Preparation of Li Ion Conductive Ceramics via Liquid Process
Authors: M. Kotobuki, M. Koishi
Abstract:
Li1.5Al0.5Ti1.5 (PO4)3(LATP) has received much attention as a solid electrolyte for lithium batteries. In this study, the LATP solid electrolyte is prepared by the co-precipitation method using Li3PO4 as a Li source. The LATP is successfully prepared and the Li ion conductivities of bulk (inner crystal) and total (inner crystal and grain boundary) are 1.1 × 10-3 and 1.1 × 10-4 S cm-1, respectively. These values are comparable to the reported values, in which Li2C2O4 is used as the Li source. It is conclude that the LATP solid electrolyte can be prepared by the co-precipitation method using Li3PO4 as the Li source and this procedure has an advantage in mass production over previous procedure using Li2C2O4 because Li3PO4 is lower price reagent compared with Li2C2O4.
Keywords: Co-precipitation method, lithium battery, NASICON-type electrolyte, solid electrolyte.
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1096029
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2911References:
[1] J. M. Tarascon, and M. Armand, "Issues and challenges facing rechargeable lithium batteries”, Nature vol. 414 pp.359-367, 2001.
[2] J. W. Fergus, "Ceramics and polymeric solid electrolytes for lithium-ion batteries”, J. Power Sources vol. 195 pp.4554-4569, 2010.
[3] H. Aono, E. Sugimoto, and Y.Sadaoka, "Ionic conductivity and sinterability of lithium titanium phosphate system”, Solid State Ionics, vol. 40/41, pp.38-42, 1990.
[4] H. Aono, E. Sugimoto, and Y. Sadaoka, "Ionic Conductivity of Solid Electrolytes Based on Lithium Titanium Phosphate”, J. Electrochem. Soc., vol. 137 pp. 1023-1027, 1990.
[5] C. J. Leo, B. V. R. Chowdari, and C. V. R. Subba, "Lithium conducting glass ceramic with Nasicon structure”, Mater. Res. Bull, vol. 37, pp.1419-1430, 2002.
[6] J. Fu, "Superionic conductivity of glass-ceramics in the system Li2O-Al2O3-TiO2-P2O5”, Solid State Ionics, vol. 96, pp.195-200, 1997.
[7] K. Hoshina, K. Yoshima ,M. Kotobuki, and K. Kanamura, "Fabrication of LiNi0.5Mn1.5O4 thin film cathode by PVP sol–gel process and its application of all-solid-state lithium ion batteries using Li1 + xAlxTi2 − x(PO4)3 solid electrolyte”, Soli State Ionics, vol. 209/210, pp. 30-35, 2012.
[8] M. Kotobuki, Y. Isshiki, H. Munakata, and K. Kanamura, "All-solid-state lithium battery with a three-dimensionally orderedLi1.5Al0.5Ti1.5(PO4)3 electrode”, ElectrochimicaActa, vo.55, pp. 6892-6896, 2010.
[9] J. S. Thokchom, and B. Kumar, "The effects of crystallization parameters on the ionic conductivity of a lithium aluminum germanium phosphate glass–ceramic”, J. Power Sources, vol. 195, pp. 2870-2876, 2010.
[10] J. K. Feng, L. Lu, and M. O. Kai, "Lithium storage capability of lithium ion conductor Li1.5Al0.5Ge1.5(PO4)3”, J. Alloy. Compd., vol. 501, pp. 255-258, 2010.
[11] J. G. Li, T. Ikegami, J. H. Lee, and T. Mori, "Well-sinterable Y3Al5O12 Powder from Carbonate Precursor”, J. Mater. Res., vol. 15, pp.1514-1523, 2000.
[12] M. Kotobuki, and M. Koishi, "Preparation of Li1.5Al0.5Ti1.5(PO4)3 solid electrolyte via a co-precipitation method”, Ionics, vol. 19, pp. 1945-1948, 2013.
[13] J. T. S. Irvine, D. C. Sinclair, and A. R. West, "Electroceramics: characterization by impedance spectroscopy”, Advance Materials vol. 2, pp.132-138, 1990.
[14] V. Thangadurai, and W. Weppner, "Investigations on electrical conductivity and chemical compatibility between fast lithium ion conducting garnet-like Li6BaLa2Ta2O12and lithium battery cathodes”, J. Power Sources, Vol. 142, pp.-339-, 2005.
[15] J. Fu, "Fast Li+ ion conduction in Li2O-(Al2O3-Ga2O3)-TiO2-P2O5 glass ceramics”, J. Materials Science vol. 33, pp.1549-, 1998.
[16] J. L. Naraez-Scmanate, and A. C. M. Rodrigues, "Microstructure and ionic conductivity of Li1+xAlxTi2-x(PO4)3NASICON glass-ceramics”,Solid State Ionics vol.181 pp.1197-, 2010.
[17] Y. Liang, S. Cheng, J. Zhao, C. Zhang, S. Sun, N. Zhou, Y. Qui, and X. Zhang, "Heat treatment of electrospunPolyvinylidene fluoride fibrous membrane separators for rechargeable lithium-ion batteries”, J. Power Sources, vol. 240, pp. 204-211, 2013.
[18] M. Kotobuki, and M. Koishi, "Preparation of Li1.5Al0.5Ti1.5(PO4)3 solid electrolyte via a sol-gel route using various Al sources”, Ceramics International, vol. 29, pp. 4645-4649, 2013.