Search results for: Electrical power system
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10433

Search results for: Electrical power system

9383 Detection of Sags, Swells, and Transients Using Windowing Technique Based On Continuous S-Transform (CST)

Authors: K. Daud, A. F. Abidin, N. Hamzah, H. S. Nagindar Singh

Abstract:

This paper produces a new approach for power quality analysis using a windowing technique based on Continuous S-transform (CST). This half-cycle window technique approach can detect almost correctly for initial detection of disturbances i.e. voltage sags, swells, and transients. Samples in half cycle window has been analyzed based continuous S-transform for entire disturbance waveform. The modified parameter has been produced by MATLAB programming m-file based on continuous s-transform. CST has better time frequency and localization property than traditional and also has ability to detect the disturbance under noisy condition correctly. The excellent time-frequency resolution characteristic of the CST makes it the most an attractive candidate for analysis of power system disturbances signals.

Keywords: Power quality disturbances, initial detection, half cycle windowing, continuous S-transform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2044
9382 Evaluation of Energy Upgrade Measures and Connection of Renewable Energy Sources Using Software Tools: Case Study of an Academic Library Building in Larissa, Greece

Authors: Giwrgos S. Gkarmpounis, Aikaterini G. Rokkou, Marios N. Moschakis

Abstract:

Increased energy consumption in the academic buildings, creates the need to implement energy saving measures and to take advantage of the renewable energy sources to cover the electrical needs of those buildings. An Academic Library will be used as a case study. With the aid of RETScreen software that takes into account the energy consumptions and characteristics of the Library Building, it is proved that measures such as the replacement of fluorescent lights with led lights, the installation of outdoor shading, the replacement of the openings and Building Management System installation, provide a high level of energy savings. Moreover, given the available space of the building and the climatic data, the installation of a photovoltaic system of 100 kW can also cover a serious amount of the building energy consumption, unlike a wind system that seems uncompromising. Lastly, HOMER software is used to compare the use of a photovoltaic system against a wind system in order to verify the results that came up from the RETScreen software concerning the renewable energy sources.

Keywords: Energy saving measures, homer software, renewable energy sources, RETScreen software, energy efficiency and quality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 982
9381 Overview of Different Approaches Used in Optimal Operation Control of Hybrid Renewable Energy Systems

Authors: K. Kusakana

Abstract:

A hybrid energy system is a combination of renewable energy sources with back up, as well as a storage system used to respond to given load energy requirements. Given that the electrical output of each renewable source is fluctuating with changes in weather conditions, and since the load demand also varies with time; one of the main attributes of hybrid systems is to be able to respond to the load demand at any time by optimally controlling each energy source, storage and back-up system. The induced optimization problem is to compute the optimal operation control of the system with the aim of minimizing operation costs while efficiently and reliably responding to the load energy requirement. Current optimization research and development on hybrid systems are mainly focusing on the sizing aspect. Thus, the aim of this paper is to report on the state-of-the-art of optimal operation control of hybrid renewable energy systems. This paper also discusses different challenges encountered, as well as future developments that can help in improving the optimal operation control of hybrid renewable energy systems.

Keywords: Renewable energies, hybrid systems, optimization, operation control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2102
9380 Establishing a Probabilistic Model of Extrapolated Wind Speed Data for Wind Energy Prediction

Authors: Mussa I. Mgwatu, Reuben R. M. Kainkwa

Abstract:

Wind is among the potential energy resources which can be harnessed to generate wind energy for conversion into electrical power. Due to the variability of wind speed with time and height, it becomes difficult to predict the generated wind energy more optimally. In this paper, an attempt is made to establish a probabilistic model fitting the wind speed data recorded at Makambako site in Tanzania. Wind speeds and direction were respectively measured using anemometer (type AN1) and wind Vane (type WD1) both supplied by Delta-T-Devices at a measurement height of 2 m. Wind speeds were then extrapolated for the height of 10 m using power law equation with an exponent of 0.47. Data were analysed using MINITAB statistical software to show the variability of wind speeds with time and height, and to determine the underlying probability model of the extrapolated wind speed data. The results show that wind speeds at Makambako site vary cyclically over time; and they conform to the Weibull probability distribution. From these results, Weibull probability density function can be used to predict the wind energy.

Keywords: Probabilistic models, wind speed, wind energy

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2341
9379 Material Concepts and Processing Methods for Electrical Insulation

Authors: R. Sekula

Abstract:

Epoxy composites are broadly used as an electrical insulation for the high voltage applications since only such materials can fulfill particular mechanical, thermal, and dielectric requirements. However, properties of the final product are strongly dependent on proper manufacturing process with minimized material failures, as too large shrinkage, voids and cracks. Therefore, application of proper materials (epoxy, hardener, and filler) and process parameters (mold temperature, filling time, filling velocity, initial temperature of internal parts, gelation time), as well as design and geometric parameters are essential features for final quality of the produced components. In this paper, an approach for three-dimensional modeling of all molding stages, namely filling, curing and post-curing is presented. The reactive molding simulation tool is based on a commercial CFD package, and include dedicated models describing viscosity and reaction kinetics that have been successfully implemented to simulate the reactive nature of the system with exothermic effect. Also a dedicated simulation procedure for stress and shrinkage calculations, as well as simulation results are presented in the paper. Second part of the paper is dedicated to recent developments on formulations of functional composites for electrical insulation applications, focusing on thermally conductive materials. Concepts based on filler modifications for epoxy electrical composites have been presented, including the results of the obtained properties. Finally, having in mind tough environmental regulations, in addition to current process and design aspects, an approach for product re-design has been presented focusing on replacement of epoxy material with the thermoplastic one. Such “design-for-recycling” method is one of new directions associated with development of new material and processing concepts of electrical products and brings a lot of additional research challenges. For that, one of the successful products has been presented to illustrate the presented methodology.

Keywords: Curing, epoxy insulation, numerical simulations, recycling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1631
9378 Neural Network Ensemble-based Solar Power Generation Short-Term Forecasting

Authors: A. Chaouachi, R.M. Kamel, R. Ichikawa, H. Hayashi, K. Nagasaka

Abstract:

This paper presents the applicability of artificial neural networks for 24 hour ahead solar power generation forecasting of a 20 kW photovoltaic system, the developed forecasting is suitable for a reliable Microgrid energy management. In total four neural networks were proposed, namely: multi-layred perceptron, radial basis function, recurrent and a neural network ensemble consisting in ensemble of bagged networks. Forecasting reliability of the proposed neural networks was carried out in terms forecasting error performance basing on statistical and graphical methods. The experimental results showed that all the proposed networks achieved an acceptable forecasting accuracy. In term of comparison the neural network ensemble gives the highest precision forecasting comparing to the conventional networks. In fact, each network of the ensemble over-fits to some extent and leads to a diversity which enhances the noise tolerance and the forecasting generalization performance comparing to the conventional networks.

Keywords: Neural network ensemble, Solar power generation, 24 hour forecasting, Comparative study

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3272
9377 Design, Simulation and Experimental Realization of Nonlinear Controller for GSC of DFIG System

Authors: R.K. Behera, S.Behera

Abstract:

In a wind power generator using doubly fed induction generator (DFIG), the three-phase pulse width modulation (PWM) voltage source converter (VSC) is used as grid side converter (GSC) and rotor side converter (RSC). The standard linear control laws proposed for GSC provides not only instablity against comparatively large-signal disturbances, but also the problem of stability due to uncertainty of load and variations in parameters. In this paper, a nonlinear controller is designed for grid side converter (GSC) of a DFIG for wind power application. The nonlinear controller is designed based on the input-output feedback linearization control method. The resulting closed-loop system ensures a sufficient stability region, make robust to variations in circuit parameters and also exhibits good transient response. Computer simulations and experimental results are presented to confirm the effectiveness of the proposed control strategy.

Keywords: Doubly fed Induction Generator, grid side converter, machine side converter, dc link, feedback linearization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2118
9376 Impact Porous Dielectric Silica Gel for Operating Voltage and Power Discharge Reactor

Authors: E. Gnapowski, S. Gnapowski

Abstract:

This study examined the effect of porous dielectric silica gel the discharge ignition voltage and input power in a plasma reactor. For the experiment was used a plasma reactor with two mesh electrodes made of stainless steel with a mesh size of 0.1x0.1mm. The study analyzed and compared with parameters such as power, ignition and operation voltage of the reactor for two dielectrics a porous and glass. During experiment were observed several new phenomena conducted for porous dielectric. The first phenomenon was the reduction the ignition voltage discharge to volume around few hundred volts. Second it was increase input power six times more compared with power those obtained for the glass dielectric. Thirdly difference it is ΔV between ignition voltage Vi and operating voltage reactor Vm for porous dielectric it was 11%, while ΔV for the glass dielectric it was 60%. Also change the discharge characteristics from DBD for glass dielectric to the streamer resistance discharge for the porous dielectric.

Keywords: Input power, mesh electrodes, onset voltage, porous dielectric.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1940
9375 Modeling and Analysis of SVPWM Based Dynamic Voltage Restorer

Authors: Ahmed Helal, Sherif Zain Elabideen, Ahmed Lotfy

Abstract:

In this paper the modeling and analysis of Space Vector Pulse Width Modulation (SVPWM) based Dynamic Voltage Restorer (DVR) using PSCAD/EMTDC software will be presented in details. The simulation includes full modeling of the SVPWM technique used to control the DVR inverter. A test power system composed of three phase voltage source, sag generator, DVR and three phase resistive load is used to demonstrate restoration capability of the DVR. The simulation results of the presented DVR proved excellent voltage sag mitigation to protect sensitive loads.

Keywords: Dynamic voltage restorer, power quality, simulationand modeling, voltage sag.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3710
9374 An Energy Efficient Digital Baseband for Batteryless Remote Control

Authors: Wei-Da Toh, Yuan Gao, Minkyu Je

Abstract:

In this paper, an energy efficient digital baseband circuit for piezoelectric (PE) harvester powered batteryless remote control system is presented. Pulse mode PE harvester, which provides short duration of energy, is adopted to replace conventional chemical battery in wireless remote controller. The transmitter digital baseband repeats the control command transmission once the digital circuit is initiated by the power-on-reset. A power efficient data frame format is proposed to maximize the transmission repetition time. By using the proposed frame format and receiver clock and data recovery method, the receiver baseband is able to decode the command even when the received data has 20% error. The proposed transmitter and receiver baseband are implemented using FPGA and simulation results are presented.

Keywords: Clock and Data Recovery (CDR), Correlator, Digital Baseband, Gold Code, Power-On-Reset.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2014
9373 Mathematical Model and Control Strategy on DQ Frame for Shunt Active Power Filters

Authors: P. Santiprapan, K-L. Areerak, K-N. Areerak

Abstract:

This paper presents the mathematical model and control strategy on DQ frame of shunt active power filter. The structure of the shunt active power filter is the voltage source inverter (VSI). The pulse width modulation (PWM) with PI controller is used in the paper. The concept of DQ frame to apply with the shunt active power filter is described. Moreover, the detail of the PI controller design for two current loops and one voltage loop are fully explained. The DQ axis with Fourier (DQF) method is applied to calculate the reference currents on DQ frame. The simulation results show that the control strategy and the design method presented in the paper can provide the good performance of the shunt active power filter. Moreover, the %THD of the source currents after compensation can follow the IEEE Std.519-1992.

Keywords: shunt active power filter, mathematical model, DQ control strategy, DQ axis with Fourier, pulse width modulation control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5357
9372 Feasibility Study of Potential and Economic of Rice Straw VSPP Power Plant in Thailand

Authors: Sansanee Sansiribhan, Anusorn Rattanathanaophat, Chirapan Nuengchaknin

Abstract:

The potential feasibility of a 9.5 MWe capacity rice straw power plant project in Thailand was studied by evaluating the rice straw resource. The result showed that Thailand had a high rice straw biomass potential at the provincial level, especially, the provinces in the central, northeastern and western Thailand, which could feasibly develop plants. The economic feasibility of project was also investigated. The financial feasibility is also evaluated based on two important factors in the project, i.e., NPV ≥ 0 and IRR ≥ 11%. It was found that the rice straw power plant project at 9.5 MWe was financially feasible with the cost of fuel in the range of 30.6-47.7 USD/t.

Keywords: Power plant, Project feasibility, Rice straw, Thailand.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3471
9371 Effect of Chromium Behavior on Mechanical and Electrical Properties of P/M Copper-Chromium Alloy Dispersed with VGCF

Authors: Hisashi Imai, Kuan-Yu Chen, Katsuyoshi Kondoh, Hung-Yin Tsai, Junko Umeda

Abstract:

Microstructural and electrical properties of Cu-chromium alloy (Cu-Cr) dispersed with vapor-grown carbon fiber (VGCF) prepared by powder metallurgy (P/M) process have been investigated. Cu-0.7 mass% Cr pre-alloyed powder (Cu-Cr) made by water atomization process was used as raw materials, which contained solid solute Cr elements in Cu matrix. The alloy powder coated with un-bundled VGCF by using oil coating process was consolidated at 1223 K in vacuum by spark plasma sintering, and then extruded at 1073 K. The extruded Cu-Cr alloy (monolithic alloy) had 209.3 MPa YS and 80.4 IACS% conductivity. The extruded Cu-Cr with 0.1 mass% VGCF composites revealed a small decrease of YS compared to the monolithic Cu-Cr alloy. On the other hand, the composite had a higher electrical conductivity than that of the monolithic alloy. For example, Cu-Cr with 0.1 mass% VGCF composite sintered for 5 h showed 182.7 MPa YS and 89.7 IACS% conductivity. In the case of Cu-Cr with VGCFs composites, the Cr concentration was observed around VGCF by SEM-EDS analysis, where Cr23C6 compounds were detected by TEM observation. The amount of Cr solid solution in the matrix of the Cu-Cr composites alloy was about 50% compared to the monolithic Cu-Cr sintered alloy, and resulted in the remarkable increment of the electrical conductivity.

Keywords: Powder metallurgy Cu-Cr alloy powder, vapor-grown carbon fiber, electrical conductivity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2204
9370 Hybrid Finite Element Analysis of Expansion Joints for Piping Systems in Aircraft Engine External Configurations and Nuclear Power Plants

Authors: Dong Wook Lee

Abstract:

This paper presents a method to analyze the stiffness of the expansion joint with structural support using a hybrid method combining computational and analytical methods. Many expansion joints found in tubes and ducts of mechanical structures are designed to absorb thermal expansion mismatch between their structural members and deal with misalignments introduced from the assembly/manufacturing processes. One of the important design perspectives is the system’s vibrational characteristics. We calculate the stiffness as a characterization parameter for structural joint systems using a combined Finite Element Analysis (FEA) and an analytical method. We apply the methods to two sample applications: external configurations of aircraft engines and nuclear power plant structures.

Keywords: Expansion joint, expansion joint stiffness, Finite Element Analysis, FEA, nuclear power plants, aircraft engine external configurations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 693
9369 Co-tier and Co-channel Interference Avoidance Algorithm for Femtocell Networks

Authors: S. Padmapriya, M. Tamilarasi

Abstract:

Femtocells are regarded as a milestone for next generation cellular networks. As femtocells are deployed in an unplanned manner, there is a chance of assigning same resource to neighboring femtocells. This scenario may induce co-channel interference and may seriously affect the service quality of neighboring femtocells. In addition, the dominant transmit power of a femtocell will induce co-tier interference to neighboring femtocells. Thus to jointly handle co-tier and co-channel interference, we propose an interference-free power and resource block allocation (IFPRBA) algorithm for closely located, closed access femtocells. Based on neighboring list, inter-femto-base station distance and uplink noise power, the IFPRBA algorithm assigns non-interfering power and resource to femtocells. The IFPRBA algorithm also guarantees the quality of service to femtouser based on the knowledge of resource requirement, connection type, and the tolerable delay budget. Simulation result shows that the interference power experienced in IFPRBA algorithm is below the tolerable interference power and hence the overall service success ratio, PRB efficiency and network throughput are maximum when compared to conventional resource allocation framework for femtocell (RAFF) algorithm.

Keywords: Co-channel interference, co-tier interference, femtocells, guaranteed QoS, power optimization, resource assignment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2463
9368 Analytic on Various Grounding Configurations in Uniform Layer Soil

Authors: Mohd Shahriman B. Mohd Yunus, Mohd Hanif B. Jamaludin, Norain Bt. Bahror

Abstract:

The performance of an embedded grounding system is very important for the safe operation of electrical appliances and human beings. In principle, a safe grounding system has two objectives, which are to dissipate fault current without exceeding any operating and equipment limits and to ensure there is no risk of electric shock to humans in the vicinity of earthed facilities. The case studies in this paper present the calculating grounding resistance for multiple configurations of vertical and horizontally by using a simple and accurate formula. From the analytic calculated results, observed good/empirical relationship between the grounding resistance and length of the embedded grounding configurations. Moreover, the configurations of vertical and horizontal observed effectiveness of grounding resistance and good agreement on the reduction of grounding resistance values especially for vertical configuration.

Keywords: Grounding system, grounding resistance, soil resistivity, electrode geometry, configurations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 492
9367 Performance Evaluation of AOMDV-PAMAC Protocols for Ad Hoc Networks

Authors: B. Malarkodi, S. K. Riyaz Hussain, B. Venkataramani

Abstract:

Power consumption of nodes in ad hoc networks is a critical issue as they predominantly operate on batteries. In order to improve the lifetime of an ad hoc network, all the nodes must be utilized evenly and the power required for connections must be minimized. In this project a link layer algorithm known as Power Aware medium Access Control (PAMAC) protocol is proposed which enables the network layer to select a route with minimum total power requirement among the possible routes between a source and a destination provided all nodes in the routes have battery capacity above a threshold. When the battery capacity goes below a predefined threshold, routes going through these nodes will be avoided and these nodes will act only as source and destination. Further, the first few nodes whose battery power drained to the set threshold value are pushed to the exterior part of the network and the nodes in the exterior are brought to the interior. Since less total power is required to forward packets for each connection. The network layer protocol AOMDV is basically an extension to the AODV routing protocol. AOMDV is designed to form multiple routes to the destination and it also avoid the loop formation so that it reduces the unnecessary congestion to the channel. In this project, the performance of AOMDV is evaluated using PAMAC as a MAC layer protocol and the average power consumption, throughput and average end to end delay of the network are calculated and the results are compared with that of the other network layer protocol AODV.

Keywords: AODV, PAMAC, AOMDV, Power consumption.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1822
9366 Rapid Frequency Response Measurement of Power Conversion Products with Coherence-Based Confidence Analysis

Authors: Tomi Roinila, Aki Taskinen, Matti Vilkko

Abstract:

Switched-mode converters play now a significant role in modern society. Their operation are often crucial in various electrical applications affecting the every day life. Therefore, the quality of the converters needs to be reliably verified. Recent studies have shown that the converters can be fully characterized by a set of frequency responses which can be efficiently used to validate the proper operation of the converters. Consequently, several methods have been proposed to measure the frequency responses fast and accurately. Most often correlation-based techniques have been applied. The presented measurement methods are highly sensitive to external errors and system nonlinearities. This fact has been often forgotten and the necessary uncertainty analysis of the measured responses has been neglected. This paper presents a simple approach to analyze the noise and nonlinearities in the frequency-response measurements of switched-mode converters. Coherence analysis is applied to form a confidence interval characterizing the noise and nonlinearities involved in the measurements. The presented method is verified by practical measurements from a high-frequency switchedmode converter.

Keywords: Switched-mode converters, Frequency analysis, CoherenceAnalysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1715
9365 Development of a Spark Electrode Ignition System for an Explosion Vessel

Authors: Shaharin A. Sulaiman, Mizuan Minhat

Abstract:

This paper presents development of an ignition system using spark electrodes for application in a research explosion vessel. A single spark is aimed to be discharged with quantifiable ignition energy. The spark electrode system would enable study of flame propagation, ignitability of fuel-air mixtures and other fundamental characteristics of flames. The principle of the capacitive spark circuit of ASTM is studied to charge an appropriate capacitance connected across the spark gap through a large resistor by a high voltage from the source of power supply until the initiation of spark. Different spark energies could be obtained mainly by varying the value of the capacitance and the supply current. The spark sizes produced are found to be affected by the spark gap, electrode size, input voltage and capacitance value.

Keywords: Ignition, Spark Electrode, Flame

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2097
9364 A Voltage Based Maximum Power Point Tracker for Low Power and Low Cost Photovoltaic Applications

Authors: Jawad Ahmad, Hee-Jun Kim

Abstract:

This paper describes the design of a voltage based maximum power point tracker (MPPT) for photovoltaic (PV) applications. Of the various MPPT methods, the voltage based method is considered to be the simplest and cost effective. The major disadvantage of this method is that the PV array is disconnected from the load for the sampling of its open circuit voltage, which inevitably results in power loss. Another disadvantage, in case of rapid irradiance variation, is that if the duration between two successive samplings, called the sampling period, is too long there is a considerable loss. This is because the output voltage of the PV array follows the unchanged reference during one sampling period. Once a maximum power point (MPP) is tracked and a change in irradiation occurs between two successive samplings, then the new MPP is not tracked until the next sampling of the PV array voltage. This paper proposes an MPPT circuit in which the sampling interval of the PV array voltage, and the sampling period have been shortened. The sample and hold circuit has also been simplified. The proposed circuit does not utilize a microcontroller or a digital signal processor and is thus suitable for low cost and low power applications.

Keywords: Maximum power point tracker, Sample and hold amplifier, Sampling interval, Sampling period.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2763
9363 Direct Power Control Applied on 5-Level Diode Clamped Inverter Powered by a Renewable Energy Source

Authors: A. Elnady

Abstract:

This paper presents an improved Direct Power Control (DPC) scheme applied to the multilevel inverter that forms a Distributed Generation Unit (DGU). This paper demonstrates the performance of active and reactive power injected by the DGU to the smart grid. The DPC is traditionally operated by the hysteresis controller with the Space Vector Modulation (SVM) which is applied on the 2-level inverters or 3-level inverters. In this paper, the DPC is operated by the PI controller with the Phase-Disposition Pulse Width Modulation (PD-PWM) applied to the 5-level diode clamped inverter. The new combination of the DPC, PI controller, PD-PWM and multilevel inverter proves that its performance is much better than the conventional hysteresis-SVM based DPC. Simulations results have been presented to validate the performance of the suggested control scheme in the grid-connected mode.

Keywords: Direct power control, PI controller, PD-PWM, and power control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 850
9362 Reduction of Leakage Power in Digital Logic Circuits Using Stacking Technique in 45 Nanometer Regime

Authors: P.K. Sharma, B. Bhargava, S. Akashe

Abstract:

Power dissipation due to leakage current in the digital circuits is a biggest factor which is considered specially while designing nanoscale circuits. This paper is exploring the ideas of reducing leakage current in static CMOS circuits by stacking the transistors in increasing numbers. Clearly it means that the stacking of OFF transistors in large numbers result a significant reduction in power dissipation. Increase in source voltage of NMOS transistor minimizes the leakage current. Thus stacking technique makes circuit with minimum power dissipation losses due to leakage current. Also some of digital circuits such as full adder, D flip flop and 6T SRAM have been simulated in this paper, with the application of reduction technique on ‘cadence virtuoso tool’ using specter at 45nm technology with supply voltage 0.7V.

Keywords: Stack, 6T SRAM cell, low power, threshold voltage

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3415
9361 Mitigation of Electromagnetic Interference Generated by GPIB Control-Network in AC-DC Transfer Measurement System

Authors: M. M. Hlakola, E. Golovins, D. V. Nicolae

Abstract:

The field of instrumentation electronics is undergoing an explosive growth, due to its wide range of applications. The proliferation of electrical devices in a close working proximity can negatively influence each other’s performance. The degradation in the performance is due to electromagnetic interference (EMI). This paper investigates the negative effects of electromagnetic interference originating in the General Purpose Interface Bus (GPIB) control-network of the AC-DC transfer measurement system. Remedial measures of reducing measurement errors and failure of range of industrial devices due to EMI have been explored. The ACDC transfer measurement system was analysed for the commonmode (CM) EMI effects. Further investigation of coupling path as well as much accurate identification of noise propagation mechanism has been outlined. To prevent the occurrence of common-mode (ground loops) which was identified between the GPIB system control circuit and the measurement circuit, a microcontroller-driven GPIB switching isolator device was designed, prototyped, programmed and validated. This mitigation technique has been explored to reduce EMI effectively.

Keywords: CM, EMI, GPIB, ground loops.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1821
9360 Construction of Intersection of Nondeterministic Finite Automata using Z Notation

Authors: Nazir Ahmad Zafar, Nabeel Sabir, Amir Ali

Abstract:

Functionalities and control behavior are both primary requirements in design of a complex system. Automata theory plays an important role in modeling behavior of a system. Z is an ideal notation which is used for describing state space of a system and then defining operations over it. Consequently, an integration of automata and Z will be an effective tool for increasing modeling power for a complex system. Further, nondeterministic finite automata (NFA) may have different implementations and therefore it is needed to verify the transformation from diagrams to a code. If we describe formal specification of an NFA before implementing it, then confidence over transformation can be increased. In this paper, we have given a procedure for integrating NFA and Z. Complement of a special type of NFA is defined. Then union of two NFAs is formalized after defining their complements. Finally, formal construction of intersection of NFAs is described. The specification of this relationship is analyzed and validated using Z/EVES tool.

Keywords: Modeling, Nondeterministic finite automata, Znotation, Integration of approaches, Validation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3177
9359 Optimal Power Allocation to Diversity Branches of Cooperative MISO Sensor Networks

Authors: Rooholah Hasanizadeh, Saadan Zokaei

Abstract:

In the context of sensor networks, where every few dB saving counts, the novel node cooperation schemes are reviewed where MIMO techniques play a leading role. These methods could be treated as joint approach for designing physical layer of their communication scenarios. Then we analyzed the BER performance of transmission diversity schemes under a general fading channel model and proposed a power allocation strategy to the transmitting sensor nodes. This approach is then compared to an equal-power assignment method and its performance enhancement is verified by the simulation. Another key point of the contribution lies in the combination of optimal power allocation and sensor nodes- cooperation in a transmission diversity regime (MISO). Numerical results are given through figures to demonstrate the optimality and efficiency of proposed combined approach.

Keywords: Optimal power allocation, cooperative MISO scheme, sensor networks, diversity branch.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1408
9358 Transformations of Spatial Distributions of Bio-Polymers and Nanoparticles in Water Suspensions Induced by Resonance-Like Low Frequency Electrical Fields

Authors: A. A. Vasin, N. V. Klassen, A. M. Likhter

Abstract:

Water suspensions of in-organic (metals and oxides) and organic nano-objects (chitozan and collagen) were subjected to the treatment of direct and alternative electrical fields. In addition to quasi-periodical spatial patterning resonance-like performance of spatial distributions of these suspensions has been found at low frequencies of alternating electrical field. These resonances are explained as the result of creation of equilibrium states of groups of charged nano-objects with opposite signs of charges at the interparticle distances where the forces of Coulomb attraction are compensated by the repulsion forces induced by relatively negative polarization of hydrated regions surrounding the nanoparticles with respect to pure water. The low frequencies of these resonances are explained by comparatively big distances between the particles and their big masses with t\respect to masses of atoms constituting molecules with high resonance frequencies. These new resonances open a new approach to detailed modeling and understanding of mechanisms of the influence of electrical fields on the functioning of internal organs of living organisms at the level of cells and neurons.

Keywords: Bio-polymers, chitosan, collagen, nanoparticles, coulomb attraction, polarization repulsion, periodical patterning, electrical low frequency resonances, transformations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1119
9357 Ultrasonic Intensification of the Chemical Degradation of Methyl Violet: An Experimental Study

Authors: N. P. Dhanalakshmi, R. Nagarajan

Abstract:

The sonochemical decolorization and degradation of azo dye Methyl violet using Fenton-s reagent in the presence of a high-frequency acoustic field has been investigated. Dyeing and textile effluents are the major sources of azo dyes, and are most troublesome among industrial wastewaters, causing imbalance in the eco-system. The effect of various operating conditions (initial concentration of dye, liquid-phase temperature, ultrasonic power and frequency and process time) on sonochemical degradation was investigated. Conversion was found to increase with increase in initial concentration, temperature, power level and frequency. Both horntype and tank-type sonicators were used, at various power levels (250W, 400W and 500W) for frequencies ranging from 20 kHz - 1000 kHz. A 'Process Intensification' parameter PI, was defined to quantify the enhancement of the degradation reaction by ultrasound when compared to control (i.e., without ultrasound). The present work clearly demonstrates that a high-frequency ultrasonic bath can be used to achieve higher process throughput and energy efficiency at a larger scale of operation.

Keywords: Fenton oxidation, process intensification, sonochemical degradation of MV, ultrasonic frequency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2543
9356 Teaching Contemporary Power Distribution and Industrial Networks in Higher Education Vocational Studies

Authors: Rade M. Ciric

Abstract:

The paper shows the development and implementation of the syllabus of the subject 'Distribution and Industrial Networks', attended by the vocational specialist Year 4 students of the Electric Power Engineering study programme at the Higher Education Technical School of Vocational Studies in Novi Sad. The aim of the subject is to equip students with the knowledge necessary for planning, exploitation and management of distributive and industrial electric power networks in an open electricity market environment. The results of the evaluation of educational outcomes on the subject are presented and discussed.

Keywords: Engineering education, power distribution network, syllabus implementation, outcome evaluation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 770
9355 Realization of a Temperature Based Automatic Controlled Domestic Electric Boiling System

Authors: Shengqi Yu, Jinwei Zhao

Abstract:

This paper presents a kind of analog circuit based temperature control system, which is mainly composed by threshold control signal circuit, synchronization signal circuit and trigger pulse circuit. Firstly, the temperature feedback signal function is realized by temperature sensor TS503F3950E. Secondly, the main control circuit forms the cycle controlled pulse signal to control the thyristor switching model. Finally two reverse paralleled thyristors regulate the output power by their switching state. In the consequence, this is a modernized and energy-saving domestic electric heating system.

Keywords: Time base circuit, automatic control, zero-crossing trigger, temperature control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 994
9354 A Performance Comparison of Golay and Reed-Muller Coded OFDM Signal for Peak-to-Average Power Ratio Reduction

Authors: Sanjay Singh, M Sathish Kumar, H. S Mruthyunjaya

Abstract:

Multicarrier transmission system such as Orthogonal Frequency Division Multiplexing (OFDM) is a promising technique for high bit rate transmission in wireless communication systems. OFDM is a spectrally efficient modulation technique that can achieve high speed data transmission over multipath fading channels without the need for powerful equalization techniques. A major drawback of OFDM is the high Peak-to-Average Power Ratio (PAPR) of the transmit signal which can significantly impact the performance of the power amplifier. In this paper we have compared the PAPR reduction performance of Golay and Reed-Muller coded OFDM signal. From our simulation it has been found that the PAPR reduction performance of Golay coded OFDM is better than the Reed-Muller coded OFDM signal. Moreover, for the optimum PAPR reduction performance, code configuration for Golay and Reed-Muller codes has been identified.

Keywords: OFDM, PAPR, Perfect Codes, Golay Codes, Reed-Muller Codes

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1775