Search results for: liquid phase microextraction.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2027

Search results for: liquid phase microextraction.

1067 Preparation of Li Ion Conductive Ceramics via Liquid Process

Authors: M. Kotobuki, M. Koishi

Abstract:

Li1.5Al0.5Ti1.5 (PO4)3(LATP) has received much attention as a solid electrolyte for lithium batteries. In this study, the LATP solid electrolyte is prepared by the co-precipitation method using Li3PO4 as a Li source. The LATP is successfully prepared and the Li ion conductivities of bulk (inner crystal) and total (inner crystal and grain boundary) are 1.1 × 10-3 and 1.1 × 10-4 S cm-1, respectively. These values are comparable to the reported values, in which Li2C2O4 is used as the Li source. It is conclude that the LATP solid electrolyte can be prepared by the co-precipitation method using Li3PO4 as the Li source and this procedure has an advantage in mass production over previous procedure using Li2C2O4 because Li3PO4 is lower price reagent compared with Li2C2O4.

Keywords: Co-precipitation method, lithium battery, NASICON-type electrolyte, solid electrolyte.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2895
1066 Overview Studies of High Strength Self-Consolidating Concrete

Authors: Raya Harkouss, Bilal Hamad

Abstract:

Self-Consolidating Concrete (SCC) is considered as a relatively new technology created as an effective solution to problems associated with low quality consolidation. A SCC mix is defined as successful if it flows freely and cohesively without the intervention of mechanical compaction. The construction industry is showing high tendency to use SCC in many contemporary projects to benefit from the various advantages offered by this technology.

At this point, a main question is raised regarding the effect of enhanced fluidity of SCC on the structural behavior of high strength self-consolidating reinforced concrete.

A three phase research program was conducted at the American University of Beirut (AUB) to address this concern. The first two phases consisted of comparative studies conducted on concrete and mortar mixes prepared with second generation Sulphonated Naphtalene-based superplasticizer (SNF) or third generation Polycarboxylate Ethers-based superplasticizer (PCE). The third phase of the research program investigates and compares the structural performance of high strength reinforced concrete beam specimens prepared with two different generations of superplasticizers that formed the unique variable between the concrete mixes. The beams were designed to test and exhibit flexure, shear, or bond splitting failure.

The outcomes of the experimental work revealed comparable resistance of beam specimens cast using self-compacting concrete and conventional vibrated concrete. The dissimilarities in the experimental values between the SCC and the control VC beams were minimal, leading to a conclusion, that the high consistency of SCC has little effect on the flexural, shear and bond strengths of concrete members.

Keywords: Self-consolidating concrete (SCC), high-strength concrete, concrete admixtures, mechanical properties of hardened SCC, structural behavior of reinforced concrete beams.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2959
1065 Social Media Idea Ontology: A Concept for Semantic Search of Product Ideas in Customer Knowledge through User-Centered Metrics and Natural Language Processing

Authors: Martin H¨ausl, Maximilian Auch, Johannes Forster, Peter Mandl, Alexander Schill

Abstract:

In order to survive on the market, companies must constantly develop improved and new products. These products are designed to serve the needs of their customers in the best possible way. The creation of new products is also called innovation and is primarily driven by a company’s internal research and development department. However, a new approach has been taking place for some years now, involving external knowledge in the innovation process. This approach is called open innovation and identifies customer knowledge as the most important source in the innovation process. This paper presents a concept of using social media posts as an external source to support the open innovation approach in its initial phase, the Ideation phase. For this purpose, the social media posts are semantically structured with the help of an ontology and the authors are evaluated using graph-theoretical metrics such as density. For the structuring and evaluation of relevant social media posts, we also use the findings of Natural Language Processing, e. g. Named Entity Recognition, specific dictionaries, Triple Tagger and Part-of-Speech-Tagger. The selection and evaluation of the tools used are discussed in this paper. Using our ontology and metrics to structure social media posts enables users to semantically search these posts for new product ideas and thus gain an improved insight into the external sources such as customer needs.

Keywords: Idea ontology, innovation management, open innovation, semantic search.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 771
1064 Laser Registration and Supervisory Control of neuroArm Robotic Surgical System

Authors: Hamidreza Hoshyarmanesh, Hosein Madieh, Sanju Lama, Yaser Maddahi, Garnette R. Sutherland, Kourosh Zareinia

Abstract:

This paper illustrates the concept of an algorithm to register specified markers on the neuroArm surgical manipulators, an image-guided MR-compatible tele-operated robot for microsurgery and stereotaxy. Two range-finding algorithms, namely time-of-flight and phase-shift, are evaluated for registration and supervisory control. The time-of-flight approach is implemented in a semi-field experiment to determine the precise position of a tiny retro-reflective moving object. The moving object simulates a surgical tool tip. The tool is a target that would be connected to the neuroArm end-effector during surgery inside the magnet bore of the MR imaging system. In order to apply flight approach, a 905-nm pulsed laser diode and an avalanche photodiode are utilized as the transmitter and receiver, respectively. For the experiment, a high frequency time to digital converter was designed using a field-programmable gate arrays. In the phase-shift approach, a continuous green laser beam with a wavelength of 530 nm was used as the transmitter. Results showed that a positioning error of 0.1 mm occurred when the scanner-target point distance was set in the range of 2.5 to 3 meters. The effectiveness of this non-contact approach exhibited that the method could be employed as an alternative for conventional mechanical registration arm. Furthermore, the approach is not limited by physical contact and extension of joint angles.

Keywords: 3D laser scanner, intraoperative MR imaging, neuroArm, real time registration, robot-assisted surgery, supervisory control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1041
1063 Ionic Liquid Pretreatment and Enzymatic Hydrolysis of Wood Biomass

Authors: M. Ungurean, F. Fitigau, C. Paul, A. Ursoiu, F. Peter

Abstract:

Pretreatment of lignocellulosic biomass materials from poplar, acacia, oak, and fir with different ionic liquids (ILs) containing 1-alkyl-3-methyl-imidazolium cations and various anions has been carried out. The dissolved cellulose from biomass was precipitated by adding anti-solvents into the solution and vigorous stirring. Commercial cellulases Celluclast 1.5L and Accelerase 1000 have been used for hydrolysis of untreated and pretreated lignocellulosic biomass. Among the tested ILs, [Emim]COOCH3 showed the best efficiency, resulting in highest amount of liberated reducing sugars. Pretreatment of lignocellulosic biomass using glycerol-ionic liquids combined pretreatment and dilute acid-ionic liquids combined pretreatment were evaluated and compared with glycerol pretreatment, ionic liquids pretreatment and dilute acid pretreatment.

Keywords: Cellulase, enzymatic hydrolysis, lignocellulosicbiomass, pretreatment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2856
1062 An Analysis of Eco-efficiency and GHG Emission of Olive Oil Production in Northeast of Portugal

Authors: M. Feliciano, F. Maia, A. Gonçalves

Abstract:

Olive oil production sector plays an important role in Portuguese economy. It had a major growth over the last decade, increasing its weight in the overall national exports. International market penetration for Mediterranean traditional products is increasingly more demanding, especially in the Northern European markets, where consumers are looking for more sustainable products. Trying to support this growing demand this study addresses olive oil production under the environmental and eco-efficiency perspectives. The analysis considers two consecutive product life cycle stages: olive trees farming; and olive oil extraction in mills. Addressing olive farming, data collection covered two different organizations: a middle-size farm (~12ha) (F1) and a large-size farm (~100ha) (F2). Results from both farms show that olive collection activities are responsible for the largest amounts of Green House Gases (GHG) emissions. In this activities, estimate for the Carbon Footprint per olive was higher in F2 (188g CO2e/kgolive) than in F1 (148g CO2e/kgolive). Considering olive oil extraction, two different mills were considered: one using a two-phase system (2P) and other with a three-phase system (3P). Results from the study of two mills show that there is a much higher use of water in 3P. Energy intensity (EI) is similar in both mills. When evaluating the GHG generated, two conditions are evaluated: a biomass neutral condition resulting on a carbon footprint higher in 3P (184g CO2e/Lolive oil) than in 2P (92g CO2e/Lolive oil); and a non-neutral biomass condition in which 2P increase its carbon footprint to 273g CO2e/Lolive oil. When addressing the carbon footprint of possible combinations among studied subsystems, results suggest that olive harvesting is the major source for GHG.

Keywords: Carbon footprint, environmental indicators, farming subsystem, industrial subsystem, olive oil.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2899
1061 A CFD Study of Turbulent Convective Heat Transfer Enhancement in Circular Pipeflow

Authors: Perumal Kumar, Rajamohan Ganesan

Abstract:

Addition of milli or micro sized particles to the heat transfer fluid is one of the many techniques employed for improving heat transfer rate. Though this looks simple, this method has practical problems such as high pressure loss, clogging and erosion of the material of construction. These problems can be overcome by using nanofluids, which is a dispersion of nanosized particles in a base fluid. Nanoparticles increase the thermal conductivity of the base fluid manifold which in turn increases the heat transfer rate. Nanoparticles also increase the viscosity of the basefluid resulting in higher pressure drop for the nanofluid compared to the base fluid. So it is imperative that the Reynolds number (Re) and the volume fraction have to be optimum for better thermal hydraulic effectiveness. In this work, the heat transfer enhancement using aluminium oxide nanofluid using low and high volume fraction nanofluids in turbulent pipe flow with constant wall temperature has been studied by computational fluid dynamic modeling of the nanofluid flow adopting the single phase approach. Nanofluid, up till a volume fraction of 1% is found to be an effective heat transfer enhancement technique. The Nusselt number (Nu) and friction factor predictions for the low volume fractions (i.e. 0.02%, 0.1 and 0.5%) agree very well with the experimental values of Sundar and Sharma (2010). While, predictions for the high volume fraction nanofluids (i.e. 1%, 4% and 6%) are found to have reasonable agreement with both experimental and numerical results available in the literature. So the computationally inexpensive single phase approach can be used for heat transfer and pressure drop prediction of new nanofluids.

Keywords: Heat transfer intensification, nanofluid, CFD, friction factor

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2867
1060 Stabilization of Transition Metal Chromite Nanoparticles in Silica Matrix

Authors: Jiri Plocek, Petr Holec, Simona Kubickova, Barbara Pacakova, Irena Matulkova, Alice Mantlikova, Ivan Nemec, Daniel Niznansky, Jana Vejpravova

Abstract:

This article presents summary on preparation and characterization of zinc, copper, cadmium and cobalt chromite nanocrystals, embedded in an amorphous silica matrix. The ZnCr2O4/SiO2, CuCr2O4/SiO2, CdCr2O4/SiO2 and CoCr2O4/SiO2 nanocomposites were prepared by a conventional sol-gel method under acid catalysis. Final heat treatment of the samples was carried out at temperatures in the range of 900−1200 ◦C to adjust the phase composition and the crystallite size, respectively. The resulting samples were characterized by Powder X-ray diffraction (PXRD), High Resolution Transmission Electron Microscopy (HRTEM), Raman/FTIR spectroscopy and magnetic measurements. Formation of the spinel phase was confirmed in all samples. The average size of the nanocrystals was determined from the PXRD data and by direct particle size observation on HRTEM; both results were correlated. The mean particle size (reviewed by HRTEM) was in the range from ∼4 to 46 nm. The results showed that the sol-gel method can be effectively used for preparation of the spinel chromite nanoparticles embedded in the silica matrix and the particle size is driven by the type of the cation A2+ in the spinel structure and the temperature of the final heat treatment. Magnetic properties of the nanocrystals were found to be just moderately modified in comparison to the bulk phases.

Keywords: Chromite, Fourier transform infrared spectroscopy, agnetic properties, nanocomposites, Raman spectroscopy, Rietveld refinement, sol-gel method, spinel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2798
1059 Two and Three Layer Lamination of Nanofiber

Authors: Roman Knizek, Denisa Karhankova, Ludmila Fridrichova

Abstract:

For their exceptional properties nanofibers, respectively, nanofiber layers are achieving an increasingly wider range of uses. Nowadays nanofibers are used mainly in the field of air filtration where they are removing submicron particles, bacteria, and viruses. Their efficiency is not changed in time, and the power consumption is much lower than that of electrically charged filters. Nanofibers are primarily used for converting and storage of energy in both air and liquid filtration, in food and packaging, protecting the environment, but also in health care which is made possible by their newly discovered properties. However, a major problem of the nanofiber layer is practically zero abrasion resistance; it is, therefore, necessary to laminate the nanofiber layer with another suitable material. Unfortunately, lamination of nanofiber layers is a major problem since the nanofiber layer contains small pores through which it is very difficult for adhesion to pass through. Therefore, there is still only a small percentage of products with these unique fibers 5.

Keywords: Nanofiber layer, nanomembrane, lamination, electrospinning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1324
1058 Effect of High-Energy Ball Milling on the Electrical and Piezoelectric Properties of (K0.5Na0.5)(Nb0.9Ta0.1)O3 Lead-Free Piezoceramics

Authors: Chongtham Jiten, K. Chandramani Singh, Radhapiyari Laishram

Abstract:

Nanocrystalline powders of the lead-free piezoelectric material, tantalum-substituted potassium sodium niobate (K0.5Na0.5)(Nb0.9Ta0.1)O3 (KNNT), were produced using a Retsch PM100 planetary ball mill by setting the milling time to 15h, 20h, 25h, 30h, 35h and 40h, at a fixed speed of 250rpm. The average particle size of the milled powders was found to decrease from 12nm to 3nm as the milling time increases from 15h to 25h, which is in agreement with the existing theoretical model. An anomalous increase to 98nm and then a drop to 3nm in the particle size were observed as the milling time further increases to 30h and 40h respectively. Various sizes of these starting KNNT powders were used to investigate the effect of milling time on the microstructure, dielectric properties, phase transitions and piezoelectric properties of the resulting KNNT ceramics. The particle size of starting KNNT was somewhat proportional to the grain size. As the milling time increases from 15h to 25h, the resulting ceramics exhibit enhancement in the values of relative density from 94.8% to 95.8%, room temperature dielectric constant (εRT) from 878 to 1213, and piezoelectric charge coefficient (d33) from 108pC/N to 128pC/N. For this range of ceramic samples, grain size refinement suppresses the maximum dielectric constant (εmax), shifts the Curie temperature (Tc) to a lower temperature and the orthorhombic-tetragonal phase transition (Tot) to a higher temperature. Further increase of milling time from 25h to 40h produces a gradual degradation in the values of relative density, εRT, and d33 of the resulting ceramics.

Keywords: Ceramics, Dielectric, High-energy milling, Perovskite.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2585
1057 Firing Angle Range Control For Minimising Harmonics in TCR Employed in SVC-s

Authors: D. R. Patil, U. Gudaru

Abstract:

Most electrical distribution systems are incurring large losses as the loads are wide spread, inadequate reactive power compensation facilities and their improper control. A typical static VAR compensator consists of capacitor bank in binary sequential steps operated in conjunction with a thyristor controlled reactor of the smallest step size. This SVC facilitates stepless control of reactive power closely matching with load requirements so as to maintain power factor nearer to unity. This type of SVC-s requiring a appropriately controlled TCR. This paper deals with an air cored reactor suitable for distribution transformer of 3phase, 50Hz, Dy11, 11KV/433V, 125 KVA capacity. Air cored reactors are designed, built, tested and operated in conjunction with capacitor bank in five binary sequential steps. It is established how the delta connected TCR minimizes the harmonic components and the operating range for various electrical quantities as a function of firing angle is investigated. In particular firing angle v/s line & phase currents, D.C. components, THD-s, active and reactive powers, odd and even triplen harmonics, dominant characteristic harmonics are all investigated and range of firing angle is fixed for satisfactory operation. The harmonic spectra for phase and line quantities at specified firing angles are given. In case the TCR is operated within the bound specified in this paper established through simulation studies are yielding the best possible operating condition particularly free from all dominant harmonics.

Keywords: Binary Sequential switched capacitor bank, TCR, Nontriplen harmonics, step less Q control, Active and Reactivepower, Simulink

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5973
1056 A Numerical Modeling of Piping Phenomenon in Earth Dams

Authors: N. Zaki Alamdari, M. Banihashemi, A. Mirghasemi

Abstract:

To estimate the risks of dam failure phenomenon, it is necessary to understand this phenomenon and the involved governing factors. Overtopping and piping are the two main reasons of earthdam failures. In the piping context, the piping is determined as a phenomenon which is occurred between two phases, the water liquid and the solid soil. In this investigation, the onset of piping and its development, as well as the movement of water in soil, are numerically approached. In this regard, a one-dimensional numerical model based on the mass-conserving finite-volume method is developed and applied in order to simulate the piping phenomenon in a continuous circular tunnel of given initial length and radius, located between upstream and downstream. The simulation result includes the time-variations of radius along the tunnel until the radius value reaches its critical and the piping phenomenon converts to overtopping.

Keywords: Earth dam, dam break, piping, internal erosion

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2761
1055 Prediction Method of Extenics Theory for Assessment of Bearing Capacity of Lateritic Soil Foundation

Authors: Wei Bai, Ling-Wei Kong, Ai-Guo Guo

Abstract:

Base on extenics theory, the statistical physical and mechanical properties from laboratory experiments are used to evaluate the bearing capacity of lateritic soil foundation. The properties include water content, bulk density, liquid limit, cohesion, and so on. The matter-element and the dependent function are defined. Then the synthesis dependent degree and the final grade index are calculated. The results show that predicted outcomes can be matched with the in-situ test data, and a evaluate grade associate with bearing capacity can be deduced. The results provide guidance to assess and determine the bearing capacity grade of lateritic soil foundation.

Keywords: Lateritic soil, bearing capacity, extenics theory, plate loading test.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1410
1054 Wash Fastness of Textile Fibers Dyed with Natural Dye from Eucalyptus Wood Steaming Waste

Authors: Ticiane Rossi, Maurício C. Araújo, José O. Brito, Harold S. Freeman

Abstract:

Natural dyes are gaining interest due their expected low risk to human health and to the environment. In this study, the wash fastness of a natural coloring matter from the liquid waste produced in the steam treatment of eucalyptus wood in textile fabrics was investigated. Specifically, eucalyptus wood extract was used to dye cotton, nylon and wool in an exhaust dyeing process without the addition of the traditional mordanting agents and then submitted to wash fastness analysis. The resulting dyed fabrics were evaluated for color fastness. It was found that wash fastness of dyed fabrics was very good to cotton and excellent to nylon and wool.

Keywords: Eucalyptus, natural dye, textile fibers, wash fastness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3316
1053 Numerical Analysis of Rapid Gas Decompression in Pure Nitrogen using 1D and 3D Transient Mathematical Models of Gas Flow in Pipes

Authors: Evgeniy Burlutskiy

Abstract:

The paper presents a numerical investigation on the rapid gas decompression in pure nitrogen which is made by using the one-dimensional (1D) and three-dimensional (3D) mathematical models of transient compressible non-isothermal fluid flow in pipes. A 1D transient mathematical model of compressible thermal multicomponent fluid mixture flow in pipes is presented. The set of the mass, momentum and enthalpy conservation equations for gas phase is solved in the model. Thermo-physical properties of multicomponent gas mixture are calculated by solving the Equation of State (EOS) model. The Soave-Redlich-Kwong (SRK-EOS) model is chosen. This model is successfully validated on the experimental data [1] and shows a good agreement with measurements. A 3D transient mathematical model of compressible thermal single-component gas flow in pipes, which is built by using the CFD Fluent code (ANSYS), is presented in the paper. The set of unsteady Reynolds-averaged conservation equations for gas phase is solved. Thermo-physical properties of single-component gas are calculated by solving the Real Gas Equation of State (EOS) model. The simplest case of gas decompression in pure nitrogen is simulated using both 1D and 3D models. The ability of both models to simulate the process of rapid decompression with a high order of agreement with each other is tested. Both, 1D and 3D numerical results show a good agreement between each other. The numerical investigation shows that 3D CFD model is very helpful in order to validate 1D simulation results if the experimental data is absent or limited.

Keywords: Mathematical model, Rapid Gas Decompression

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2207
1052 Experimental Study of Unconfined and Confined Isothermal Swirling Jets

Authors: Rohit Sharma, Fabio Cozzi

Abstract:

A 3C-2D PIV technique was applied to investigate the swirling flow generated by an axial plus tangential type swirl generator. This work is focused on the near-exit region of an isothermal swirling jet to characterize the effect of swirl on the flow field and to identify the large coherent structures both in unconfined and confined conditions for geometrical swirl number, Sg = 4.6. Effects of the Reynolds number on the flow structure were also studied. The experimental results show significant effects of the confinement on the mean velocity fields and its fluctuations. The size of the recirculation zone was significantly enlarged upon confinement compared to the free swirling jet. Increasing in the Reynolds number further enhanced the recirculation zone. The frequency characteristics have been measured with a capacitive microphone which indicates the presence of periodic oscillation related to the existence of precessing vortex core, PVC. Proper orthogonal decomposition of the jet velocity field was carried out, enabling the identification of coherent structures. The time coefficients of the first two most energetic POD modes were used to reconstruct the phase-averaged velocity field of the oscillatory motion in the swirling flow. The instantaneous minima of negative swirl strength values calculated from the instantaneous velocity field revealed the presence of two helical structures located in the inner and outer shear layers and this structure fade out at an axial location of approximately z/D = 1.5 for unconfined case and z/D = 1.2 for confined case. By phase averaging the instantaneous swirling strength maps, the 3D helical vortex structure was reconstructed.

Keywords: Acoustic probes, 3C-2D particle image velocimetry, PIV, precessing vortex core, PVC, recirculation zone.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1401
1051 Effect of Bentonite on the Properties of Liquid Insulating Oil

Authors: Loai Nasrat, Mervat S. Hassan

Abstract:

Bentonitic material from South Aswan, Egypt was evaluated in terms of mineral-ogy and chemical composition as bleaching clay in refining of transformer oil before and after acid activation and thermal treatment followed by acid leaching using HCl and H2SO4 for different contact times. Structural modification and refining power of bento-nite were investigated during modification by means of X-ray diffraction and infrared spectroscopy. The results revealed that the activated bentonite could be used for refining of transformer oil. The oil parameters such as; dielectric strength, viscosity and flash point had been improved. The dielectric breakdown strength of used oil increased from 29 kV for used oil treated with unactivated bentonite to 74 kV after treatment with activated bentonite. Kinematic Viscosity changed from 19 to 11 mm2 /s after treatment with activated bentonite. However, flash point achieved 149 ºC.

Keywords: Dielectric strength, unactivated bentonite, X-ray diffraction, SEM image

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2687
1050 Numerical Simulation of the Effects of Nanofluid on a Heat Pipe Thermal Performance

Authors: Barzin Gavtash, Khalid Hussain, Mohammad Layeghi, Saeed Sadeghi Lafmejani

Abstract:

This research aims at modeling and simulating the effects of nanofluids on cylindrical heat pipes thermal performance using the ANSYS-FLUENT CFD commercial software. The heat pipe outer wall temperature distribution, thermal resistance, liquid pressure and axial velocity in presence of suspended nano-scaled solid particle (i.e. Cu, Al2O3 and TiO2) within the fluid (water) were investigated. The effect of particle concentration and size were explored and it is concluded that the thermal performance of the heat pipe is improved when using nanofluid as the system working fluid. Additionally, it was observed that the thermal resistance of the heat pipe drops as the particle concentration level increases and particle radius decreases.

Keywords: CFD, Heat Pipe, Nanofluid, Thermal resistance

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 44842
1049 In situ Observation of the State and Stability of Hemoglobin Adsorbed onto Glass Surface by Slab Optical Waveguide (SOWG) Spectroscopy

Authors: Masayoshi Matsui, Akiko Nakahara, Akiko Takatsu, Kenji Kato, Naoki Matsuda

Abstract:

The state and stability of hemoglobin adsorbed on the glass surface was investigated using slab optical waveguide (SOWG) spectroscopy. The peak position of the absorption band of hemoglobin adsorbed on the glass surface was same as that of the hemoglobin in solution. This result suggests that no significant denaturation occurred by adsorption. The adsorption of hemoglobin is relatively strong that the hemoglobin molecules even remained adsorbed after rinsing the cell with buffer solution. The peak shift caused by the reduction of adsorbed hemoglobin was also observed.

Keywords: hemoglobin, reduction, slab optical waveguide spectroscopy, solid/liquid interface.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1602
1048 Lamb Wave Wireless Communication in Healthy Plates Using Coherent Demodulation

Authors: Rudy Bahouth, Farouk Benmeddour, Emmanuel Moulin, Jamal Assaad

Abstract:

Guided ultrasonic waves are used in Non-Destructive Testing and Structural Health Monitoring for inspection and damage detection. Recently, wireless data transmission using ultrasonic waves in solid metallic channels has gained popularity in some industrial applications such as nuclear, aerospace and smart vehicles. The idea is to find a good substitute for electromagnetic waves since they are highly attenuated near metallic components due to Faraday shielding. The proposed solution is to use ultrasonic guided waves such as Lamb waves as an information carrier due to their capability of propagation for long distances. In addition to this, valuable information about the health of the structure could be extracted simultaneously. In this work, the reliable frequency bandwidth for communication is extracted experimentally from dispersion curves at first. Then, an experimental platform for wireless communication using Lamb waves is described and built. After this, coherent demodulation algorithm used in telecommunications is tested for Amplitude Shift Keying, On-Off Keying and Binary Phase Shift Keying modulation techniques. Signal processing parameters such as threshold choice, number of cycles per bit and Bit Rate are optimized. Experimental results are compared based on the average bit error percentage. Results has shown high sensitivity to threshold selection for Amplitude Shift Keying and On-Off Keying techniques resulting a Bit Rate decrease. Binary Phase Shift Keying technique shows the highest stability and data rate between all tested modulation techniques.

Keywords: Lamb Wave Communication, wireless communication, coherent demodulation, bit error percentage.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 543
1047 CFD Simulation of Hydrodynamic Behaviors and Gas-Liquid Mass Transfer in a Stirred Airlift Bioreactor

Authors: Sérgio S. de Jesus, Edgar Leonardo Martínez, Aulus R.R. Binelli, Aline Santana, Rubens Maciel Filho

Abstract:

The speed profiles, gas holdup (eG) and global oxygen transfer coefficient (kLa) from a stirred airlift bioreactor using water as the fluid model, was investigated by computational fluid dynamics modeling. The parameters predicted by the computer model were validated with the experimental dates. The CFD results were very close to those obtained experimentally. During the simulation it was verified a prevalent impeller effect at low speeds, propelling a large volume of fluid against the walls of the vessel, which without recirculation, results in low values of eG and kLa; however, by increasing air velocity, the impeller effect is smaller with the air flow being greater, in the region of the riser, causing fluid recirculation, which explains the increase in eG and kLa.

Keywords: CFD, Hydrodynamics, Mass transfer, Stirred airlift bioreactor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3735
1046 Mathematical Modelling of Partially Filled Fluid Coupling Behaviour

Authors: A. M. Maqableh

Abstract:

Modelling techniques for a fluid coupling taken from published literature have been extended to include the effects of the filling and emptying of the coupling with oil and the variation in losses when the coupling is partially full. In the model, the fluid flow inside the coupling is considered to have two principal velocity components; one circumferentially about the coupling axis (centrifugal head) and the other representing the secondary vortex within the coupling itself (vortex head). The calculation of liquid mass flow rate circulating between the two halves of the coupling is based on: the assumption of a linear velocity variation in the circulating vortex flow; the head differential in the fluid due to the speed difference between the two shafts; and the losses in the circulating vortex flow as a result of the impingement of the flow with the blades in the coupling and friction within the passages between the blades.

Keywords: Fluid Coupling, Mathematical Modelling, partially filled.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2072
1045 Catalytic Activity of Aluminum Impregnated Catalysts for the Degradation of Waste Polystyrene

Authors: J. Shah, M. Rasul Jan, Adnan

Abstract:

The aluminum impregnated catalysts of Al-alumina (Al-Al2O3), Al-montmorillonite (Al-Mmn) and Al-activated charcoal (Al-AC) of various percent loadings were prepared by wet impregnation method and characterized by SEM, XRD and N2 adsorption/desorption (BET). The catalytic properties were investigated in the degradation of waste polystyrene (WPS). The results of catalytic degradation of Al metal, 20% Al-Al2O3, 5% Al-Mmn and 20% Al-AC were compared with each other for optimum conditions. Among the catalyst used 20% Al-Al2O3 was found the most effective catalyst. The BET surface area of 20% Al-Al2O3 determined was 70.2 m2/g. The SEM data revealed the catalyst with porous structure throughout the frame work with small nanosized crystallites. The yield of liquid products with 20% Al-Al2O3 (91.53 ± 2.27 wt%) was the same as compared to Al metal (91.20 ± 0.35 wt%) but the selectivity of hydrocarbons and yield of styrene monomer (56.32 wt%) was higher with 20% Al-Al2O3 catalyst.

 

Keywords: Impregnation, catalytic degradation, waste polystyrene, styrene.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2007
1044 Application of Single Tuned Passive Filters in Distribution Networks at the Point of Common Coupling

Authors: M. Almutairi, S. Hadjiloucas

Abstract:

The harmonic distortion of voltage is important in relation to power quality due to the interaction between the large diffusion of non-linear and time-varying single-phase and three-phase loads with power supply systems. However, harmonic distortion levels can be reduced by improving the design of polluting loads or by applying arrangements and adding filters. The application of passive filters is an effective solution that can be used to achieve harmonic mitigation mainly because filters offer high efficiency, simplicity, and are economical. Additionally, possible different frequency response characteristics can work to achieve certain required harmonic filtering targets. With these ideas in mind, the objective of this paper is to determine what size single tuned passive filters work in distribution networks best, in order to economically limit violations caused at a given point of common coupling (PCC). This article suggests that a single tuned passive filter could be employed in typical industrial power systems. Furthermore, constrained optimization can be used to find the optimal sizing of the passive filter in order to reduce both harmonic voltage and harmonic currents in the power system to an acceptable level, and, thus, improve the load power factor. The optimization technique works to minimize voltage total harmonic distortions (VTHD) and current total harmonic distortions (ITHD), where maintaining a given power factor at a specified range is desired. According to the IEEE Standard 519, both indices are viewed as constraints for the optimal passive filter design problem. The performance of this technique will be discussed using numerical examples taken from previous publications.

Keywords: Harmonics, passive filter, power factor, power quality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2178
1043 Throughflow Effects on Thermal Convection in Variable Viscosity Ferromagnetic Liquids

Authors: G. N. Sekhar, P. G. Siddheshwar, G. Jayalatha, R. Prakash

Abstract:

The problem of thermal convection in temperature and magnetic field sensitive Newtonian ferromagnetic liquid is studied in the presence of uniform vertical magnetic field and throughflow. Using a combination of Galerkin and shooting techniques the critical eigenvalues are obtained for stationary mode. The effect of Prandtl number (Pr > 1) on onset is insignificant and nonlinearity of non-buoyancy magnetic parameter M3 is found to have no influence on the onset of ferroconvection. The magnetic buoyancy number, M1 and variable viscosity parameter, V have destabilizing influences on the system. The effect of throughflow Peclet number, Pe is to delay the onset of ferroconvection and this effect is independent of the direction of flow.

Keywords: Ferroconvection, throughflow, temperature dependent viscosity, magnetic field dependent viscosity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1126
1042 A Programming Solution for Moving Mobile Transaction

Authors: Osman Mohammed Hegazy, Ali Hamed El Bastawissy, Romani Farid Ibrahim

Abstract:

In this paper, our concern is the management of mobile transactions in the shared area among many servers, when the mobile user moves from one cell to another in online partiallyreplicated distributed mobile database environment. We defined the concept of transaction and classified the different types of transactions. Based on this analysis, we propose an algorithm that handles the disconnection due to moving among sites.

Keywords: Concurrency, mobile database, transaction processing, two phase locking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1657
1041 Effects of Annealing Treatment on Optical Properties of Anatase TiO2 Thin Films

Authors: M. M. Hasan, A. S. M. A. Haseeb, R. Saidur, H. H. Masjuki

Abstract:

In this investigation, anatase TiO2 thin films were grown by radio frequency magnetron sputtering on glass substrates at a high sputtering pressure and room temperature. The anatase films were then annealed at 300-600 °C in air for a period of 1 hour. To examine the structure and morphology of the films, X-ray diffraction (XRD) and atomic force microscopy (AFM) methods were used respectively. From X-ray diffraction patterns of the TiO2 films, it was found that the as-deposited film showed some differences compared with the annealed films and the intensities of the peaks of the crystalline phase increased with the increase of annealing temperature. From AFM images, the distinct variations in the morphology of the thin films were also observed. The optical constants were characterized using the transmission spectra of the films obtained by UV-VIS-IR spectrophotometer. Besides, optical thickness of the film deposited at room temperature was calculated and cross-checked by taking a cross-sectional image through SEM. The optical band gaps were evaluated through Tauc model. It was observed that TiO2 films produced at room temperatures exhibited high visible transmittance and transmittance decreased slightly with the increase of annealing temperatures. The films were found to be crystalline having anatase phase. The refractive index of the films was found from 2.31-2.35 in the visible range. The extinction coefficient was nearly zero in the visible range and was found to increase with annealing temperature. The allowed indirect optical band gap of the films was estimated to be in the range from 3.39 to 3.42 eV which showed a small variation. The allowed direct band gap was found to increase from 3.67 to 3.72 eV. The porosity was also found to decrease at a higher annealing temperature making the film compact and dense.

Keywords: Titanium dioxide, RF reactive sputtering, Structuralproperties, Surface morphology, Optical properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3666
1040 The Estimate Rate of Permanent Flow of a Liquid Simulating Blood by Doppler Effect

Authors: Malika.D Kedir-Talha, Mohammed Mehenni

Abstract:

To improve the characterization of blood flows, we propose a method which makes it possible to use the spectral analysis of the Doppler signals. Our calculation induces a reasonable approximation, the error made on estimated speed reflects the fact that speed depends on the flow conditions as well as on measurement parameters like the bore and the volume flow rate. The estimate of the Doppler signal frequency enables us to determine the maximum Doppler frequencie Fd max as well as the maximum flow speed. The results show that the difference between the estimated frequencies ( Fde ) and the Doppler frequencies ( Fd ) is small, this variation tends to zero for important θ angles and it is proportional to the diameter D. The description of the speed of friction and the coefficient of friction justify the error rate obtained.

Keywords: Doppler frequency, Doppler spectrum, estimate speed, permanent flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1328
1039 Induced Affectivity and Impact on Creativity: Personal Growth and Perceived Adjustment when Narrating an Intense Emotional Experience

Authors: S. Da Costa, D. Páez, F. Sánchez

Abstract:

We examine the causal role of positive affect on creativity, the association of creativity or innovation in the ideation phase with functional emotional regulation, successful adjustment to stress and dispositional emotional creativity, as well as the predictive role of creativity for positive emotions and social adjustment. The study examines the effects of modification of positive affect on creativity. Participants write three poems, narrate an infatuation episode, answer a scale of personal growth after this episode and perform a creativity task, answer a flow scale after creativity task and fill a dispositional emotional creativity scale. High and low positive effect was induced by asking subjects to write three poems about high and low positive connotation stimuli. In a neutral condition, tasks were performed without previous affect induction. Subjects on the condition of high positive affect report more positive and less negative emotions, more personal growth (effect size r = .24) and their last poem was rated as more original by judges (effect size r = .33). Mediational analysis showed that positive emotions explain the influence of the manipulation on personal growth - positive affect correlates r = .33 to personal growth. The emotional creativity scale correlated to creativity scores of the creative task (r = .14), to the creativity of the narration of the infatuation episode (r = .21). Emotional creativity was also associated, during performing the creativity task, with flow (r = .27) and with affect balance (r = .26). The mediational analysis showed that emotional creativity predicts flow through positive affect. Results suggest that innovation in the phase of ideation is associated with a positive affect balance and satisfactory performance, as well as dispositional emotional creativity is adaptive.

Keywords: Affectivity, creativity, induction, innovation, psychological factors.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 588
1038 Characteristics of Cascade and C3MR Cycle on Natural Gas Liquefaction Process

Authors: Jung-in Yoon, Ho-saeng Lee, Seung-taek Oh, Sang-gyu Lee, Keun-hyung Choi

Abstract:

In this paper, several different types of natural gas liquefaction cycle. First, two processes are a cascade process with two staged compression were designed and simulated. These include Inter-cooler which is consisted to Propane, Ethylene and Methane cycle, and also, liquid-gas heat exchanger is applied to between of methane and ethylene cycles (process2) and between of ethylene and propane (process2). Also, these cycles are compared with two staged cascade process using only a Inter-cooler (process1). The COP of process2 and process3 showed about 13.99% and 6.95% higher than process1, respectively. Also, the yield efficiency of LNG improved comparing with process1 by 13.99% lower specific power. Additionally, C3MR process are simulated and compared with Process 2.

Keywords: Cascade, C3MR, LNG, Inter-cooler

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7893