Search results for: rice milling plant.
223 Quantum Modelling of AgHMoO4, CsHMoO4 and AgCsMoO4 Chemistry in the Field of Nuclear Power Plant Safety
Authors: Mohamad Saab, Sidi Souvi
Abstract:
In a major nuclear accident, the released fission products (FPs) and the structural materials are likely to influence the transport of iodine in the reactor coolant system (RCS) of a pressurized water reactor (PWR). So far, the thermodynamic data on cesium and silver species used to estimate the magnitude of FP release show some discrepancies, data are scarce and not reliable. For this reason, it is crucial to review the thermodynamic values related to cesium and silver materials. To this end, we have used state-of-the-art quantum chemical methods to compute the formation enthalpies and entropies of AgHMoO₄, CsHMoO₄, and AgCsMoO₄ in the gas phase. Different quantum chemical methods have been investigated (DFT and CCSD(T)) in order to predict the geometrical parameters and the energetics including the correlation energy. The geometries were optimized with TPSSh-5%HF method, followed by a single point calculation of the total electronic energies using the CCSD(T) wave function method. We thus propose with a final uncertainty of about 2 kJmol⁻¹ standard enthalpies of formation of AgHMoO₄, CsHMoO₄, and AgCsMoO₄.
Keywords: ASTEC, Accident Source Term Evaluation Code, quantum chemical methods, severe nuclear accident, thermochemical database.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 821222 Effects of Pressure and Temperature on the Extraction of Benzyl Isothiocyanate by Supercritical Fluids from Tropaeolum majus L. Leaves
Authors: Espinoza S. Clara, Gamarra Q. Flor, Marianela F. Ramos Quispe S. Miguel, Flores R. Omar
Abstract:
Tropaeolum majus L. is a native plant to South and Central America, used since ancient times by our ancestors to combat different diseases. Glucotropaeolonin is one of its main components, which when hydrolyzed, forms benzyl isothiocyanate (BIT) that promotes cellular apoptosis (programmed cell death in cancer cells). Therefore, the present research aims to evaluate the effect of the pressure and temperature of BIT extraction by supercritical CO2 from Tropaeolum majus L. The extraction was carried out in a supercritical fluid extractor equipment Speed SFE BASIC Brand: Poly science, the leaves of Tropaeolum majus L. were ground for one hour and lyophilized until obtaining a humidity of 6%. The extraction with supercritical CO2 was carried out with pressures of 200 bar and 300 bar, temperatures of 50°C, 60°C and 70°C, obtained by the conjugation of these six treatments. BIT was identified by thin layer chromatography using 98% BIT as the standard, and as the mobile phase hexane: dichloromethane (4:2). Subsequently, BIT quantification was performed by high performance liquid chromatography (HPLC). The highest yield of oleoresin by supercritical CO2 extraction was obtained pressure 300 bar and temperature at 60°C; and the higher content of BIT at pressure 200 bar and 70°C for 30 minutes to obtain 113.615 ± 0.03 mg BIT/100 g dry matter was obtained.
Keywords: Tropaeolum majus L., supercritical fluids, benzyl isothiocyanate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 880221 Radiation Dose Distribution for Workers in South Korean Nuclear Power Plants
Authors: B. I. Lee, S. I. Kim, D. H. Suh, J. I. Kim, Y. K. Lim
Abstract:
A total of 33,680 nuclear power plants (NPPs) workers were monitored and recorded from 1990 to 2007. According to the record, the average individual radiation dose has been decreasing continually from it 3.20 mSv/man in 1990 to 1.12 mSv/man at the end of 2007. After the International Commission on Radiological Protection (ICRP) 60 recommendation was generalized in South Korea, no nuclear power plant workers received above 20 mSv radiation, and the numbers of relatively highly exposed workers have been decreasing continuously. The age distribution of radiation workers in nuclear power plants was composed of mainly 20-30- year-olds (83%) for 1990 ~ 1994 and 30-40-year-olds (75%) for 2003 ~ 2007. The difference in individual average dose by age was not significant. Most (77%) of NPP radiation exposures from 1990 to 2007 occurred mostly during the refueling period. With regard to exposure type, the majority of exposures were external exposures, representing 95% of the total exposures, while internal exposures represented only 5%. External effective dose was affected mainly by gamma radiation exposure, with an insignificant amount of neutron exposure. As for internal effective dose, tritium (3H) in the pressurized heavy water reactor (PHWR) was the biggest cause of exposure.
Keywords: Dose distribution, External exposure, Nuclear powerplant, Occupational radiation dose
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2567220 Auto-regressive Recurrent Neural Network Approach for Electricity Load Forecasting
Authors: Tarik Rashid, B. Q. Huang, M-T. Kechadi, B. Gleeson
Abstract:
this paper presents an auto-regressive network called the Auto-Regressive Multi-Context Recurrent Neural Network (ARMCRN), which forecasts the daily peak load for two large power plant systems. The auto-regressive network is a combination of both recurrent and non-recurrent networks. Weather component variables are the key elements in forecasting because any change in these variables affects the demand of energy load. So the AR-MCRN is used to learn the relationship between past, previous, and future exogenous and endogenous variables. Experimental results show that using the change in weather components and the change that occurred in past load as inputs to the AR-MCRN, rather than the basic weather parameters and past load itself as inputs to the same network, produce higher accuracy of predicted load. Experimental results also show that using exogenous and endogenous variables as inputs is better than using only the exogenous variables as inputs to the network.
Keywords: Daily peak load forecasting, neural networks, recurrent neural networks, auto regressive multi-context neural network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2543219 Internal Power Recovery in Cryogenic Cooling Plants Part I: Expander Development
Authors: Ambra Giovannelli, Erika Maria Archilei
Abstract:
The amount of the electrical power required by refrigeration systems is relevant worldwide. It is evaluated in the order of 15% of the total electricity production taking refrigeration and air-conditioning into consideration. For this reason, in the last years several energy saving techniques have been proposed to reduce the power demand of such plants. The paper deals with the development of an innovative internal recovery system for cryogenic cooling plants. Such a system consists in a Compressor-Expander Group (CEG) designed on the basis of the automotive turbocharging technology. In particular, the paper is focused on the design of the expander, the critical component of the CEG system. Due to the low volumetric flow entering the expander and the high expansion ratio, a commercial turbocharger expander wheel was strongly modified. It was equipped with a transonic nozzle, designed to have a radially inflow full admission. To verify the performance of such a machine and suggest improvements, two different set of nozzles have been designed and modelled by means of the commercial Ansys-CFX software. steady-state 3D CFD simulations of the second-generation prototype are presented and compared with the initial ones.
Keywords: Energy saving, organic fluids, radial turbine, refrigeration plant, vapor compression systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1219218 Antimicrobial Activity and Phytochemicals Screening of Jojoba (Simmondsia chinensis) Root Extracts and Latex
Authors: Ferial M. Abu-Salem, Hayam M. Ibrahim
Abstract:
Plants are rich sources of bioactive compounds. In this study the photochemical screening of hexane, ethanolic and aqueous extracts of roots and latex of jojoba (Simmondsia chinensis) plant revealed the presence of saponins, tannins, alkaloids, steroids and glycosides. Ethanolic extract was found to be richer in these metabolites than hexane, aqueous extracts and latex. The extracts and latex displayed effective antimicrobial activity against Salmonella typhimurium, Bacillus cereus, Clostridium perfringens, Staphylococcus aureus, Escherichia coli, Candida albicans and Aspergillus flavus. The increase in volume of the extracts and latex caused more activity, as shown by zones of inhibition. Candida albicans growth was inhibited only by hexane extract. Jojoba latex was not effective against Candida albicans at 0.1 and 0.5 ml extracts concentration but showed 5mm zone of inhibition at (1.0 ml). Lower volume (0.1ml) of latex encouraged Aspergillus flavus growth, while at (1.00 ml) reduced its mycelial growth. Thus, jojoba root extracts and latex can be of potential natural antimicrobial agents.
Keywords: Antimicrobial activity, Jojoba (Simmondsia chinensis), latex, photochemical, root Extracts.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3802217 Multi-Agent System for Irrigation Using Fuzzy Logic Algorithm and Open Platform Communication Data Access
Authors: T. Wanyama, B. Far
Abstract:
Automatic irrigation systems usually conveniently protect landscape investment. While conventional irrigation systems are known to be inefficient, automated ones have the potential to optimize water usage. In fact, there is a new generation of irrigation systems that are smart in the sense that they monitor the weather, soil conditions, evaporation and plant water use, and automatically adjust the irrigation schedule. In this paper, we present an agent based smart irrigation system. The agents are built using a mix of commercial off the shelf software, including MATLAB, Microsoft Excel and KEPServer Ex5 OPC server, and custom written code. The Irrigation Scheduler Agent uses fuzzy logic to integrate the information that affect the irrigation schedule. In addition, the Multi-Agent system uses Open Platform Connectivity (OPC) technology to share data. OPC technology enables the Irrigation Scheduler Agent to communicate over the Internet, making the system scalable to a municipal or regional agent based water monitoring, management, and optimization system. Finally, this paper presents simulation and pilot installation test result that show the operational effectiveness of our system.
Keywords: Community water usage, fuzzy logic, irrigation, multi-agent system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1338216 Estimated Production Potential Types of Wind Turbines Connected to the Network Using Random Numbers Simulation
Authors: Saeid Nahi, Seyed Mohammad Hossein Nabavi
Abstract:
Nowadays, power systems, energy generation by wind has been very important. Noting that the production of electrical energy by wind turbines on site to several factors (such as wind speed and profile site for the turbines, especially off the wind input speed, wind rated speed and wind output speed disconnect) is dependent. On the other hand, several different types of turbines in the market there. Therefore, selecting a turbine that its capacity could also answer the need for electric consumers the efficiency is high something is important and necessary. In this context, calculating the amount of wind power to help optimize overall network, system operation, in determining the parameters of wind power is very important. In this article, to help calculate the amount of wind power plant, connected to the national network in the region Manjil wind, selecting the best type of turbine and power delivery profile appropriate to the network using Monte Carlo method has been. In this paper, wind speed data from the wind site in Manjil, as minute and during the year has been. Necessary simulations based on Random Numbers Simulation method and repeat, using the software MATLAB and Excel has been done.Keywords: wind turbine, efficiency, wind turbine work points, Random Numbers, reliability
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1411215 Influence of OMF Application Rates on Post Field Soil Fertility Status under Pawpaw (Carica papaya L.) Varieties
Authors: O. O. Olubode, I. O. O. Aiyelaagbe, J. G. Bodunde
Abstract:
Field study was conducted to determine the post field soil fertility status responses of pawpaw (Carica papaya L.) var. homestead selection and sunrise-solo orchards to organo-mineral fertilizer (OMF) rates applied at 10, 20 40 t/ha where both the zero t/ha OMF and NPK 15:15:15 at 50 g/plant/month served as control. The result showed that all pawpaw orchards treated with OMF rates recorded significantly (p≤0.01) higher % P, % K, Na and % organic matter in soil compared to applied NPK which recorded lower Na. However, while orchards plated with sole pawpaw were higher in soil bulk density (SBD), orchards with homestead mixture were lower in SBD and significantly lower % organic matter compared to obtainable under sunrise crop mixture which recorded lower Na and Mg. In conclusion, as a result of loosening effect on soil particles, the homestead pawpaw probably due to more rooting activities as well as the addition of organic fertilizer to soils both had significant influence leading to lower SBD.
Keywords: Carica papaya (L), growth and yield, organo-mineral fertilizer, soil fertility status.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2048214 Efficacy of Three Different Herbicides to the Control of Wild Barley (Hordeum spontaneum C. Koch) in Relation to Plant Growth Stage and Nitrogen Fertilizer Additive
Authors: Sh. Edrisi, M. Moeeni, A. Farahbakhsh
Abstract:
To study the effect of nitrogenous additive spray solution on the efficacy of three herbicides i.e. pinoxaden (Trade name: Axial), sulfosulfuron+metsulfuron-methyl (Trade name: Total) and sulfosulfuron (Trade name: Apirus) in controlling wild barley (Hordeum spontaneum C. Koch), in different growth stages, a greenhouse experiment as a split plot in a completely randomized design in three replications was conducted. One month after treatments, all plants were harvested and growth parameters were determined. The data were analyzed with computer. The results showed that the herbicide applications with and without nitrogen additive caused significant reductions in growth parameters of wild barley at 2-4 leaf stage. However, the plants were not killed by this herbicide. Plants were killed completely due to applications of the two other herbicides i.e. Apirus and Total at 2-4 leaf. There was no significant difference between the effect of these two herbicides. There was no significant difference between the highest rate of each herbicide used alone and that of the lowest rate with nitrogenous additive.
Keywords: Growth stage, herbicide, nitrogenous additive, wild barley.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1290213 Banana Peels as an Eco-Sorbent for Manganese Ions
Authors: M. S. Mahmoud
Abstract:
This study was conducted to evaluate the manganese removal from aqueous solution using Banana peels activated carbon (BPAC). Batch experiments have been carried out to determine the influence of parameters such as pH, biosorbent dose, initial metal ion concentrations and contact times on the biosorption process. From these investigations, a significant increase in percentage removal of manganese 97.4% is observed at pH value 5.0, biosorbent dose 0.8 g, initial concentration 20 ppm, temperature 25 ± 2°C, stirring rate 200 rpm and contact time 2h. The equilibrium concentration and the adsorption capacity at equilibrium of the experimental results were fitted to the Langmuir and Freundlich isotherm models; the Langmuir isotherm was found to well represent the measured adsorption data implying BPAC had heterogeneous surface. A raw groundwater samples were collected from Baharmos groundwater treatment plant network at Embaba and Manshiet Elkanater City/District-Giza, Egypt, for treatment at the best conditions that reached at first phase by BPAC. The treatment with BPAC could reduce iron and manganese value of raw groundwater by 91.4% and 97.1%, respectively and the effect of the treatment process on the microbiological properties of groundwater sample showed decrease of total bacterial count either at 22°C or at 37°C to 85.7% and 82.4%, respectively. Also, BPAC was characterized using SEM and FTIR spectroscopy.
Keywords: Biosorption, banana peels, isothermal models, manganese.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3253212 Design and Analysis of Electric Power Production Unit for Low Enthalpy Geothermal Reservoir Applications
Authors: Ildar Akhmadullin, Mayank Tyagi
Abstract:
The subject of this paper is the design analysis of a single well power production unit from low enthalpy geothermal resources. A complexity of the project is defined by a low temperature heat source that usually makes such projects economically disadvantageous using the conventional binary power plant approach. A proposed new compact design is numerically analyzed. This paper describes a thermodynamic analysis, a working fluid choice, downhole heat exchanger (DHE) and turbine calculation results. The unit is able to produce 321 kW of electric power from a low enthalpy underground heat source utilizing n-Pentane as a working fluid. A geo-pressured reservoir located in Vermilion Parish, Louisiana, USA is selected as a prototype for the field application. With a brine temperature of 126 , the optimal length of DHE is determined as 304.8 m (1000ft). All units (pipes, turbine, and pumps) are chosen from commercially available parts to bring this project closer to the industry requirements. Numerical calculations are based on petroleum industry standards. The project is sponsored by the Department of Energy of the US.
Keywords: Downhole Heat Exchangers, Geothermal Power Generation, Organic Rankine Cycle, Refrigerants, Working Fluids.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2670211 The Model Establishment and Analysis of TRACE/FRAPTRAN for Chinshan Nuclear Power Plant Spent Fuel Pool
Authors: J. R. Wang, H. T. Lin, Y. S. Tseng, W. Y. Li, H. C. Chen, S. W. Chen, C. Shih
Abstract:
TRACE is developed by U.S. NRC for the nuclear power plants (NPPs) safety analysis. We focus on the establishment and application of TRACE/FRAPTRAN/SNAP models for Chinshan NPP (BWR/4) spent fuel pool in this research. The geometry is 12.17 m × 7.87 m × 11.61 m for the spent fuel pool. In this study, there are three TRACE/SNAP models: one-channel, two-channel, and multi-channel TRACE/SNAP model. Additionally, the cooling system failure of the spent fuel pool was simulated and analyzed by using the above models. According to the analysis results, the peak cladding temperature response was more accurate in the multi-channel TRACE/SNAP model. The results depicted that the uncovered of the fuels occurred at 2.7 day after the cooling system failed. In order to estimate the detailed fuel rods performance, FRAPTRAN code was used in this research. According to the results of FRAPTRAN, the highest cladding temperature located on the node 21 of the fuel rod (the highest node at node 23) and the cladding burst roughly after 3.7 day.Keywords: TRACE, FRAPTRAN, SNAP, spent fuel pool.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1417210 Automation System for Optimization of Electrical and Thermal Energy Production in Cogenerative Gas Power Plants
Authors: Ion Miciu
Abstract:
The system is made with main distributed components: First Level: Industrial Computers placed in Control Room (monitors thermal and electrical processes based on the data provided by the second level); Second Level: PLCs which collects data from process and transmits information on the first level; also takes commands from this level which are further, passed to execution elements from third level; Third Level: field elements consisting in 3 categories: data collecting elements; data transfer elements from the third level to the second; execution elements which take commands from the second level PLCs and executes them after which transmits the confirmation of execution to them. The purpose of the automatic functioning is the optimization of the co-generative electrical energy commissioning in the national energy system and the commissioning of thermal energy to the consumers. The integrated system treats the functioning of all the equipments and devices as a whole: Gas Turbine Units (GTU); MT 20kV Medium Voltage Station (MVS); 0,4 kV Low Voltage Station (LVS); Main Hot Water Boilers (MHW); Auxiliary Hot Water Boilers (AHW); Gas Compressor Unit (GCU); Thermal Agent Circulation Pumping Unit (TPU); Water Treating Station (WTS).Keywords: Automation System, Cogenerative Power Plant, Control, Monitoring, Real Time
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1977209 Virtual Prototyping and Operational Monitoring of PLC-Based Control System
Authors: Kwan Hee Han, Jun Woo Park, Seock Kyu Yoo, Geon Lee
Abstract:
As business environments are rapidly changing, the manufacturing system must be reconfigured to adapt to various customer needs. In order to cope with this challenge, it is quintessential to test industrial control logic rapidly and easily in the design time, and monitor operational behavior in the run time of automated manufacturing system. Proposed integrated model for virtual prototyping and operational monitoring of industrial control logic is to improve limitations of current ladder programming practices and general discrete event simulation method. Each plant layout model using HMI package and object-oriented control logic model is designed independently and is executed simultaneously in integrated manner to reflect design practices of automation system in the design time. Control logic is designed and executed using UML activity diagram without considering complicated control behavior to deal with current trend of reconfigurable manufacturing. After the physical installation, layout model of virtual prototype constructed in the design time is reused for operational monitoring of system behavior during run time.Keywords: automated manufacturing system, HMI, monitoring, object-oriented, PLC, virtual prototyping
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2261208 Determination of the Optimal DG PV Interconnection Location Using Losses and Voltage Regulation as Assessment Indicators Case Study: ECG 33 kV Sub-Transmission Network
Authors: Ekow A. Kwofie, Emmanuel K. Anto, Godfred Mensah
Abstract:
In this paper, CYME Distribution software has been used to assess the impacts of solar Photovoltaic (PV) distributed generation (DG) plant on the Electricity Company of Ghana (ECG) 33 kV sub-transmission network at different PV penetration levels. As ECG begins to encourage DG PV interconnections within its network, there has been the need to assess the impacts on the sub-transmission losses and voltage contribution. In Tema, a city in Accra - Ghana, ECG has a 33 kV sub-transmission network made up of 20 No. 33 kV buses that was modeled. Three different locations were chosen: The source bus, a bus along the sub-transmission radial network and a bus at the tail end to determine the optimal location for DG PV interconnection. The optimal location was determined based on sub-transmission technical losses and voltage impact. PV capacities at different penetration levels were modeled at each location and simulations performed to determine the optimal PV penetration level. Interconnection at a bus along (or in the middle of) the sub-transmission network offered the highest benefits at an optimal PV penetration level of 80%. At that location, the maximum voltage improvement of 0.789% on the neighboring 33 kV buses and maximum loss reduction of 6.033% over the base case scenario were recorded. Hence, the optimal location for DG PV integration within the 33 kV sub-transmission utility network is at a bus along the sub-transmission radial network.
Keywords: Distributed generation photovoltaic, DG PV, optimal location, penetration level, sub-transmission network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1320207 Comparison of Nutritional and Chemical Parameters of Soymilk and Cow milk
Authors: Bahareh Hajirostamloo
Abstract:
Cow milk, is a product of the mammary gland and soymilk is a beverage made from soybeans; it is the liquid that remains after soybeans are soaked. In this research effort, we compared nutritional parameters of this two kind milk such as total fat, fiber, protein, minerals (Ca, Fe and P), fatty acids, carbohydrate, lactose, water, total solids, ash, pH, acidity and calories content in one cup (245 g). Results showed soymilk contains 4.67 grams of fat, 0.52 of fatty acids, 3.18 of fiber, 6.73 of protein, 4.43 of carbohydrate, 0.00 of lactose, 228.51 of water, 10.40 of total solids and 0.66 of ash, also 9.80 milligrams of Ca, 1.42 of Fe, and 120.05 of P, 79 Kcal of calories, pH=6.74 and acidity was 0.24%. Cow milk contains 8.15 grams of fat, 5.07 of fatty acids, 0.00 of fiber, 8.02 of protein, 11.37 of carbohydrate, ´Çá4.27 of lactose, 214.69 of water, 12.90 of total solids, 1.75 of ash, 290.36 milligrams of Ca, 0.12 of Fe, and 226.92 of P, 150 Kcal of calories, pH=6.90 and acidity was 0.21% . Soy milk is one of plant-based complete proteins and cow milk is a rich source of nutrients as well. Cow milk is containing near twice as much fat as and ten times more fatty acids do soymilk. Cow milk contains greater amounts of mineral (except Fe) it contain more than three hundred times the amount of Ca and nearly twice the amount of P as does soymilk but soymilk contains more Fe (ten time more) than does cow milk. Cow milk and soy milk contain nearly identical amounts of protein and water and fiber is a big plus, dairy has none. Although what we choose to drink is really a mater of personal preference and our health objectives but looking at the comparison, soy looks like healthier choices.Keywords: Soymilk, cow milk, nutritional, comparison.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7347206 Intelligent System and Renewable Energy: A Farming Platform in Precision Agriculture
Authors: Ryan B. Escorial, Elmer A. Maravillas, Chris Jordan G. Aliac
Abstract:
This study presents a small-scale water pumping system utilizing a fuzzy logic inference system attached to a renewable energy source. The fuzzy logic controller was designed and simulated in MATLAB fuzzy logic toolbox to examine the properties and characteristics of the input and output variables. The result of the simulation was implemented in a microcontroller, together with sensors, modules, and photovoltaic cells. The study used a grand rapid variety of lettuce, organic substrates, and foliar for observation of the capability of the device to irrigate crops. Two plant boxes intended for manual and automated irrigation were prepared with each box having 48 heads of lettuce. The observation of the system took 22-31 days, which is one harvest period of the crop. Results showed a 22.55% increase in agricultural productivity compared to manual irrigation. Aside from reducing human effort, and time, the smart irrigation system could help lessen some of the shortcomings of manual irrigations. It could facilitate the economical utilization of water, reducing consumption by 25%. The use of renewable energy could also help farmers reduce the cost of production by minimizing the use of diesel and gasoline.
Keywords: Fuzzy logic controller, intelligent system, precision agriculture, renewable energy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2301205 Adjustment and Scale-Up Strategy of Pilot Liquid Fermentation Process of Azotobacter sp.
Authors: G. Quiroga-Cubides, A. Díaz, M. Gómez
Abstract:
The genus Azotobacter has been widely used as bio-fertilizer due to its significant effects on the stimulation and promotion of plant growth in various agricultural species of commercial interest. In order to obtain significantly viable cellular concentration, a scale-up strategy for a liquid fermentation process (SmF) with two strains of A. chroococcum (named Ac1 and Ac10) was validated and adjusted at laboratory and pilot scale. A batch fermentation process under previously defined conditions was carried out on a biorreactor Infors®, model Minifors of 3.5 L, which served as a baseline for this research. For the purpose of increasing process efficiency, the effect of the reduction of stirring speed was evaluated in combination with a fed-batch-type fermentation laboratory scale. To reproduce the efficiency parameters obtained, a scale-up strategy with geometric and fluid dynamic behavior similarities was evaluated. According to the analysis of variance, this scale-up strategy did not have significant effect on cellular concentration and in laboratory and pilot fermentations (Tukey, p > 0.05). Regarding air consumption, fermentation process at pilot scale showed a reduction of 23% versus the baseline. The percentage of reduction related to energy consumption reduction under laboratory and pilot scale conditions was 96.9% compared with baseline.
Keywords: Azotobacter chroococcum, scale-up, liquid fermentation, fed-batch process.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1322204 The Use of Chlorophyll Meter Readings for the Selection of Maize Inbred Lines under Drought Stress
Authors: F. Gekas, C. Pankou, I. Mylonas, E. Ninou, E. Sinapidou, A. Lithourgidis, F. Papathanasiou, J. –K. Petrevska, F. Papadopoulou, P. Zouliamis, G. Tsaprounis, I. Tokatlidis, C. Dordas
Abstract:
The present study aimed to investigate whether chlorophyll meter readings (SPAD) can be used as criterion of singleplant selection in maize breeding. Experimentation was performed at the ultra-low density of 0.74 plants/m2 in order the potential yield per plant to be fully expressed. R-31 honeycomb experiments were conducted in three different areas in Greece (Thessaloniki, Giannitsa and Florina) using 30 inbred lines at well-watered and water-stressed conditions during the 2012 growing season. The chlorophyll meter readings had higher rates at dry conditions, except location of Giannitsa where differences were not significant. Genotypes of highest chlorophyll meter readings were consistent across areas, emphasizing on the character’s stability. A positive correlation between the chlorophyll meter readings and grain yield was strengthening over time and culminated at the physiological maturity stage. There was a clear sign that the chlorophyll meter readings has the potential to be used for the selection of stress-adaptive genotypes and may permit modern maize to be grown at wider range of environments addressing the climate change scenarios.
Keywords: Drought-prone environments, honeycomb breeding, SPAD, Zea mays.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2839203 The Effect of Application of Biological Phosphate Fertilizer (Fertile 2) and Triple Super Phosphate Chemical Fertilizers on Some Morphological Traits of Corn (SC704)
Authors: M. Mojaddam, M. Araei, T. Saki Nejad, M. Soltani Howyzeh
Abstract:
In order to study the effect of different levels of triple super phosphate chemical fertilizer and biological phosphate fertilizer (fertile 2) on some morphological traits of corn this research was carried out in Ahvaz in 2002 as a factorial experiment in randomized complete block design with 4 replications). The experiment included two factors: first, biological phosphate fertilizer (fertile 2) at three levels of 0, 100, 200 g/ha; second, triple super phosphate chemical fertilizer at three levels of 0, 60, 90 kg/ha of pure phosphorus (P2O5). The obtained results indicated that fertilizer treatments had a significant effect on some morphological traits at 1% probability level. In this regard, P2B2 treatment (100 g/ha biological phosphate fertilizer (fertile 2) and 60 kg/ha triple super phosphate fertilizer) had the greatest plant height, stem diameter, number of leaves and ear length. It seems that in Ahvaz weather conditions, decrease of consumption of triple superphosphate chemical fertilizer to less than a half along with the consumption of biological phosphate fertilizer (fertile 2) is highly important in order to achieve optimal results. Therefore, it can be concluded that biological fertilizers can be used as a suitable substitute for some of the chemical fertilizers in sustainable agricultural systems.Keywords: Biological phosphate fertilizer, corn (SC704), morphological, triple super phosphate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1821202 A Review on the Mechanism Removal of Pesticides and Heavy Metal from Agricultural Runoff in Treatment Train
Authors: N. A. Ahmad Zubairi, H. Takaijudin, K. W. Yusof
Abstract:
Pesticides have been used widely over the world in agriculture to protect from pests and reduce crop losses. However, it affects the environment with toxic chemicals. Exceed of toxic constituents in the ecosystem will result in bad side effects. The hydrological cycle is related to the existence of pesticides and heavy metal which it can penetrate through varieties of sources into the soil or water bodies, especially runoff. Therefore, proper mechanisms of pesticide and heavy metal removal should be studied to improve the quality of ecosystem free or reduce from unwanted substances. This paper reviews the use of treatment train and its mechanisms to minimize pesticides and heavy metal from agricultural runoff. Organochlorine (OCL) is a common pesticide that was found in the agricultural runoff. OCL is one of the toxic chemicals that can disturb the ecosystem such as inhibiting plants' growth and harm human health by having symptoms as asthma, active cancer cell, vomit, diarrhea, etc. Thus, this unwanted contaminant gives disadvantages to the environment and needs treatment system. Hence, treatment train by bioretention system is suitable because removal efficiency achieves until 90% of pesticide removal with selected vegetated plant and additive.
Keywords: Pesticides, heavy metal, agricultural runoff, bioretention, mechanism removal, treatment train.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 601201 Chemical Composition of Essential Oil and in vitro Antibacterial and Anticancer Activity of the Hydroalcolic Extract from Coronilla varia
Authors: Dehpour A. A., Eslami B., Rezaie S., Hashemian S. F., Shafie F., Kiaie M.
Abstract:
The aims of study were investigation on chemical composition essential oil and the effect of extract of Coronilla varia on antimicrobial and cytotoxicity activity. The essential oils of Coronilla varia is obtained by hydrodistillation and analyzed by (GC/MS) for determining their chemical composition and identification of their components. Antibacterial activity of plant extract was determined by disc diffusion method and anticancer activity measured by MTT assay. The major components in essential oil were Caryophyllene Oxide (60.19%), Alphacadinol (4.13%) and Homoadantaneca Robexylic Acid (3.31%). The extracts from Coronilla varia had interesting activity against Proteus mirabilis in the concentration of 700 μg/disc and did not show any activity against Staphylococus aureus, Bacillus subtillis, Klebsiella pneumonia and Entrobacter cloacae. The positive control, Ampicillin, Chloramphenicol and Cenphalothin had shown zone of inhibition resistant all bacteria. The ethanol extract of Corohilla varia inhibited on MCF7 cell lines. IC50 0.6(mg/ml) was the optimum concentration of extract from Coronilla varia inhibition of cell line growth. The MCF7 cancer cell line and Proteus mirabilis were more sensitive to Coronilla varia ethanol extract.Keywords: Coronilla varia, Essential oil, Antibacterial, Anticancer, HeLa cell line.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1797200 The Evaluation of Costs and Greenhouse Gas Reduction Using Technologies for Energy from Sewage Sludge
Authors: Futoshi Kakuta, Takashi Ishida
Abstract:
Sewage sludge is a biomass resource that can create a solid fuel and electricity. Utilizing sewage sludge as a renewable energy can contribute to the reduction of greenhouse gases. In Japan, the "National Plan for the Promotion of Biomass Utilization" and the “Priority Plan for Social Infrastructure Development" were approved at cabinet meetings in December 2010 and August 2012, respectively, to promote the energy utilization of sewage sludge. This study investigated costs and greenhouse gas emission in different sewage sludge treatments with technologies for energy from sewage sludge. Expenses were estimated based on capital costs and O&M costs including energy consumption of solid fuel plants and biogas power generation plants for sewage sludge. Results showed that the cost of sludge digestion treatment with solid fuel technologies was 8% lower than landfill disposal. The greenhouse gas emission of sludge digestion treatment with solid fuel technologies was also 6,390t as CO2 smaller than landfill disposal. Biogas power generation reduced the electricity of a wastewater treatment plant by 30% and the cost by 5%.Keywords: Global warming counter measure, energy technology, solid fuel production, biogas.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1735199 Hazardous Waste Management of Transmission Line Tower Manufacturing
Authors: S.P.Gautam, P.S.Bundela, R.K. Jain, V. N. Tripathi
Abstract:
The manufacturing transmission line tower parts has being generated hazardous waste which is required proper disposal of waste for protection of land pollution. Manufacturing Process in the manufacturing of steel angle, plates, pipes, channels are passes through conventional, semi automatic and CNC machines for cutting, marking, punching, drilling, notching, bending operations. All fabricated material Coated with thin layer of Zinc in Galvanizing plant where molten zinc is used for coating. Prior to Galvanizing, chemical like 33% concentrated HCl Acid, ammonium chloride and d-oil being used for pretreatment of iron. The bath of water with sodium dichromate is used for cooling and protection of the galvanized steel. For the heating purpose the furnace oil burners are used. These above process the Zinc dross, Zinc ash, ETP sludge and waste pickled acid generated as hazardous waste. The RPG has made captive secured land fill site, since 1997 since then it was using for disposal of hazardous waste after completion of SLF (Secured land fill) site. The RPG has raised height from ground level then now it is being used for disposal of waste as he designed the SLF after in creasing height of from GL it is functional without leach ate or adverse impacts in the environment.Keywords: Disposal, Drilling, Fabricated. Hazardous waste, Punching.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1647198 Encapsulation of Satureja khuzestanica Essential Oil in Chitosan Nanoparticles with Enhanced Antifungal Activity
Authors: Amir Amiri, Naghmeh Morakabati
Abstract:
During the recent years the six-fold growth of cancer in Iran has led the production of healthy products to become a challenge in the food industry. Due to the young population in the country, the consumption of fast foods is growing. The chemical cancer-causing preservatives are used to produce these products more than the standard; so using an appropriate alternative seems to be important. On the one hand, the plant essential oils show the high antimicrobial potential against pathogenic and spoilage microorganisms and on the other hand they are highly volatile and decomposed under the processing conditions. The study aims to produce the loaded chitosan nanoparticles with different concentrations of savory essential oil to improve the anti-microbial property and increase the resistance of essential oil to oxygen and heat. The encapsulation efficiency was obtained in the range of 32.07% to 39.93% and the particle size distribution of the samples was observed in the range of 159 to 210 nm. The range of Zeta potential was obtained between -11.9 to -23.1 mV. The essential oil loaded in chitosan showed stronger antifungal activity against Rhizopus stolonifer. The results showed that the antioxidant property is directly related to the concentration of loaded essential oil so that the antioxidant property increases by increasing the concentration of essential oil. In general, it seems that the savory essential oil loaded in chitosan particles can be used as a food processor.
Keywords: Chitosan, encapsulation, essential oil, nanogel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1550197 Effects of Drought Stress on Qualitative and Quantitative Traits of Mungbean
Authors: Amir Mirzaei, Rahim Naseri, Parvaneh Vafa, Meysam Moradi
Abstract:
In order to investigate the effect of drought stress and row spacing on grain yield and associated traits of Mungbean, an experiment was conducted as a factorial in based on randomized complete block design with three replications in Ilam station, Iran during 2008-2009 growing season. This experiment was conducted in four stages on one kind of Mungbean named Gohar. The experimental factors including (80, 110 and 140mm cumulative evaporation from class A pan) and row spacing (25, 50, and 75cm) were selected. The results of the experiment showed that the varieties affected by the treatment showed significant differences. The highest total yield was obtained in the condition in which evaporation of water was 80mm. Of course some traits such as grain yield did not show a significant difference between the conditions in which evaporation of the irrigation water was 80 and 110mm. The traits under study also showed a significant difference to different raw spacing. Row spacing of 50cm had a higher total yield compared to other raw spaces. It was due to the higher number of pods per plant and grain weight. The interaction of drought stress and row spacing showed that in the condition in which the row space is 50 cm and the evaporation of the irrigation water is 80mm, the highest number of grain is achieved.
Keywords: Stress, Grain yield, Mungbean, Row spacing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2252196 Factory Virtual Environment Development for Augmented and Virtual Reality
Authors: M. Gregor, J. Polcar, P. Horejsi, M. Simon
Abstract:
Machine visualization is an area of interest with fast and progressive development. We present a method of machine visualization which will be applicable in real industrial conditions according to current needs and demands. Real factory data were obtained in a newly built research plant. Methods described in this paper were validated on a case study. Input data were processed and the virtual environment was created. The environment contains information about dimensions, structure, disposition, and function. Hardware was enhanced by modular machines, prototypes, and accessories. We added functionalities and machines into the virtual environment. The user is able to interact with objects such as testing and cutting machines, he/she can operate and move them. Proposed design consists of an environment with two degrees of freedom of movement. Users are in touch with items in the virtual world which are embedded into the real surroundings. This paper describes development of the virtual environment. We compared and tested various options of factory layout virtualization and visualization. We analyzed possibilities of using a 3D scanner in the layout obtaining process and we also analyzed various virtual reality hardware visualization methods such as: Stereoscopic (CAVE) projection, Head Mounted Display (HMD) and augmented reality (AR) projection provided by see-through glasses.
Keywords: Augmented reality, spatial scanner, virtual environment, virtual reality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2059195 Real-time Performance Study of EPA Periodic Data Transmission
Authors: Liu Ning, Zhong Chongquan, Teng Hongfei
Abstract:
EPA (Ethernet for Plant Automation) resolves the nondeterministic problem of standard Ethernet and accomplishes real-time communication by means of micro-segment topology and deterministic scheduling mechanism. This paper studies the real-time performance of EPA periodic data transmission from theoretical and experimental perspective. By analyzing information transmission characteristics and EPA deterministic scheduling mechanism, 5 indicators including delivery time, time synchronization accuracy, data-sending time offset accuracy, utilization percentage of configured timeslice and non-RTE bandwidth that can be used to specify the real-time performance of EPA periodic data transmission are presented and investigated. On this basis, the test principles and test methods of the indicators are respectively studied and some formulas for real-time performance of EPA system are derived. Furthermore, an experiment platform is developed to test the indicators of EPA periodic data transmission in a micro-segment. According to the analysis and the experiment, the methods to improve the real-time performance of EPA periodic data transmission including optimizing network structure, studying self-adaptive adjustment method of timeslice and providing data-sending time offset accuracy for configuration are proposed.
Keywords: EPA system, Industrial Ethernet, Periodic data, Real-time performance
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1469194 Implementation of CMMS Software for a Maintenance Plan in a Manufacturing Industry
Authors: Abimbola O. Aniki, Esther T. Akinlabi
Abstract:
This paper proposes an effective maintenance method by considering the implementation of the Computerized Maintenance Management System (CMMS) software to plan a maintenance activity in a manufacturing industry. Globally, maintenance is a very important activity in the manufacturing sector to prolong the life span of equipment and machinery; it is also applicable to all household items. It is obvious and well known that apart from giving long life to equipment, it reduces the substantial financial losses for repairs and save the production downtime. In some cases, appropriate maintenance of plant equipment and machinery reduces the tendencies of injuries to personnel in the job floor. But before the maintenance process can be carried out, proper and effective work order planning and scheduling must be in place in other to achieve the set goals and objectives of a maintenance shop. Brief reviews of common planning tools which include the Computerized Maintenance Management System (CMMS) are presented. An interesting outline of analyses on planning and scheduling for effective job planning in a typical manufacturing industry using the CMMS is also presented and discussed. Finally, the steps to adhere to in making job planning effective in a manufacturing industry are also highlighted.
Keywords: Advanced Downtime Analysis Programme (ADAP), Computerized Maintenance Management System (CMMS), Corrective Maintenance (CM), Executing Department (ED), Maintenance Department (MD), Preventive Maintenance (PM).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3424