Search results for: nonlinear control.
3529 Sliding Mode Control of a Bus Suspension System
Authors: Mujde Turkkan, Nurkan Yagiz
Abstract:
The vibrations, caused by the irregularities of the road surface, are to be suppressed via suspension systems. In this paper, sliding mode control for a half bus model with air suspension system is presented. The bus is modelled as five degrees of freedom (DoF) system. The mathematical model of the half bus is developed using Lagrange Equations. For time domain analysis, the bus model is assumed to travel at certain speed over the bump road. The numerical results of the analysis indicate that the sliding mode controllers can be effectively used to suppress the vibrations and to improve the ride comfort of the busses.
Keywords: Sliding mode control, bus model, air suspension.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17703528 Strategic Management Accounting: Implementation and Control
Authors: Alireza Azimi Sani
Abstract:
This paper discusses the design characteristics management accounting systems should have to be useful for strategic planning and control and provides brief introductions to strategic variance analysis, profit-linked performance measurement models and balanced scorecard. It shows two multi-period, multiproduct models are specified, can be related to Porter's strategy framework and cost and revenue drivers, and can be used to support strategic planning, control and cost management.
Keywords: Accounting, balanced scorecard, profit-linked, strategic management, variance analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 50213527 Buildings Founded on Thermal Insulation Layer Subjected to Earthquake Load
Abstract:
The modern energy-efficient houses are often founded on a thermal insulation (TI) layer placed under the building’s RC foundation slab.The purpose of the paper is to identify the potential problems of the buildings founded on TI layer from the seismic point of view. The two main goals of the study were to assess the seismic behavior of such buildings, and to search for the critical structural parameters affecting the response of the superstructure as well as of the extruded polystyrene (XPS) layer. As a test building a multi-storeyed RC frame structure with and without the XPS layer under the foundation slab has been investigated utilizing nonlinear dynamic (time-history) and static (pushover) analyses. The structural response has been investigated with reference to the following performance parameters: i) Building’s lateral roof displacements, ii) Edge compressive and shear strains of the XPS, iii) Horizontal accelerations of the superstructure, iv) Plastic hinge patterns of the superstructure, v) Part of the foundation in compression, and vi) Deformations of the underlying soil and vertical displacements of the foundation slab (i.e. identifying the potential uplift). The results have shown that in the case of higher and stiff structures lying on firm soil the use of XPS under the foundation slab might induce amplified structural peak responses compared to the building models without XPS under the foundation slab. The analysis has revealed that the superstructure as well as the XPS response is substantially affected by the stiffness of the foundation slab.
Keywords: Extruded polystyrene (XPS), foundation on thermal insulation, energy-efficient buildings, nonlinear seismic analysis, seismic response, soil–structure interaction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22293526 Minimum Energy of a Prismatic Joint with out: Actuator: Application on RRP Robot
Authors: Tawiwat V., Tosapolporn P., Kedit J.
Abstract:
This research proposes the state of art on how to control or find the trajectory paths of the RRP robot when the prismatic joint is malfunction. According to this situation, the minimum energy of the dynamic optimization is applied. The RRP robot or similar systems have been used in many areas such as fire fighter truck, laboratory equipment and military truck for example a rocket launcher. In order to keep on task that assigned, the trajectory paths must be computed. Here, the open loop control is applied and the result of an example show the reasonable solution which can be applied to the controllable system.
Keywords: RRP robot, Optimal Control, Minimum Energy and Under Actuator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13003525 Microgrid: Low Power Network Topology and Control
Authors: Amit Sachan
Abstract:
The network designing and data modeling developments which are the two significant research tasks in direction to tolerate power control of Microgrid concluded using IEC 61850 data models and facilities. The current casing areas of IEC 61580 include infrastructures in substation automation systems, among substations and to DERs. So, for LV microgrid power control, previously using the IEC 61850 amenities to control the smart electrical devices, we have to model those devices as IEC 61850 data models and design a network topology to maintenance all-in-one communiqué amid those devices. In adding, though IEC 61850 assists modeling a portion by open-handed several object models for common functions similar measurement, metering, monitoring…etc., there are motionless certain missing smithereens for building a multiplicity of functions for household appliances like tuning the temperature of an electric heater or refrigerator.
Keywords: IEC 61850, RCMC, HCMC, DER Unit Controller.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24983524 Robust Stabilization of Rotational Motion of Underwater Robots against Parameter Uncertainties
Authors: Riku Hayashida, Tomoaki Hashimoto
Abstract:
This paper provides a robust stabilization method for rotational motion of underwater robots against parameter uncertainties. Underwater robots are expected to be used for various work assignments. The large variety of applications of underwater robots motivates researchers to develop control systems and technologies for underwater robots. Several control methods have been proposed so far for the stabilization of nominal system model of underwater robots with no parameter uncertainty. Parameter uncertainties are considered to be obstacles in implementation of the such nominal control methods for underwater robots. The objective of this study is to establish a robust stabilization method for rotational motion of underwater robots against parameter uncertainties. The effectiveness of the proposed method is verified by numerical simulations.Keywords: Robust control, stabilization method, underwater robot, parameter uncertainty.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5683523 An Experimental Procedure for Design and Construction of Monocopter and Its Control Using Optical and GPS-Aided AHRS Sensors
Authors: A. Safaee, M. S. Mehrabani, M. B. Menhaj, V. Mousavi, S. Z. Moussavi
Abstract:
Monocopter is a single-wing rotary flying vehicle which has the capability of hovering. This flying vehicle includes two dynamic parts in which more efficiency can be expected rather than other Micro UAVs due to the extended area of wing compared to its fuselage. Low cost and simple mechanism in comparison to other vehicles such as helicopter are the most important specifications of this flying vehicle. In the previous paper we discussed the introduction of the final system but in this paper, the experimental design process of Monocopter and its control algorithm has been investigated in general. Also the editorial bugs in the previous article have been corrected and some translational ambiguities have been resolved. Initially by constructing several prototypes and carrying out many flight tests the main design parameters of this air vehicle were obtained by experimental measurements. Eventually the required main monocopter for this project was constructed. After construction of the monocopter in order to design, implementation and testing of control algorithms first a simple optic system used for determining the heading angle. After doing numerous tests on Test Stand, the control algorithm designed and timing of applying control inputs adjusted. Then other control parameters of system were tuned in flight tests. Eventually the final control system designed and implemented using the AHRS sensor and the final operational tests performed successfully.
Keywords: Monocopter, Flap, Heading Angle, AHRS, Cyclic, Photo Diode.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34343522 SMCC: Self-Managing Congestion Control Algorithm
Authors: Sh. Jamali, A. Eftekhari
Abstract:
Transmission control protocol (TCP) Vegas detects network congestion in the early stage and successfully prevents periodic packet loss that usually occurs in TCP Reno. It has been demonstrated that TCP Vegas outperforms TCP Reno in many aspects. However, TCP Vegas suffers several problems that affect its congestion avoidance mechanism. One of the most important weaknesses in TCP Vegas is that alpha and beta depend on a good expected throughput estimate, which as we have seen, depends on a good minimum RTT estimate. In order to make the system more robust alpha and beta must be made responsive to network conditions (they are currently chosen statically). This paper proposes a modified Vegas algorithm, which can be adjusted to present good performance compared to other transmission control protocols (TCPs). In order to do this, we use PSO algorithm to tune alpha and beta. The simulation results validate the advantages of the proposed algorithm in term of performance.Keywords: Self-managing, Congestion control, TCP.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14663521 Electroencephalography Based Brain-Computer Interface for Cerebellum Impaired Patients
Authors: Young-Seok Choi
Abstract:
In healthy humans, the cortical brain rhythm shows specific mu (~6-14 Hz) and beta (~18-24 Hz) band patterns in the cases of both real and imaginary motor movements. As cerebellar ataxia is associated with impairment of precise motor movement control as well as motor imagery, ataxia is an ideal model system in which to study the role of the cerebellocortical circuit in rhythm control. We hypothesize that the EEG characteristics of ataxic patients differ from those of controls during the performance of a Brain-Computer Interface (BCI) task. Ataxia and control subjects showed a similar distribution of mu power during cued relaxation. During cued motor imagery, however, the ataxia group showed significant spatial distribution of the response, while the control group showed the expected decrease in mu-band power (localized to the motor cortex).
Keywords: Brain-computer interface, EEG, modulation, ataxia.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19683520 Robust Integrated Design for a Mechatronic Feed Drive System of Machine Tools
Authors: Chin-Yin Chen, Chi-Cheng Cheng
Abstract:
This paper aims at to develop a robust optimization methodology for the mechatronic modules of machine tools by considering all important characteristics from all structural and control domains in one single process. The relationship between these two domains is strongly coupled. In order to reduce the disturbance caused by parameters in either one, the mechanical and controller design domains need to be integrated. Therefore, the concurrent integrated design method Design For Control (DFC), will be employed in this paper. In this connect, it is not only applied to achieve minimal power consumption but also enhance structural performance and system response at same time. To investigate the method for integrated optimization, a mechatronic feed drive system of the machine tools is used as a design platform. Pro/Engineer and AnSys are first used to build the 3D model to analyze and design structure parameters such as elastic deformation, nature frequency and component size, based on their effects and sensitivities to the structure. In addition, the robust controller,based on Quantitative Feedback Theory (QFT), will be applied to determine proper control parameters for the controller. Therefore, overall physical properties of the machine tool will be obtained in the initial stage. Finally, the technology of design for control will be carried out to modify the structural and control parameters to achieve overall system performance. Hence, the corresponding productivity is expected to be greatly improved.
Keywords: Machine tools, integrated structure and control design, design for control, multilevel decomposition, quantitative feedback theory.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19483519 LFC Design of a Deregulated Power System with TCPS Using PSO
Authors: H. Shayeghi, H.A. Shayanfar, A. Jalili
Abstract:
In the LFC problem, the interconnections among some areas are the input of disturbances, and therefore, it is important to suppress the disturbances by the coordination of governor systems. In contrast, tie-line power flow control by TCPS located between two areas makes it possible to stabilize the system frequency oscillations positively through interconnection, which is also expected to provide a new ancillary service for the further power systems. Thus, a control strategy using controlling the phase angle of TCPS is proposed for provide active control facility of system frequency in this paper. Also, the optimum adjustment of PID controller's parameters in a robust way under bilateral contracted scenario following the large step load demands and disturbances with and without TCPS are investigated by Particle Swarm Optimization (PSO), that has a strong ability to find the most optimistic results. This newly developed control strategy combines the advantage of PSO and TCPS and has simple stricture that is easy to implement and tune. To demonstrate the effectiveness of the proposed control strategy a three-area restructured power system is considered as a test system under different operating conditions and system nonlinearities. Analysis reveals that the TCPS is quite capable of suppressing the frequency and tie-line power oscillations effectively as compared to that obtained without TCPS for a wide range of plant parameter changes, area load demands and disturbances even in the presence of system nonlinearities.
Keywords: LFC, TCPS, Dregulated Power System, PowerSystem Control, PSO.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20693518 A Comprehensive model for developing of Steer-By-Wire System
Authors: Reza Kazemi , Iman Mousavinejad
Abstract:
Steer-By-Wire ( SBW ) has several advantages of packaging flexibility , advanced vehicle control system ,and superior performance . SBW has no mechanical linkage between the steering gear and the steering column. It is possible to control the steering wheel and the front-wheel steering independently. SBW system is composed of two motors controlled by ECU. One motor in the steering wheel is to improve the driver's steering feel and the other motor in the steering linkage is to improve the vehicle maneuverability and stability. This paper shows a new approach at modeling of SBW system by Bond Graph theory. The mechanical parts , the steering wheel motor and the front wheel motor will be modeled by this theory. The work in the paper will help to guide further researches on control algorithm of the SBW system .
Keywords: Steer-By-Wire ( SBW ), Bond Graph theory, Electronic-Control-Unit ( ECU ) , Modeling
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 36523517 MPC of Single Phase Inverter for PV System
Authors: Irtaza M. Syed, Kaamran Raahemifar
Abstract:
This paper presents a model predictive control (MPC) of a utility interactive (UI) single phase inverter (SPI) for a photovoltaic (PV) system at residential/distribution level. The proposed model uses single-phase phase locked loop (PLL) to synchronize SPI with the grid and performs MPC control in a dq reference frame. SPI model consists of boost converter (BC), maximum power point tracking (MPPT) control, and a full bridge (FB) voltage source inverter (VSI). No PI regulators to tune and carrier and modulating waves are required to produce switching sequence. Instead, the operational model of VSI is used to synthesize sinusoidal current and track the reference. Model is validated using a three kW PV system at the input of UI-SPI in Matlab/Simulink. Implementation and results demonstrate simplicity and accuracy, as well as reliability of the model.
Keywords: Matlab/Simulink, Model Predictive Control, Phase Locked Loop, Single Phase Inverter, Voltage Source Inverter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 45503516 Controllability of Efficiency of Antiviral Therapy in Hepatitis B Virus Infections
Authors: Shyam S.N. Perera
Abstract:
An optimal control problem for a mathematical model of efficiency of antiviral therapy in hepatitis B virus infections is considered. The aim of the study is to control the new viral production, block the new infection cells and maintain the number of uninfected cells in the given range. The optimal controls represent the efficiency of antiviral therapy in inhibiting viral production and preventing new infections. Defining the cost functional, the optimal control problem is converted into the constrained optimization problem and the first order optimality system is derived. For the numerical simulation, we propose the steepest descent algorithm based on the adjoint variable method. A computer program in MATLAB is developed for the numerical simulations.
Keywords: Virus infection model, Optimal control, Adjoint system, Steepest descent
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12533515 Diagnosing the Cause and its Timing of Changes in Multivariate Process Mean Vector from Quality Control Charts using Artificial Neural Network
Authors: Farzaneh Ahmadzadeh
Abstract:
Quality control charts are very effective in detecting out of control signals but when a control chart signals an out of control condition of the process mean, searching for a special cause in the vicinity of the signal time would not always lead to prompt identification of the source(s) of the out of control condition as the change point in the process parameter(s) is usually different from the signal time. It is very important to manufacturer to determine at what point and which parameters in the past caused the signal. Early warning of process change would expedite the search for the special causes and enhance quality at lower cost. In this paper the quality variables under investigation are assumed to follow a multivariate normal distribution with known means and variance-covariance matrix and the process means after one step change remain at the new level until the special cause is being identified and removed, also it is supposed that only one variable could be changed at the same time. This research applies artificial neural network (ANN) to identify the time the change occurred and the parameter which caused the change or shift. The performance of the approach was assessed through a computer simulation experiment. The results show that neural network performs effectively and equally well for the whole shift magnitude which has been considered.Keywords: Artificial neural network, change point estimation, monte carlo simulation, multivariate exponentially weighted movingaverage
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13773514 Power System Stability Improvement by Simultaneous Tuning of PSS and SVC Based Damping Controllers Employing Differential Evolution Algorithm
Authors: Sangram Keshori Mohapatra, Sidhartha Panda, Prasant Kumar Satpathy
Abstract:
Power-system stability improvement by simultaneous tuning of power system stabilizer (PSS) and a Static Var Compensator (SVC) based damping controller is thoroughly investigated in this paper. Both local and remote signals with associated time delays are considered in the present study. The design problem of the proposed controller is formulated as an optimization problem, and differential evolution (DE) algorithm is employed to search for the optimal controller parameters. The performances of the proposed controllers are evaluated under different disturbances for both single-machine infinite bus power system and multi-machine power system. The performance of the proposed controllers with variations in the signal transmission delays has also been investigated. The proposed stabilizers are tested on a weakly connected power system subjected to different disturbances. Nonlinear simulation results are presented to show the effectiveness and robustness of the proposed control schemes over a wide range of loading conditions and disturbances. Further, the proposed design approach is found to be robust and improves stability effectively even under small disturbance conditions.
Keywords: Differential Evolution Algorithm, Power System Stability, Power System Stabilizer, Static Var Compensator
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23393513 Customer Audits as a Quality Control Tool for Both Suppliers and Customers
Authors: Denisa Ferenčíková, Petr Briš
Abstract:
Customer audits are generally used to ensure customer that supplier is continuously able to meet his requirements while supplying him required products and services. However, customer audits can be considered as a very useful quality control tool for suppliers as well. In our paper, we analyzed the process of customer audits realized in Czech companies from both perspectives: a supplier´s viewpoint and customer´s viewpoint. At the end, we tried to emphasize some areas that should not be omitted during the audit process.
Keywords: Customer Audit, Quality Control, Quality Management, Product Quality, Service Quality, Process Quality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 39973512 Vibration Suppression of Timoshenko Beams with Embedded Piezoelectrics Using POF
Authors: T. C. Manjunath, B. Bandyopadhyay
Abstract:
This paper deals with the design of a periodic output feedback controller for a flexible beam structure modeled with Timoshenko beam theory, Finite Element Method, State space methods and embedded piezoelectrics concept. The first 3 modes are considered in modeling the beam. The main objective of this work is to control the vibrations of the beam when subjected to an external force. Shear piezoelectric sensors and actuators are embedded into the top and bottom layers of a flexible aluminum beam structure, thus making it intelligent and self-adaptive. The composite beam is divided into 5 finite elements and the control actuator is placed at finite element position 1, whereas the sensor is varied from position 2 to 5, i.e., from the nearby fixed end to the free end. 4 state space SISO models are thus developed. Periodic Output Feedback (POF) Controllers are designed for the 4 SISO models of the same plant to control the flexural vibrations. The effect of placing the sensor at different locations on the beam is observed and the performance of the controller is evaluated for vibration control. Conclusions are finally drawn.Keywords: Smart structure, Timoshenko beam theory, Periodic output feedback control, Finite Element Method, State space model, SISO, Embedded sensors and actuators, Vibration control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21333511 Designing a Football Team of Robots from Beginning to End
Authors: Maziar A. Sharbafi, Caro Lucas, Aida Mohammadinejad, Mostafa Yaghobi
Abstract:
The Combination of path planning and path following is the main purpose of this paper. This paper describes the developed practical approach to motion control of the MRL small size robots. An intelligent controller is applied to control omni-directional robots motion in simulation and real environment respectively. The Brain Emotional Learning Based Intelligent Controller (BELBIC), based on LQR control is adopted for the omni-directional robots. The contribution of BELBIC in improving the control system performance is shown as application of the emotional learning in a real world problem. Optimizing of the control effort can be achieved in this method too. Next the implicit communication method is used to determine the high level strategies and coordination of the robots. Some simple rules besides using the environment as a memory to improve the coordination between agents make the robots' decision making system. With this simple algorithm our team manifests a desirable cooperation.
Keywords: multi-agent systems (MAS), Emotional learning, MIMO system, BELBIC, LQR, Communication via environment
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18533510 Swarm Navigation in a Complex Environment
Authors: Jai Raj, Jito Vanualailai, Bibhya Sharma, Shonal Singh
Abstract:
This paper proposes a solution to the motion planning and control problem of car-like mobile robots which is required to move safely to a designated target in a priori known workspace cluttered with swarm of boids exhibiting collective emergent behaviors. A generalized algorithm for target convergence and swarm avoidance is proposed that will work for any number of swarms. The control laws proposed in this paper also ensures practical stability of the system. The effectiveness of the proposed control laws are demonstrated via computer simulations of an emergent behavior.Keywords: Swarm, practical stability, motion planning, emergent.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13963509 Multirate Neural Control for AUV's Increased Situational Awareness during Diving Tasks Using Stochastic Model
Authors: Igor Astrov, Andrus Pedai
Abstract:
This paper focuses on a critical component of the situational awareness (SA), the neural control of depth flight of an autonomous underwater vehicle (AUV). Constant depth flight is a challenging but important task for AUVs to achieve high level of autonomy under adverse conditions. With the SA strategy, we proposed a multirate neural control of an AUV trajectory for a nontrivial mid-small size AUV “r2D4" stochastic model. This control system has been demonstrated and evaluated by simulation of diving maneuvers using software package Simulink. From the simulation results it can be seen that the chosen AUV model is stable in the presence of noises, and also can be concluded that the proposed research technique will be useful for fast SA of similar AUV systems in real-time search-and-rescue operations.
Keywords: Autonomous underwater vehicles, multirate systems, neurocontrollers, situational awareness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15903508 The Fundamental Reliance of Iterative Learning Control on Stability Robustness
Authors: Richard W. Longman
Abstract:
Iterative learning control aims to achieve zero tracking error of a specific command. This is accomplished by iteratively adjusting the command given to a feedback control system, based on the tracking error observed in the previous iteration. One would like the iterations to converge to zero tracking error in spite of any error present in the model used to design the learning law. First, this need for stability robustness is discussed, and then the need for robustness of the property that the transients are well behaved. Methods of producing the needed robustness to parameter variations and to singular perturbations are presented. Then a method involving reverse time runs is given that lets the world behavior produce the ILC gains in such a way as to eliminate the need for a mathematical model. Since the real world is producing the gains, there is no issue of model error. Provided the world behaves linearly, the approach gives an ILC law with both stability robustness and good transient robustness, without the need to generate a model.Keywords: Iterative learning control, stability robustness, monotonic convergence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15943507 Robust Conversion of Chaos into an Arbitrary Periodic Motion
Authors: Abolhassan Razminia, Mohammad-Ali Sadrnia
Abstract:
One of the most attractive and important field of chaos theory is control of chaos. In this paper, we try to present a simple framework for chaotic motion control using the feedback linearization method. Using this approach, we derive a strategy, which can be easily applied to the other chaotic systems. This task presents two novel results: the desired periodic orbit need not be a solution of the original dynamics and the other is the robustness of response against parameter variations. The illustrated simulations show the ability of these. In addition, by a comparison between a conventional state feedback and our proposed method it is demonstrated that the introduced technique is more efficient.
Keywords: chaos, feedback linearization, robust control, periodic motion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16973506 Enhancement of MIMO H2S Gas Sweetening Separator Tower Using Fuzzy Logic Controller Array
Authors: Muhammad M. A. S. Mahmoud
Abstract:
Natural gas sweetening process is a controlled process that must be done at maximum efficiency and with the highest quality. In this work, due to complexity and non-linearity of the process, the H2S gas separation and the intelligent fuzzy controller, which is used to enhance the process, are simulated in MATLAB – Simulink. New design of fuzzy control for Gas Separator is discussed in this paper. The design is based on the utilization of linear state-estimation to generate the internal knowledge-base that stores input-output pairs. The obtained input/output pairs are then used to design a feedback fuzzy controller. The proposed closed-loop fuzzy control system maintains the system asymptotically-stability while it enhances the system time response to achieve better control of the concentration of the output gas from the tower. Simulation studies are carried out to illustrate the Gas Separator system performance.Keywords: Gas separator, gas sweetening, intelligent controller, fuzzy control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15033505 Flight Control of Vectored Thrust Aerial Vehicle by Neural Network Predictive Controller for Enhanced Situational Awareness
Authors: Igor Astrov, Mikhail Pikkov, Rein Paluoja
Abstract:
This paper focuses on a critical component of the situational awareness (SA), the control of autonomous vertical flight for vectored thrust aerial vehicle (VTAV). With the SA strategy, we proposed a flight control procedure to address the dynamics variation and performance requirement difference of flight trajectory for an unmanned helicopter model with vectored thrust configuration. This control strategy for chosen model of VTAV has been verified by simulation of take-off and forward maneuvers using software package Simulink and demonstrated good performance for fast stabilization of motors, consequently, fast SA with economy in energy can be asserted during search-and-rescue operations.
Keywords: Neural network predictive controller, situational awareness, vectored thrust aerial vehicle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15023504 A Robust Approach to the Load Frequency Control Problem with Speed Regulation Uncertainty
Authors: S. Z. Sayed Hassen
Abstract:
The load frequency control problem of power systems has attracted a lot of attention from engineers and researchers over the years. Increasing and quickly changing load demand, coupled with the inclusion of more generators with high variability (solar and wind power generators) on the network are making power systems more difficult to regulate. Frequency changes are unavoidable but regulatory authorities require that these changes remain within a certain bound. Engineers are required to perform the tricky task of adjusting the control system to maintain the frequency within tolerated bounds. It is well known that to minimize frequency variations, a large proportional feedback gain (speed regulation constant) is desirable. However, this improvement in performance using proportional feedback comes about at the expense of a reduced stability margin and also allows some steady-state error. A conventional PI controller is then included as a secondary control loop to drive the steadystate error to zero. In this paper, we propose a robust controller to replace the conventional PI controller which guarantees performance and stability of the power system over the range of variation of the speed regulation constant. Simulation results are shown to validate the superiority of the proposed approach on a simple single-area power system model.
Keywords: Robust control, power system, integral action, minimax LQG control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19193503 Fault Classification of Double Circuit Transmission Line Using Artificial Neural Network
Authors: Anamika Jain, A. S. Thoke, R. N. Patel
Abstract:
This paper addresses the problems encountered by conventional distance relays when protecting double-circuit transmission lines. The problems arise principally as a result of the mutual coupling between the two circuits under different fault conditions; this mutual coupling is highly nonlinear in nature. An adaptive protection scheme is proposed for such lines based on application of artificial neural network (ANN). ANN has the ability to classify the nonlinear relationship between measured signals by identifying different patterns of the associated signals. One of the key points of the present work is that only current signals measured at local end have been used to detect and classify the faults in the double circuit transmission line with double end infeed. The adaptive protection scheme is tested under a specific fault type, but varying fault location, fault resistance, fault inception angle and with remote end infeed. An improved performance is experienced once the neural network is trained adequately, which performs precisely when faced with different system parameters and conditions. The entire test results clearly show that the fault is detected and classified within a quarter cycle; thus the proposed adaptive protection technique is well suited for double circuit transmission line fault detection & classification. Results of performance studies show that the proposed neural network-based module can improve the performance of conventional fault selection algorithms.
Keywords: Double circuit transmission line, Fault detection and classification, High impedance fault and Artificial Neural Network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31863502 Control Strategies for a Robot for Interaction with Children with Autism Spectrum Disorder
Authors: Vinicius Binotte, Guilherme Baldo, Christiane Goulart, Carlos Valadão, Eliete Caldeira, Teodiano Bastos
Abstract:
Socially assistive robotic has become increasingly active and it is present in therapies of people affected for several neurobehavioral conditions, such as Autism Spectrum Disorder (ASD). In fact, robots have played a significant role for positive interaction with children with ASD, by stimulating their social and cognitive skills. This work introduces a mobile socially-assistive robot, which was built for interaction with children with ASD, using non-linear control techniques for this interaction.
Keywords: Socially assistive robotics, mobile robot, autonomous control, autism.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15723501 Main Variables Competition in DFB Lasers under Dual Optical Injection
Authors: Najm M. Al-Hosiny
Abstract:
We theoretically investigate the effects of frequency detuning and injection power on the nonlinear dynamics of DFB lasers under dual external optical injection.Keywords: Optical injection, DFB laser, frequency detuning, injection power.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13763500 Enhanced Data Access Control of Cooperative Environment used for DMU Based Design
Authors: Wei Lifan, Zhang Huaiyu, Yang Yunbin, Li Jia
Abstract:
Through the analysis of the process digital design based on digital mockup, the fact indicates that a distributed cooperative supporting environment is the foundation conditions to adopt design approach based on DMU. Data access authorization is concerned firstly because the value and sensitivity of the data for the enterprise. The access control for administrators is often rather weak other than business user. So authors established an enhanced system to avoid the administrators accessing the engineering data by potential approach and without authorization. Thus the data security is improved.Keywords: access control, DMU, PLM, virtual prototype.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1463