Search results for: Nonlinear Transconductance
73 Image Restoration in Non-Linear Filtering Domain using MDB approach
Authors: S. K. Satpathy, S. Panda, K. K. Nagwanshi, C. Ardil
Abstract:
This paper proposes a new technique based on nonlinear Minmax Detector Based (MDB) filter for image restoration. The aim of image enhancement is to reconstruct the true image from the corrupted image. The process of image acquisition frequently leads to degradation and the quality of the digitized image becomes inferior to the original image. Image degradation can be due to the addition of different types of noise in the original image. Image noise can be modeled of many types and impulse noise is one of them. Impulse noise generates pixels with gray value not consistent with their local neighborhood. It appears as a sprinkle of both light and dark or only light spots in the image. Filtering is a technique for enhancing the image. Linear filter is the filtering in which the value of an output pixel is a linear combination of neighborhood values, which can produce blur in the image. Thus a variety of smoothing techniques have been developed that are non linear. Median filter is the one of the most popular non-linear filter. When considering a small neighborhood it is highly efficient but for large window and in case of high noise it gives rise to more blurring to image. The Centre Weighted Mean (CWM) filter has got a better average performance over the median filter. However the original pixel corrupted and noise reduction is substantial under high noise condition. Hence this technique has also blurring affect on the image. To illustrate the superiority of the proposed approach, the proposed new scheme has been simulated along with the standard ones and various restored performance measures have been compared.
Keywords: Filtering, Minmax Detector Based (MDB), noise, centre weighted mean filter, PSNR, restoration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 273972 Sensitivity Analysis of Principal Stresses in Concrete Slab of Rigid Pavement Made From Recycled Materials
Authors: Aleš Florian, Lenka Ševelová
Abstract:
Complex sensitivity analysis of stresses in a concrete slab of the real type of rigid pavement made from recycled materials is performed. The computational model of the pavement is designed as a spatial (3D) model, is based on a nonlinear variant of the finite element method that respects the structural nonlinearity, enables to model different arrangements of joints, and the entire model can be loaded by the thermal load. Interaction of adjacent slabs in joints and contact of the slab and the subsequent layer are modeled with the help of special contact elements. Four concrete slabs separated by transverse and longitudinal joints and the additional structural layers and soil to the depth of about 3m are modeled. The thickness of individual layers, physical and mechanical properties of materials, characteristics of joints, and the temperature of the upper and lower surface of slabs are supposed to be random variables. The modern simulation technique Updated Latin Hypercube Sampling with 20 simulations is used. For sensitivity analysis the sensitivity coefficient based on the Spearman rank correlation coefficient is utilized. As a result, the estimates of influence of random variability of individual input variables on the random variability of principal stresses s1 and s3 in 53 points on the upper and lower surface of the concrete slabs are obtained.
Keywords: Concrete, FEM, pavement, sensitivity, simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 212871 Assessment Power and Frequency Oscillation Damping Using POD Controller and Proposed FOD Controller
Authors: Yahya Naderi, Tohid Rahimi, Babak Yousefi, Seyed Hossein Hosseini
Abstract:
Today’s modern interconnected power system is highly complex in nature. In this, one of the most important requirements during the operation of the electric power system is the reliability and security. Power and frequency oscillation damping mechanism improve the reliability. Because of power system stabilizer (PSS) low speed response against of major fault such as three phase short circuit, FACTs devise that can control the network condition in very fast time, are becoming popular. But FACTs capability can be seen in a major fault present when nonlinear models of FACTs devise and power system equipment are applied. To realize this aim, the model of multi-machine power system with FACTs controller is developed in MATLAB/SIMULINK using Sim Power System (SPS) blockiest. Among the FACTs device, Static synchronous series compensator (SSSC) due to high speed changes its reactance characteristic inductive to capacitive, is effective power flow controller. Tuning process of controller parameter can be performed using different method. But Genetic Algorithm (GA) ability tends to use it in controller parameter tuning process. In this paper firstly POD controller is used to power oscillation damping. But in this station, frequency oscillation dos not has proper damping situation. So FOD controller that is tuned using GA is using that cause to damp out frequency oscillation properly and power oscillation damping has suitable situation.
Keywords: Power oscillation damping (POD), frequency oscillation damping (FOD), Static synchronous series compensator (SSSC), Genetic Algorithm (GA).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 316370 Analytical Prediction of Seismic Response of Steel Frames with Superelastic Shape Memory Alloy
Authors: Mohamed Omar
Abstract:
Superelastic Shape Memory Alloy (SMA) is accepted when it used as connection in steel structures. The seismic behaviour of steel frames with SMA is being assessed in this study. Three eightstorey steel frames with different SMA systems are suggested, the first one of which is braced with diagonal bracing system, the second one is braced with nee bracing system while the last one is which the SMA is used as connection at the plastic hinge regions of beams. Nonlinear time history analyses of steel frames with SMA subjected to two different ground motion records have been performed using Seismostruct software. To evaluate the efficiency of suggested systems, the dynamic responses of the frames were compared. From the comparison results, it can be concluded that using SMA element is an effective way to improve the dynamic response of structures subjected to earthquake excitations. Implementing the SMA braces can lead to a reduction in residual roof displacement. The shape memory alloy is effective in reducing the maximum displacement at the frame top and it provides a large elastic deformation range. SMA connections are very effective in dissipating energy and reducing the total input energy of the whole frame under severe seismic ground motion. Using of the SMA connection system is more effective in controlling the reaction forces at the base frame than other bracing systems. Using SMA as bracing is more effective in reducing the displacements. The efficiency of SMA is dependant on the input wave motions and the construction system as well.Keywords: Finite element analysis, seismic response, shapesmemory alloy, steel frame, superelasticity
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 184569 Stability Optimization of Functionally Graded Pipes Conveying Fluid
Authors: Karam Y. Maalawi, Hanan E.M EL-Sayed
Abstract:
This paper presents an exact analytical model for optimizing stability of thin-walled, composite, functionally graded pipes conveying fluid. The critical flow velocity at which divergence occurs is maximized for a specified total structural mass in order to ensure the economic feasibility of the attained optimum designs. The composition of the material of construction is optimized by defining the spatial distribution of volume fractions of the material constituents using piecewise variations along the pipe length. The major aim is to tailor the material distribution in the axial direction so as to avoid the occurrence of divergence instability without the penalty of increasing structural mass. Three types of boundary conditions have been examined; namely, Hinged-Hinged, Clamped- Hinged and Clamped-Clamped pipelines. The resulting optimization problem has been formulated as a nonlinear mathematical programming problem solved by invoking the MatLab optimization toolbox routines, which implement constrained function minimization routine named “fmincon" interacting with the associated eigenvalue problem routines. In fact, the proposed mathematical models have succeeded in maximizing the critical flow velocity without mass penalty and producing efficient and economic designs having enhanced stability characteristics as compared with the baseline designs.Keywords: Functionally graded materials, pipe flow, optimumdesign, fluid- structure interaction
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 220868 Enhanced GA-Fuzzy OPF under both Normal and Contingent Operation States
Authors: Ashish Saini, A.K. Saxena
Abstract:
The genetic algorithm (GA) based solution techniques are found suitable for optimization because of their ability of simultaneous multidimensional search. Many GA-variants have been tried in the past to solve optimal power flow (OPF), one of the nonlinear problems of electric power system. The issues like convergence speed and accuracy of the optimal solution obtained after number of generations using GA techniques and handling system constraints in OPF are subjects of discussion. The results obtained for GA-Fuzzy OPF on various power systems have shown faster convergence and lesser generation costs as compared to other approaches. This paper presents an enhanced GA-Fuzzy OPF (EGAOPF) using penalty factors to handle line flow constraints and load bus voltage limits for both normal network and contingency case with congestion. In addition to crossover and mutation rate adaptation scheme that adapts crossover and mutation probabilities for each generation based on fitness values of previous generations, a block swap operator is also incorporated in proposed EGA-OPF. The line flow limits and load bus voltage magnitude limits are handled by incorporating line overflow and load voltage penalty factors respectively in each chromosome fitness function. The effects of different penalty factors settings are also analyzed under contingent state.Keywords: Contingent operation state, Fuzzy rule base, Genetic Algorithms, Optimal Power Flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 161567 Design of QFT-Based Self-Tuning Deadbeat Controller
Authors: H. Mansor, S. B. Mohd Noor
Abstract:
This paper presents a design method of self-tuning Quantitative Feedback Theory (QFT) by using improved deadbeat control algorithm. QFT is a technique to achieve robust control with pre-defined specifications whereas deadbeat is an algorithm that could bring the output to steady state with minimum step size. Nevertheless, usually there are large peaks in the deadbeat response. By integrating QFT specifications into deadbeat algorithm, the large peaks could be tolerated. On the other hand, emerging QFT with adaptive element will produce a robust controller with wider coverage of uncertainty. By combining QFT-based deadbeat algorithm and adaptive element, superior controller that is called selftuning QFT-based deadbeat controller could be achieved. The output response that is fast, robust and adaptive is expected. Using a grain dryer plant model as a pilot case-study, the performance of the proposed method has been evaluated and analyzed. Grain drying process is very complex with highly nonlinear behaviour, long delay, affected by environmental changes and affected by disturbances. Performance comparisons have been performed between the proposed self-tuning QFT-based deadbeat, standard QFT and standard dead-beat controllers. The efficiency of the self-tuning QFTbased dead-beat controller has been proven from the tests results in terms of controller’s parameters are updated online, less percentage of overshoot and settling time especially when there are variations in the plant.
Keywords: Deadbeat control, quantitative feedback theory (QFT), robust control, self-tuning control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 233366 Cross Signal Identification for PSG Applications
Authors: Carmen Grigoraş, Victor Grigoraş, Daniela Boişteanu
Abstract:
The standard investigational method for obstructive sleep apnea syndrome (OSAS) diagnosis is polysomnography (PSG), which consists of a simultaneous, usually overnight recording of multiple electro-physiological signals related to sleep and wakefulness. This is an expensive, encumbering and not a readily repeated protocol, and therefore there is need for simpler and easily implemented screening and detection techniques. Identification of apnea/hypopnea events in the screening recordings is the key factor for the diagnosis of OSAS. The analysis of a solely single-lead electrocardiographic (ECG) signal for OSAS diagnosis, which may be done with portable devices, at patient-s home, is the challenge of the last years. A novel artificial neural network (ANN) based approach for feature extraction and automatic identification of respiratory events in ECG signals is presented in this paper. A nonlinear principal component analysis (NLPCA) method was considered for feature extraction and support vector machine for classification/recognition. An alternative representation of the respiratory events by means of Kohonen type neural network is discussed. Our prospective study was based on OSAS patients of the Clinical Hospital of Pneumology from Iaşi, Romania, males and females, as well as on non-OSAS investigated human subjects. Our computed analysis includes a learning phase based on cross signal PSG annotation.Keywords: Artificial neural networks, feature extraction, obstructive sleep apnea syndrome, pattern recognition, signalprocessing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 154165 Analysis of Temperature Change under Global Warming Impact using Empirical Mode Decomposition
Authors: Md. Khademul Islam Molla, Akimasa Sumi, M. Sayedur Rahman
Abstract:
The empirical mode decomposition (EMD) represents any time series into a finite set of basis functions. The bases are termed as intrinsic mode functions (IMFs) which are mutually orthogonal containing minimum amount of cross-information. The EMD successively extracts the IMFs with the highest local frequencies in a recursive way, which yields effectively a set low-pass filters based entirely on the properties exhibited by the data. In this paper, EMD is applied to explore the properties of the multi-year air temperature and to observe its effects on climate change under global warming. This method decomposes the original time-series into intrinsic time scale. It is capable of analyzing nonlinear, non-stationary climatic time series that cause problems to many linear statistical methods and their users. The analysis results show that the mode of EMD presents seasonal variability. The most of the IMFs have normal distribution and the energy density distribution of the IMFs satisfies Chi-square distribution. The IMFs are more effective in isolating physical processes of various time-scales and also statistically significant. The analysis results also show that the EMD method provides a good job to find many characteristics on inter annual climate. The results suggest that climate fluctuations of every single element such as temperature are the results of variations in the global atmospheric circulation.
Keywords: Empirical mode decomposition, instantaneous frequency, Hilbert spectrum, Chi-square distribution, anthropogenic impact.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 214964 Effect of Peak-to-Average Power Ratio Reduction on the Multicarrier Communication System Performance Parameters
Authors: Sanjay Singh, M Sathish Kumar, H. S Mruthyunjaya
Abstract:
Multicarrier transmission system such as Orthogonal Frequency Division Multiplexing (OFDM) is a promising technique for high bit rate transmission in wireless communication system. OFDM is a spectrally efficient modulation technique that can achieve high speed data transmission over multipath fading channels without the need for powerful equalization techniques. However the price paid for this high spectral efficiency and less intensive equalization is low power efficiency. OFDM signals are very sensitive to nonlinear effects due to the high Peak-to-Average Power Ratio (PAPR), which leads to the power inefficiency in the RF section of the transmitter. This paper investigates the effect of PAPR reduction on the performance parameter of multicarrier communication system. Performance parameters considered are power consumption of Power Amplifier (PA) and Digital-to-Analog Converter (DAC), power amplifier efficiency, SNR of DAC and BER performance of the system. From our analysis it is found that irrespective of PAPR reduction technique being employed, the power consumption of PA and DAC reduces and power amplifier efficiency increases due to reduction in PAPR. Moreover, it has been shown that for a given BER performance the requirement of Input-Backoff (IBO) reduces with reduction in PAPR.Keywords: BER, Crest Factor (CF), Digital-to-Analog Converter(DAC), Input-Backoff (IBO), Orthogonal Frequency Division Multiplexing(OFDM), Peak-to-Average Power Ratio (PAPR), PowerAmplifier efficiency, SNR
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 328663 Feature Reduction of Nearest Neighbor Classifiers using Genetic Algorithm
Authors: M. Analoui, M. Fadavi Amiri
Abstract:
The design of a pattern classifier includes an attempt to select, among a set of possible features, a minimum subset of weakly correlated features that better discriminate the pattern classes. This is usually a difficult task in practice, normally requiring the application of heuristic knowledge about the specific problem domain. The selection and quality of the features representing each pattern have a considerable bearing on the success of subsequent pattern classification. Feature extraction is the process of deriving new features from the original features in order to reduce the cost of feature measurement, increase classifier efficiency, and allow higher classification accuracy. Many current feature extraction techniques involve linear transformations of the original pattern vectors to new vectors of lower dimensionality. While this is useful for data visualization and increasing classification efficiency, it does not necessarily reduce the number of features that must be measured since each new feature may be a linear combination of all of the features in the original pattern vector. In this paper a new approach is presented to feature extraction in which feature selection, feature extraction, and classifier training are performed simultaneously using a genetic algorithm. In this approach each feature value is first normalized by a linear equation, then scaled by the associated weight prior to training, testing, and classification. A knn classifier is used to evaluate each set of feature weights. The genetic algorithm optimizes a vector of feature weights, which are used to scale the individual features in the original pattern vectors in either a linear or a nonlinear fashion. By this approach, the number of features used in classifying can be finely reduced.Keywords: Feature reduction, genetic algorithm, pattern classification, nearest neighbor rule classifiers (k-NNR).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 176762 Performance Based Design of Masonry Infilled Reinforced Concrete Frames for Near-Field Earthquakes Using Energy Methods
Authors: Alok Madan, Arshad K. Hashmi
Abstract:
Performance based design (PBD) is an iterative exercise in which a preliminary trial design of the building structure is selected and if the selected trial design of the building structure does not conform to the desired performance objective, the trial design is revised. In this context, development of a fundamental approach for performance based seismic design of masonry infilled frames with minimum number of trials is an important objective. The paper presents a plastic design procedure based on the energy balance concept for PBD of multi-story multi-bay masonry infilled reinforced concrete (R/C) frames subjected to near-field earthquakes. The proposed energy based plastic design procedure was implemented for trial performance based seismic design of representative masonry infilled reinforced concrete frames with various practically relevant distributions of masonry infill panels over the frame elevation. Non-linear dynamic analyses of the trial PBD of masonry infilled R/C frames was performed under the action of near-field earthquake ground motions. The results of non-linear dynamic analyses demonstrate that the proposed energy method is effective for performance based design of masonry infilled R/C frames under near-field as well as far-field earthquakes.
Keywords: Masonry Infilled Frame, Energy Methods, Near-fault Ground Motions, Pushover Analysis, Nonlinear Dynamic Analysis, Seismic Demand.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 279061 On the Parameter Optimization of Fuzzy Inference Systems
Authors: Erika Martinez Ramirez, Rene V. Mayorga
Abstract:
Nowadays, more engineering systems are using some kind of Artificial Intelligence (AI) for the development of their processes. Some well-known AI techniques include artificial neural nets, fuzzy inference systems, and neuro-fuzzy inference systems among others. Furthermore, many decision-making applications base their intelligent processes on Fuzzy Logic; due to the Fuzzy Inference Systems (FIS) capability to deal with problems that are based on user knowledge and experience. Also, knowing that users have a wide variety of distinctiveness, and generally, provide uncertain data, this information can be used and properly processed by a FIS. To properly consider uncertainty and inexact system input values, FIS normally use Membership Functions (MF) that represent a degree of user satisfaction on certain conditions and/or constraints. In order to define the parameters of the MFs, the knowledge from experts in the field is very important. This knowledge defines the MF shape to process the user inputs and through fuzzy reasoning and inference mechanisms, the FIS can provide an “appropriate" output. However an important issue immediately arises: How can it be assured that the obtained output is the optimum solution? How can it be guaranteed that each MF has an optimum shape? A viable solution to these questions is through the MFs parameter optimization. In this Paper a novel parameter optimization process is presented. The process for FIS parameter optimization consists of the five simple steps that can be easily realized off-line. Here the proposed process of FIS parameter optimization it is demonstrated by its implementation on an Intelligent Interface section dealing with the on-line customization / personalization of internet portals applied to E-commerce.Keywords: Artificial Intelligence, Fuzzy Logic, Fuzzy InferenceSystems, Nonlinear Optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 198460 Structural Analysis and Strengthening of the National Youth Foundation Building in Igoumenitsa, Greece
Authors: Chrysanthos Maraveas, Argiris Plesias, Garyfalia G. Triantafyllou, Konstantinos Petronikolos
Abstract:
The current paper presents a structural assessment and proposals for retrofit of the National Youth Foundation Building, an existing reinforced concrete (RC) building in the city of Igoumenitsa, Greece. The building is scheduled to be renovated in order to create a Municipal Cultural Center. The bearing capacity and structural integrity have been investigated in relation to the provisions and requirements of the Greek Retrofitting Code (KAN.EPE.) and European Standards (Eurocodes). The capacity of the existing concrete structure that makes up the two central buildings in the complex (buildings II and IV) has been evaluated both in its present form and after including several proposed architectural interventions. The structural system consists of spatial frames of columns and beams that have been simulated using beam elements. Some RC elements of the buildings have been strengthened in the past by means of concrete jacketing and have had cracks sealed with epoxy injections. Static-nonlinear analysis (Pushover) has been used to assess the seismic performance of the two structures with regard to performance level B1 from KAN.EPE. Retrofitting scenarios are proposed for the two buildings, including type Λ steel bracings and placement of concrete shear walls in the transverse direction in order to achieve the design-specification deformation in each applicable situation, improve the seismic performance, and reduce the number of interventions required.
Keywords: Earthquake resistance, pushover analysis, reinforced concrete, retrofit, strengthening.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 84559 An Adaptive Memetic Algorithm With Dynamic Population Management for Designing HIV Multidrug Therapies
Authors: Hassan Zarei, Ali Vahidian Kamyad, Sohrab Effati
Abstract:
In this paper, a mathematical model of human immunodeficiency virus (HIV) is utilized and an optimization problem is proposed, with the final goal of implementing an optimal 900-day structured treatment interruption (STI) protocol. Two type of commonly used drugs in highly active antiretroviral therapy (HAART), reverse transcriptase inhibitors (RTI) and protease inhibitors (PI), are considered. In order to solving the proposed optimization problem an adaptive memetic algorithm with population management (AMAPM) is proposed. The AMAPM uses a distance measure to control the diversity of population in genotype space and thus preventing the stagnation and premature convergence. Moreover, the AMAPM uses diversity parameter in phenotype space to dynamically set the population size and the number of crossovers during the search process. Three crossover operators diversify the population, simultaneously. The progresses of crossover operators are utilized to set the number of each crossover per generation. In order to escaping the local optima and introducing the new search directions toward the global optima, two local searchers assist the evolutionary process. In contrast to traditional memetic algorithms, the activation of these local searchers is not random and depends on both the diversity parameters in genotype space and phenotype space. The capability of AMAPM in finding optimal solutions compared with three popular metaheurestics is introduced.Keywords: HIV therapy design, memetic algorithms, adaptivealgorithms, nonlinear integer programming.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 162758 Prediction of the Epileptic Events 'Epileptic Seizures' by Neural Networks and Expert Systems
Authors: Kifah Tout, Nisrine Sinno, Mohamad Mikati
Abstract:
Many studies have focused on the nonlinear analysis of electroencephalography (EEG) mainly for the characterization of epileptic brain states. It is assumed that at least two states of the epileptic brain are possible: the interictal state characterized by a normal apparently random, steady-state EEG ongoing activity; and the ictal state that is characterized by paroxysmal occurrence of synchronous oscillations and is generally called in neurology, a seizure. The spatial and temporal dynamics of the epileptogenic process is still not clear completely especially the most challenging aspects of epileptology which is the anticipation of the seizure. Despite all the efforts we still don-t know how and when and why the seizure occurs. However actual studies bring strong evidence that the interictal-ictal state transition is not an abrupt phenomena. Findings also indicate that it is possible to detect a preseizure phase. Our approach is to use the neural network tool to detect interictal states and to predict from those states the upcoming seizure ( ictal state). Analysis of the EEG signal based on neural networks is used for the classification of EEG as either seizure or non-seizure. By applying prediction methods it will be possible to predict the upcoming seizure from non-seizure EEG. We will study the patients admitted to the epilepsy monitoring unit for the purpose of recording their seizures. Preictal, ictal, and post ictal EEG recordings are available on such patients for analysis The system will be induced by taking a body of samples then validate it using another. Distinct from the two first ones a third body of samples is taken to test the network for the achievement of optimum prediction. Several methods will be tried 'Backpropagation ANN' and 'RBF'.Keywords: Artificial neural network (ANN), automatic prediction, epileptic seizures analysis, genetic algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 154057 Nonlinear Thermal Hydraulic Model to Analyze Parallel Channel Density Wave Instabilities in Natural Circulation Boiling Water Reactor with Asymmetric Power Distribution
Authors: Sachin Kumar, Vivek Tiwari, Goutam Dutta
Abstract:
The paper investigates parallel channel instabilities of natural circulation boiling water reactor. A thermal-hydraulic model is developed to simulate two-phase flow behavior in the natural circulation boiling water reactor (NCBWR) with the incorporation of ex-core components and recirculation loop such as steam separator, down-comer, lower-horizontal section and upper-horizontal section and then, numerical analysis is carried out for parallel channel instabilities of the reactor undergoing both in-phase and out-of-phase modes of oscillations. To analyze the relative effect on stability of the reactor due to inclusion of various ex-core components and recirculation loop, marginal stable point is obtained at a particular inlet enthalpy of the reactor core without the inclusion of ex-core components and recirculation loop and then with the inclusion of the same. Numerical simulations are also conducted to determine the relative dominance between two modes of oscillations i.e. in-phase and out-of-phase. Simulations are also carried out when the channels are subjected to asymmetric power distribution keeping the inlet enthalpy same.Keywords: Asymmetric power distribution, Density wave oscillations, In-phase and out-of-phase modes of instabilities, Natural circulation boiling water reactor
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 226056 Multiparametric Optimization of Water Treatment Process for Thermal Power Plants
Authors: B. Mukanova, N. Glazyrina, S. Glazyrin
Abstract:
The formulated problem of optimization of the technological process of water treatment for thermal power plants is considered in this article. The problem is of multiparametric nature. To optimize the process, namely, reduce the amount of waste water, a new technology was developed to reuse such water. A mathematical model of the technology of wastewater reuse was developed. Optimization parameters were determined. The model consists of a material balance equation, an equation describing the kinetics of ion exchange for the non-equilibrium case and an equation for the ion exchange isotherm. The material balance equation includes a nonlinear term that depends on the kinetics of ion exchange. A direct problem of calculating the impurity concentration at the outlet of the water treatment plant was numerically solved. The direct problem was approximated by an implicit point-to-point computation difference scheme. The inverse problem was formulated as relates to determination of the parameters of the mathematical model of the water treatment plant operating in non-equilibrium conditions. The formulated inverse problem was solved. Following the results of calculation the time of start of the filter regeneration process was determined, as well as the period of regeneration process and the amount of regeneration and wash water. Multi-parameter optimization of water treatment process for thermal power plants allowed decreasing the amount of wastewater by 15%.
Keywords: Direct problem, multiparametric optimization, optimization parameters, water treatment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 213755 Substantial Fatigue Similarity of a New Small-Scale Test Rig to Actual Wheel-Rail System
Authors: Meysam Naeimi, Zili Li, Roumen Petrov, Rolf Dollevoet, Jilt Sietsma, Jun Wu
Abstract:
The substantial similarity of fatigue mechanism in a new test rig for rolling contact fatigue (RCF) has been investigated. A new reduced-scale test rig is designed to perform controlled RCF tests in wheel-rail materials. The fatigue mechanism of the rig is evaluated in this study using a combined finite element-fatigue prediction approach. The influences of loading conditions on fatigue crack initiation have been studied. Furthermore, the effects of some artificial defects (squat-shape) on fatigue lives are examined. To simulate the vehicle-track interaction by means of the test rig, a threedimensional finite element (FE) model is built up. The nonlinear material behaviour of the rail steel is modelled in the contact interface. The results of FE simulations are combined with the critical plane concept to determine the material points with the greatest possibility of fatigue failure. Based on the stress-strain responses, by employing of previously postulated criteria for fatigue crack initiation (plastic shakedown and ratchetting), fatigue life analysis is carried out. The results are reported for various loading conditions and different defect sizes. Afterward, the cyclic mechanism of the test rig is evaluated from the operational viewpoint. The results of fatigue life predictions are compared with the expected number of cycles of the test rig by its cyclic nature. Finally, the estimative duration of the experiments until fatigue crack initiation is roughly determined.
Keywords: Fatigue, test rig, crack initiation, life, rail, squats.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 216954 A Non-Linear Eddy Viscosity Model for Turbulent Natural Convection in Geophysical Flows
Authors: J. P. Panda, K. Sasmal, H. V. Warrior
Abstract:
Eddy viscosity models in turbulence modeling can be mainly classified as linear and nonlinear models. Linear formulations are simple and require less computational resources but have the disadvantage that they cannot predict actual flow pattern in complex geophysical flows where streamline curvature and swirling motion are predominant. A constitutive equation of Reynolds stress anisotropy is adopted for the formulation of eddy viscosity including all the possible higher order terms quadratic in the mean velocity gradients, and a simplified model is developed for actual oceanic flows where only the vertical velocity gradients are important. The new model is incorporated into the one dimensional General Ocean Turbulence Model (GOTM). Two realistic oceanic test cases (OWS Papa and FLEX' 76) have been investigated. The new model predictions match well with the observational data and are better in comparison to the predictions of the two equation k-epsilon model. The proposed model can be easily incorporated in the three dimensional Princeton Ocean Model (POM) to simulate a wide range of oceanic processes. Practically, this model can be implemented in the coastal regions where trasverse shear induces higher vorticity, and for prediction of flow in estuaries and lakes, where depth is comparatively less. The model predictions of marine turbulence and other related data (e.g. Sea surface temperature, Surface heat flux and vertical temperature profile) can be utilized in short term ocean and climate forecasting and warning systems.Keywords: Eddy viscosity, turbulence modeling, GOTM, CFD.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 95453 Determining the Maximum Lateral Displacement Due to Sever Earthquakes without Using Nonlinear Analysis
Authors: Mussa Mahmoudi
Abstract:
For Seismic design, it is important to estimate, maximum lateral displacement (inelastic displacement) of the structures due to sever earthquakes for several reasons. Seismic design provisions estimate the maximum roof and storey drifts occurring in major earthquakes by amplifying the drifts of the structures obtained by elastic analysis subjected to seismic design load, with a coefficient named “displacement amplification factor" which is greater than one. Here, this coefficient depends on various parameters, such as ductility and overstrength factors. The present research aims to evaluate the value of the displacement amplification factor in seismic design codes and then tries to propose a value to estimate the maximum lateral structural displacement from sever earthquakes, without using non-linear analysis. In seismic codes, since the displacement amplification is related to “force reduction factor" hence; this aspect has been accepted in the current study. Meanwhile, two methodologies are applied to evaluate the value of displacement amplification factor and its relation with the force reduction factor. In the first methodology, which is applied for all structures, the ratio of displacement amplification and force reduction factors is determined directly. Whereas, in the second methodology that is applicable just for R/C moment resisting frame, the ratio is obtained by calculating both factors, separately. The acquired results of these methodologies are alike and estimate the ratio of two factors from 1 to 1.2. The results indicate that the ratio of the displacement amplification factor and the force reduction factor differs to those proposed by seismic provisions such as NEHRP, IBC and Iranian seismic code (standard no. 2800).Keywords: Displacement amplification factor, Ductility factor, Force reduction factor, Maximum lateral displacement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 288852 Extracting the Coupled Dynamics in Thin-Walled Beams from Numerical Data Bases
Authors: Mohammad A. Bani-Khaled
Abstract:
In this work we use the Discrete Proper Orthogonal Decomposition transform to characterize the properties of coupled dynamics in thin-walled beams by exploiting numerical simulations obtained from finite element simulations. The outcomes of the will improve our understanding of the linear and nonlinear coupled behavior of thin-walled beams structures. Thin-walled beams have widespread usage in modern engineering application in both large scale structures (aeronautical structures), as well as in nano-structures (nano-tubes). Therefore, detailed knowledge in regard to the properties of coupled vibrations and buckling in these structures are of great interest in the research community. Due to the geometric complexity in the overall structure and in particular in the cross-sections it is necessary to involve computational mechanics to numerically simulate the dynamics. In using numerical computational techniques, it is not necessary to over simplify a model in order to solve the equations of motions. Computational dynamics methods produce databases of controlled resolution in time and space. These numerical databases contain information on the properties of the coupled dynamics. In order to extract the system dynamic properties and strength of coupling among the various fields of the motion, processing techniques are required. Time- Proper Orthogonal Decomposition transform is a powerful tool for processing databases for the dynamics. It will be used to study the coupled dynamics of thin-walled basic structures. These structures are ideal to form a basis for a systematic study of coupled dynamics in structures of complex geometry.
Keywords: Coupled dynamics, geometric complexity, Proper Orthogonal Decomposition (POD), thin walled beams.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 101651 Parameters Affecting the Elasto-Plastic Behavior of Outrigger Braced Walls to Earthquakes
Authors: T. A. Sakr, Hanaa E. Abd-El- Mottaleb
Abstract:
Outrigger-braced wall systems are commonly used to provide high rise buildings with the required lateral stiffness for wind and earthquake resistance. The existence of outriggers adds to the stiffness and strength of walls as reported by several studies. The effects of different parameters on the elasto-plastic dynamic behavior of outrigger-braced wall systems to earthquakes are investigated in this study. Parameters investigated include outrigger stiffness, concrete strength, and reinforcement arrangement as the main design parameters in wall design. In addition to being significantly affect the wall behavior, such parameters may lead to the change of failure mode and the delay of crack propagation and consequently failure as the wall is excited by earthquakes. Bi-linear stress-strain relation for concrete with limited tensile strength and truss members with bi-linear stress-strain relation for reinforcement were used in the finite element analysis of the problem. The famous earthquake record, El-Centro, 1940 is used in the study. Emphasize was given to the lateral drift, normal stresses and crack pattern as behavior controlling determinants. Results indicated significant effect of the studied parameters such that stiffer outrigger, higher grade concrete and concentrating the reinforcement at wall edges enhance the behavior of the system. Concrete stresses and cracking behavior are too much enhanced while less drift improvements are observed.
Keywords: Structures, High rise, Outrigger, Shear Wall, Earthquake, Nonlinear.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 235450 Crashworthiness Optimization of an Automotive Front Bumper in Composite Material
Authors: S. Boria
Abstract:
In the last years, the crashworthiness of an automotive body structure can be improved, since the beginning of the design stage, thanks to the development of specific optimization tools. It is well known how the finite element codes can help the designer to investigate the crashing performance of structures under dynamic impact. Therefore, by coupling nonlinear mathematical programming procedure and statistical techniques with FE simulations, it is possible to optimize the design with reduced number of analytical evaluations. In engineering applications, many optimization methods which are based on statistical techniques and utilize estimated models, called meta-models, are quickly spreading. A meta-model is an approximation of a detailed simulation model based on a dataset of input, identified by the design of experiments (DOE); the number of simulations needed to build it depends on the number of variables. Among the various types of meta-modeling techniques, Kriging method seems to be excellent in accuracy, robustness and efficiency compared to other ones when applied to crashworthiness optimization. Therefore the application of such meta-model was used in this work, in order to improve the structural optimization of a bumper for a racing car in composite material subjected to frontal impact. The specific energy absorption represents the objective function to maximize and the geometrical parameters subjected to some design constraints are the design variables. LS-DYNA codes were interfaced with LS-OPT tool in order to find the optimized solution, through the use of a domain reduction strategy. With the use of the Kriging meta-model the crashworthiness characteristic of the composite bumper was improved.
Keywords: Composite material, crashworthiness, finite element analysis, optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 112949 A Three Elements Vector Valued Structure’s Ultimate Strength-Strong Motion-Intensity Measure
Authors: A. Nicknam, N. Eftekhari, A. Mazarei, M. Ganjvar
Abstract:
This article presents an alternative collapse capacity intensity measure in the three elements form which is influenced by the spectral ordinates at periods longer than that of the first mode period at near and far source sites. A parameter, denoted by β, is defined by which the spectral ordinate effects, up to the effective period (2T1), on the intensity measure are taken into account. The methodology permits to meet the hazard-levelled target extreme event in the probabilistic and deterministic forms. A MATLAB code is developed involving OpenSees to calculate the collapse capacities of the 8 archetype RC structures having 2 to 20 stories for regression process. The incremental dynamic analysis (IDA) method is used to calculate the structure’s collapse values accounting for the element stiffness and strength deterioration. The general near field set presented by FEMA is used in a series of performing nonlinear analyses. 8 linear relationships are developed for the 8structutres leading to the correlation coefficient up to 0.93. A collapse capacity near field prediction equation is developed taking into account the results of regression processes obtained from the 8 structures. The proposed prediction equation is validated against a set of actual near field records leading to a good agreement. Implementation of the proposed equation to the four archetype RC structures demonstrated different collapse capacities at near field site compared to those of FEMA. The reasons of differences are believed to be due to accounting for the spectral shape effects.Keywords: Collapse capacity, fragility analysis, spectral shape effects, IDA method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 179448 FACTS Based Stabilization for Smart Grid Applications
Authors: Adel M. Sharaf, Foad H. Gandoman
Abstract:
Nowadays, Photovoltaic-PV Farms/ Parks and large PV-Smart Grid Interface Schemes are emerging and commonly utilized in Renewable Energy distributed generation. However, PVhybrid- Dc-Ac Schemes using interface power electronic converters usually has negative impact on power quality and stabilization of modern electrical network under load excursions and network fault conditions in smart grid. Consequently, robust FACTS based interface schemes are required to ensure efficient energy utilization and stabilization of bus voltages as well as limiting switching/fault onrush current condition. FACTS devices are also used in smart grid- Battery Interface and Storage Schemes with PV-Battery Storage hybrid systems as an elegant alternative to renewable energy utilization with backup battery storage for electric utility energy and demand side management to provide needed energy and power capacity under heavy load conditions. The paper presents a robust interface PV-Li-Ion Battery Storage Interface Scheme for Distribution/Utilization Low Voltage Interface using FACTS stabilization enhancement and dynamic maximum PV power tracking controllers. Digital simulation and validation of the proposed scheme is done using MATLAB/Simulink software environment for Low Voltage- Distribution/Utilization system feeding a hybrid Linear-Motorized inrush and nonlinear type loads from a DC-AC Interface VSC-6- pulse Inverter Fed from the PV Park/Farm with a back-up Li-Ion Storage Battery.
Keywords: AC FACTS, Smart grid, Stabilization, PV-Battery Storage, Switched Filter-Compensation (SFC).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 324747 Constitutive Equations for Human Saphenous Vein Coronary Artery Bypass Graft
Authors: Hynek Chlup, Lukas Horny, Rudolf Zitny, Svatava Konvickova, Tomas Adamek
Abstract:
Coronary artery bypass grafts (CABG) are widely studied with respect to hemodynamic conditions which play important role in presence of a restenosis. However, papers which concern with constitutive modeling of CABG are lacking in the literature. The purpose of this study is to find a constitutive model for CABG tissue. A sample of the CABG obtained within an autopsy underwent an inflation–extension test. Displacements were recoredered by CCD cameras and subsequently evaluated by digital image correlation. Pressure – radius and axial force – elongation data were used to fit material model. The tissue was modeled as onelayered composite reinforced by two families of helical fibers. The material is assumed to be locally orthotropic, nonlinear, incompressible and hyperelastic. Material parameters are estimated for two strain energy functions (SEF). The first is classical exponential. The second SEF is logarithmic which allows interpretation by means of limiting (finite) strain extensibility. Presented material parameters are estimated by optimization based on radial and axial equilibrium equation in a thick-walled tube. Both material models fit experimental data successfully. The exponential model fits significantly better relationship between axial force and axial strain than logarithmic one.Keywords: Constitutive model, coronary artery bypass graft, digital image correlation, fiber reinforced composite, inflation test, saphenous vein.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 164346 Adaptive Kalman Filter for Noise Estimation and Identification with Bayesian Approach
Authors: Farhad Asadi, S. Hossein Sadati
Abstract:
Bayesian approach can be used for parameter identification and extraction in state space models and its ability for analyzing sequence of data in dynamical system is proved in different literatures. In this paper, adaptive Kalman filter with Bayesian approach for identification of variances in measurement parameter noise is developed. Next, it is applied for estimation of the dynamical state and measurement data in discrete linear dynamical system. This algorithm at each step time estimates noise variance in measurement noise and state of system with Kalman filter. Next, approximation is designed at each step separately and consequently sufficient statistics of the state and noise variances are computed with a fixed-point iteration of an adaptive Kalman filter. Different simulations are applied for showing the influence of noise variance in measurement data on algorithm. Firstly, the effect of noise variance and its distribution on detection and identification performance is simulated in Kalman filter without Bayesian formulation. Then, simulation is applied to adaptive Kalman filter with the ability of noise variance tracking in measurement data. In these simulations, the influence of noise distribution of measurement data in each step is estimated, and true variance of data is obtained by algorithm and is compared in different scenarios. Afterwards, one typical modeling of nonlinear state space model with inducing noise measurement is simulated by this approach. Finally, the performance and the important limitations of this algorithm in these simulations are explained.
Keywords: adaptive filtering, Bayesian approach Kalman filtering approach, variance tracking
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 61945 Dual-Actuated Vibration Isolation Technology for a Rotary System’s Position Control on a Vibrating Frame: Disturbance Rejection and Active Damping
Authors: Kamand Bagherian, Nariman Niknejad
Abstract:
A vibration isolation technology for precise position control of a rotary system powered by two permanent magnet DC (PMDC) motors is proposed, where this system is mounted on an oscillatory frame. To achieve vibration isolation for this system, active damping and disturbance rejection (ADDR) technology is presented which introduces a cooperation of a main and an auxiliary PMDC, controlled by discrete-time sliding mode control (DTSMC) based schemes. The controller of the main actuator tracks a desired position and the auxiliary actuator simultaneously isolates the induced vibration, as its controller follows a torque trend. To determine this torque trend, a combination of two algorithms is introduced by the ADDR technology. The first torque-trend producing algorithm rejects the disturbance by counteracting the perturbation, estimated using a model-based observer. The second torque trend applies active variable damping to minimize the oscillation of the output shaft. In this practice, the presented technology is implemented on a rotary system with a pendulum attached, mounted on a linear actuator simulating an oscillation-transmitting structure. In addition, the obtained results illustrate the functionality of the proposed technology.Keywords: Vibration isolation, position control, discrete-time nonlinear controller, active damping, disturbance tracking algorithm, oscillation transmitting support, stability robustness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 61044 Conceptual Synthesis of Multi-Source Renewable Energy Based Microgrid
Authors: Bakari M. M. Mwinyiwiwa, Mighanda J. Manyahi, Nicodemu Gregory, Alex L. Kyaruzi
Abstract:
Microgrids are increasingly being considered to provide electricity for the expanding energy demand in the grid distribution network and grid isolated areas. However, the technical challenges associated with the operation and controls are immense. Management of dynamic power balances, power flow, and network voltage profiles imposes unique challenges in the context of microgrids. Stability of the microgrid during both grid-connected and islanded mode is considered as the major challenge during its operation. Traditional control methods have been employed are based on the assumption of linear loads. For instance the concept of PQ, voltage and frequency control through decoupled PQ are some of very useful when considering linear loads, but they fall short when considering nonlinear loads. The deficiency of traditional control methods of microgrid suggests that more research in the control of microgrids should be done. This research aims at introducing the dq technique concept into decoupled PQ for dynamic load demand control in inverter interfaced DG system operating as isolated LV microgrid. Decoupled PQ in exact mathematical formulation in dq frame is expected to accommodate all variations of the line parameters (resistance and inductance) and to relinquish forced relationship between the DG variables such as power, voltage and frequency in LV microgrids and allow for individual parameter control (frequency and line voltages). This concept is expected to address and achieve accurate control, improve microgrid stability and power quality at all load conditions.
Keywords: Decoupled PQ, microgrid, multisource, renewable energy, dq control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2539