The Use of Chlorophyll Meter Readings for the Selection of Maize Inbred Lines under Drought Stress
Authors: F. Gekas, C. Pankou, I. Mylonas, E. Ninou, E. Sinapidou, A. Lithourgidis, F. Papathanasiou, J. –K. Petrevska, F. Papadopoulou, P. Zouliamis, G. Tsaprounis, I. Tokatlidis, C. Dordas
Abstract:
The present study aimed to investigate whether chlorophyll meter readings (SPAD) can be used as criterion of singleplant selection in maize breeding. Experimentation was performed at the ultra-low density of 0.74 plants/m2 in order the potential yield per plant to be fully expressed. R-31 honeycomb experiments were conducted in three different areas in Greece (Thessaloniki, Giannitsa and Florina) using 30 inbred lines at well-watered and water-stressed conditions during the 2012 growing season. The chlorophyll meter readings had higher rates at dry conditions, except location of Giannitsa where differences were not significant. Genotypes of highest chlorophyll meter readings were consistent across areas, emphasizing on the character’s stability. A positive correlation between the chlorophyll meter readings and grain yield was strengthening over time and culminated at the physiological maturity stage. There was a clear sign that the chlorophyll meter readings has the potential to be used for the selection of stress-adaptive genotypes and may permit modern maize to be grown at wider range of environments addressing the climate change scenarios.
Keywords: Drought-prone environments, honeycomb breeding, SPAD, Zea mays.
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1087546
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2841References:
[1] G. M. Jeanneau, D. Gerentes, X. Foueillassar, M. Zivy, J. Vidal, A.
Toppan, P. Perez, ‘‘Improvement of drought tolerance in maize: towards
the functional validation of the Zm-Asr1 gene and increase of water use
efficiency by over-expressing C4–PEPC’’ Biochimie 84, 1127–1135,
2002.
[2] L. Nazari,H. H. Pakniyat, ‘‘Assessment of drought tolerance in barley
genotypes’’, J Appl Sci 10(2): 151-156, 2010
[3] P. Monneveux, C. Sanchez, A. Tiessen, ‘‘Future progress in drought
tolerance in maize needs new secondary traits and cross combinations’’,
Journal of Agricultural Science 146, 1–14, 2008.
[4] M. Tollenaar, J. Wu, ‘‘Yield in temperate maize is attributable to greater
stress tolerance.’’, Crop Science 39, 1604–1897, 1999.
[5] M. Tollenaar, E.-A Lee, ‘‘Yield stability and stress tolerance in maize’’,
Fields Crop Research 75, 161–169, 2002.
[6] H. Campos, A. Cooper, J.-E. Habben, G.-O. Edmeades, J.-R. Schussler,
‘‘Improving drought tolerance in maize: a view from industry’’, Field
Crops Research 90, 19–34, 2004
[7] M. Tollenaar, E.-A. Lee, “Dissection of physiological processes
underlying grain yield in maize by examining genetic improvement and
heterosis”, Maydica 51, pp.399–408, 2006.
[8] G.-E. Edwards, V.-R. Franceschi, E.-V. Voznesenkaya, ‘‘Single cell C4
photosynthesis versus the dual-cell (Kranz) paradigm’’, Annual Review
of Plant Biology 55, 173–196, 2004
[9] C.-R. Boomsma, J.-B. Santini, M. Tollenaar, T.-J. Vyn, ‘‘Maize
morphological responses to intense crowding at low nitrogen
availability: an analysis and review’’, Agron. J. 101:1426–1452, 2009.
[10] Y. Assefa, K.-L. Roozeboom, S.-A. Staggenborg, J. Du, ‘‘Dryland and
irrigated corn yield with climate, management, and hybrid changes from
1939 through 2009’’, Agron J 104:473–482, 2012
[11] R.-J. Van Roekel, J.-A. Coulter, ‘‘Agronomic responses of corn to
planting date and plant density’’, Agron J 103:1414–1422, 2011
[12] I.-S. Tokatlidis, M. Koutsika-Sotiriou, A.-C. Fasoulas, ‘‘The
development of density independent maize hybrids’’ Maydica 46, 21–
25, 2001.
[13] I.-S. Tokatlidis, C. Tsikrikoni, A.-S. Lithourgidis, J.-T. Tsialtas, C.
Tzantarmas, ‘‘Intra-cultivar variation in cotton: response to singleplant
yield selection at low density’’, J Agric Sci 149:197–204, 2011
[14] L. Sangoi, M.-A. Gracietti, C. Rampazzo, P. Bianchetti, ‘‘Response of
Brazilian maize hybrids from different eras to changes in plant
population’’ Field Crops Res. 79, 39–51, 2002.
[15] D.-A. Fasoula, V.-A Fasoula, ‘‘Competitive ability and plant breeding’’,
Plant Breed Rev 14:89–138, 1997a.
[16] V.-A. Fasoula, D.-A Fasoula, ‘‘Principles underlying genetic
improvement for high and stable crop yield potential’’, Field Crop Res
75:191–209, 2002.
[17] I.S. Tokatlidis, V. Has, I. Mylonas, I. Has, G Evgenidis, V. Melidis, A.
Copandean, E. Ninou, ‘‘Density effects on environmental variance and
expected response to selection in maize (Zea mays L.)’’, Euphytica
174:283–291, 2010a.
[18] A.-C. Fasoulas , V.-A. Fasoula , ‘‘Honeycomb selection Designs’’, Plant
Breed Rev 13:87–139, 1995.
[19] V.-A. Fasoula, ‘‘Selection of high yielding plants belonging to entries of
high homeostasis maximizes efficiency in maize breeding’’, XXI
International Conference in Maize and Sorgum Breeding in the
Genomics Era, Bergamo, Italy, p 28, 21–24 June 2009.
[20] D.-L. Sparks, A.-L. Page, P.-A. Helmke, R.-H. Leoppert, P.-N.
Soltanpour, M.-A. Tabatabai, G.-T. Johnston, M.-E. Sumner, ‘‘Methods
of soil analysis’’, Soil Science Society of American, Madison,
Wisconsin, USA, 1996.
[21] I. Rajcan, L.-M. Dwyer, M. Tollenaar, ‘‘Note on relationship between
leaf soluble carbohydrate and chlorophyll concentrations in maize during
leaf senescence’’, Field Crops Res. 63:13–17, 1999.
[22] J.-T. Tsialtas, D. Baxevanos, N. Maslaris, ‘‘SPAD, LAI and their
Stability as Assessments of Yield and Quality in Sugar Beet (Beta
vulgaris L.) Cultivars Grown in two Contrasting Environments’’, Crop
Science, to be published.
[23] W. Yan, M.-S. Kang. ‘‘GGE Biplot Analysis: A Graphical Tool for
Breeders’’, Geneticists and Agronomists, 1st ed., CRC Press LLC, Boca
Raton, 2003.
[24] N. Zialdi, M. Brassard, G. Bélanger, A. Claessens, N. Tremblay, A.-N.
Cambouris, M.-C. Nolin, L.-É. Parent, ‘‘Chlorophyll Measurements and
Nitrogen Nutrition Index for the Evaluation of Corn Nitrogen Status’’,
Agron. J. 100:1264–1273, 2008.
[25] N. Ziadi , G. Bélanger, A. Claessens, L. Lefebvre, N. Tremblay, A.-N.
Cambouris, M.-C. Nolin, L.-É. Parent, ‘‘Plant-Based Diagnostic Tools
for Evaluating Wheat Nitrogen Status’’, Crop Sci. 50(S6):S2580-S2590,
2010.
[26] A.-K. Shukla, J.-K. Ladha,V.-K. Singh, B.-S. Dwivedi, V.
Balasubramanian, R.-K. Gupta, S.-K. Sharma, Y. Singh, H. Pathak, P.-S.
Pandey, A.-T. Padre, R.-L. Yadav, ‘‘Calibrating the Leaf Color Chart for
Nitrogen Management in Different Genotypes of Rice and Wheat in a
Systems Perspective’’, Agron. J. 96:1606–1621, 2004.
[27] C. Dordas, A.-S. Lithourgidis, T. Matsi, N. Barbayiannis, ‘‘Application
of Liquid Cattle Manure and Inorganic Fertilizers Affect Dry Matter,
Nitrogen Accumulation, and Partitioning in Maize’’, Nutrient Cycling in
Agroecosystems 80 (3), 283-296, 2008.
[28] C. Dordas, C. Sioulas, ‘‘Safflower yield, chlorophyll content,
photosynthesis, and water use efficiency response to nitrogen
fertilization under rainfed conditions’’, Industrial Crops and Products.
27: 75-85, 2008.
[29] A.-A. Fleming, J.-H. Palmer, ‘‘Variation in chlorophyll content in maize
lines and hybrids’’, Crop Sci. 15:617–620. 1975.
[30] G. Wang, M.-S. Kang, O. Moreno, ‘‘Genetic analyses of grain-filling
rate and duration in maize’’, Field Crops Res. 61:211–222, 1999.
[31] E.-A. Lee, M. Tollenaar, ‘‘Physiological basis of successful breeding
strategies for maize grain yield’’, Crop Sci. 47(S3):S202–S215, 2007.
[32] Q. Wang, J. Chen, Y. Li. 2004. ‘‘Nondestructive and rapid estimation of
leaf chlorophyll and nitrogen status of peace lily using chlorophyll
meter’’, J. Plant Nutr. 27:557-569,2004.
[33] F. Wiesler, M. Bauer, M. Kamh, T. Engels, S. Reusch, ‘‘The crop as
indicator for sidedress nitrogen demand in sugar beet productionlimitations
and perspectives’’, J. Plant Nutr. Soil Sci. 165:93-99, 2002.
[34] J. Uddling, J. Gelang-Alfredson, K. Piikki, H. Pleijel, ‘‘ Evaluating the
relationship between leaf chlorophyll concentration and SPAD-502
chlorophyll meter readings’’, Photosynth. Res. 91:37-46, 2007.