemical reactions of ozone and other

reactive gases in the stratosphere and affect the development

of features such as ozone holes. Ozone depletion is not

limited to the area over the South Pole: Research has revealed

that ozone depletion occurs over latitudes that include North

America; Europe; Asia; and much of Africa, Australia, and

South America (see [19]).

IV. CONCLUSIONS

In this article, we studied the change point problem for

the EL distribution. We detected multiple change points in

the parameters of the proposed distribution by using SIC

and applying binary segmentation. Two change points were

observed on the average temperature of the ozone layer in

1998. The benefit of CPD in this context is identifying the

exact location of the change in temperatures in the ozone layer.
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