Search results for: Linear Quadratic Model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8601

Search results for: Linear Quadratic Model

7671 Horizontal and Vertical Illuminance Correlations in a Case Study for Shaded South Facing Surfaces

Authors: S. Matour, M. Mahdavinejad, R. Fayaz

Abstract:

Daylight utilization is a key factor in achieving visual and thermal comfort, and energy savings in integrated building design. However, lack of measured data related to this topic has become a major challenge with the increasing need for integrating lighting concepts and simulations in the early stages of design procedures. The current paper deals with the values of daylight illuminance on horizontal and south facing vertical surfaces; the data are estimated using IESNA model and measured values of the horizontal and vertical illuminance, and a regression model with an acceptable linear correlation is obtained. The resultant illuminance frequency curves are useful for estimating daylight availability on south facing surfaces in Tehran. In addition, the relationship between indirect vertical illuminance and the corresponding global horizontal illuminance is analyzed. A simple parametric equation is proposed in order to predict the vertical illumination on a shaded south facing surface. The equation correlates the ratio between the vertical and horizontal illuminance to the solar altitude and is used with another relationship for prediction of the vertical illuminance. Both equations show good agreement, which allows for calculation of indirect vertical illuminance on a south facing surface at any time throughout the year.

Keywords: Tehran daylight availability, horizontal illuminance, vertical illuminance, diffuse illuminance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1259
7670 Supply Chain Modeling and Improving Manufacturing Industry in Developing Countries: A Research Agenda

Authors: F.B. Georgise, K. D. Thoben, M. Seifert

Abstract:

This paper presents a research agenda on the SCOR model adaptation. SCOR model is designated to measure supply chain performance and logistics impact across the boundaries of individual organizations. It is at its growing stage of its life cycle and is enjoying the leverage of becoming the industry standard. The SCOR model has been developed and used widely in developed countries context. This research focuses on the SCOR model adaptation for the manufacturing industry in developing countries. With a necessary understanding of the characteristics, difficulties and problems of the manufacturing industry in developing countries- supply chain; consequently, we will try to designs an adapted model with its building blocks: business process model, performance measures and best practices.

Keywords: developing countries, manufacturing industry, SCOR model adaptation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2216
7669 Development of Logic Model for R&D Program Plan Analysis in Preliminary Feasibility Study

Authors: Hyun-Kyu Kang

Abstract:

The Korean Government has applied the preliminary feasibility study to new government R&D program plans as a part of an evaluation system for R&D programs. The preliminary feasibility study for the R&D program is composed of 3 major criteria such as technological, policy and economic analysis. The program logic model approach is used as a part of the technological analysis in the preliminary feasibility study. We has developed and improved the R&D program logic model. The logic model is a very useful tool for evaluating R&D program plans. Using a logic model, we can generally identify important factors of the R&D program plan, analyze its logic flow and find the disconnection or jump in the logic flow among components of the logic model.

Keywords: Preliminary feasibility study, R&D program logic model, technological analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2156
7668 An Improved Model for Prediction of the Effective Thermal Conductivity of Nanofluids

Authors: K. Abbaspoursani, M. Allahyari, M. Rahmani

Abstract:

Thermal conductivity is an important characteristic of a nanofluid in laminar flow heat transfer. This paper presents an improved model for the prediction of the effective thermal conductivity of nanofluids based on dimensionless groups. The model expresses the thermal conductivity of a nanofluid as a function of the thermal conductivity of the solid and liquid, their volume fractions and particle size. The proposed model includes a parameter which accounts for the interfacial shell, brownian motion, and aggregation of particle. The validation of the model is verified by applying the results obtained by the experiments of Tio2-water and Al2o3-water nanofluids.

Keywords: Critical particle size, nanofluid, model, and thermal conductivity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2049
7667 Numerical Investigation of Instabilities in Free Shear Layer Produced by NS-DBD Actuator

Authors: Ilya Popov, Steven Hulshoff

Abstract:

A numerical investigation of the effects of nanosecond barrier discharge on the stability of a two-dimensional free shear layer is performed. The computations are carried out using a compressible Navier-Stokes algorithm coupled with a thermodynamic model of the discharge. The results show that significant increases in the shear layer-s momentum thickness and Reynolds stresses occur due to actuation. Dependence on both frequency and amplitude of actuation are considered, and a comparison is made of the computed growth rates with those predicted by linear stability theory. Amplitude and frequency ranges for the efficient promotion of shear-layer instabilities are identified.

Keywords: NS-DBD, plasma, actuator, flow control, instability, shear layer

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1701
7666 Seismic Hazard Assessment of Offshore Platforms

Authors: F. D. Konstandakopoulou, G. A. Papagiannopoulos, N. G. Pnevmatikos, G. D. Hatzigeorgiou

Abstract:

This paper examines the effects of pile-soil-structure interaction on the dynamic response of offshore platforms under the action of near-fault earthquakes. Two offshore platforms models are investigated, one with completely fixed supports and one with piles which are clamped into deformable layered soil. The soil deformability for the second model is simulated using non-linear springs. These platform models are subjected to near-fault seismic ground motions. The role of fault mechanism on platforms’ response is additionally investigated, while the study also examines the effects of different angles of incidence of seismic records on the maximum response of each platform.

Keywords: Hazard analysis, offshore platforms, earthquakes, safety.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1024
7665 Explicit Solutions and Stability of Linear Differential Equations with multiple Delays

Authors: Felix Che Shu

Abstract:

We give an explicit formula for the general solution of a one dimensional linear delay differential equation with multiple delays, which are integer multiples of the smallest delay. For an equation of this class with two delays, we derive two equations with single delays, whose stability is sufficient for the stability of the equation with two delays. This presents a new approach to the study of the stability of such systems. This approach avoids requirement of the knowledge of the location of the characteristic roots of the equation with multiple delays which are generally more difficult to determine, compared to the location of the characteristic roots of equations with a single delay.

Keywords: Delay Differential Equation, Explicit Solution, Exponential Stability, Lyapunov Exponents, Multiple Delays.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1491
7664 Issues in Spectral Source Separation Techniques for Plant-wide Oscillation Detection and Diagnosis

Authors: A.K. Tangirala, S. Babji

Abstract:

In the last few years, three multivariate spectral analysis techniques namely, Principal Component Analysis (PCA), Independent Component Analysis (ICA) and Non-negative Matrix Factorization (NMF) have emerged as effective tools for oscillation detection and isolation. While the first method is used in determining the number of oscillatory sources, the latter two methods are used to identify source signatures by formulating the detection problem as a source identification problem in the spectral domain. In this paper, we present a critical drawback of the underlying linear (mixing) model which strongly limits the ability of the associated source separation methods to determine the number of sources and/or identify the physical source signatures. It is shown that the assumed mixing model is only valid if each unit of the process gives equal weighting (all-pass filter) to all oscillatory components in its inputs. This is in contrast to the fact that each unit, in general, acts as a filter with non-uniform frequency response. Thus, the model can only facilitate correct identification of a source with a single frequency component, which is again unrealistic. To overcome this deficiency, an iterative post-processing algorithm that correctly identifies the physical source(s) is developed. An additional issue with the existing methods is that they lack a procedure to pre-screen non-oscillatory/noisy measurements which obscure the identification of oscillatory sources. In this regard, a pre-screening procedure is prescribed based on the notion of sparseness index to eliminate the noisy and non-oscillatory measurements from the data set used for analysis.

Keywords: non-negative matrix factorization, PCA, source separation, plant-wide diagnosis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1534
7663 Authentication Analysis of the 802.11i Protocol

Authors: Zeeshan Furqan, Shahabuddin Muhammad, Ratan Guha

Abstract:

IEEE has designed 802.11i protocol to address the security issues in wireless local area networks. Formal analysis is important to ensure that the protocols work properly without having to resort to tedious testing and debugging which can only show the presence of errors, never their absence. In this paper, we present the formal verification of an abstract protocol model of 802.11i. We translate the 802.11i protocol into the Strand Space Model and then prove the authentication property of the resulting model using the Strand Space formalism. The intruder in our model is imbued with powerful capabilities and repercussions to possible attacks are evaluated. Our analysis proves that the authentication of 802.11i is not compromised in the presented model. We further demonstrate how changes in our model will yield a successful man-in-the-middle attack.

Keywords: authentication, formal analysis, formal verification, security.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1516
7662 CDM Controller Order and Disturbance Rejection Ability

Authors: Jo˜ao Paulo Coelho, Wojciech Giernacki, Jos´e Boaventura-Cunha

Abstract:

The coefficient diagram method is primarily an algebraic control design method whose objective is to easily obtain a good controller with minimum user effort. As a matter of fact, if a system model, in the form of linear differential equations, is known, the user only need to define a time-constant and the controller order. The later can be established regarding the expected disturbance type via a lookup table first published by Koksal and Hamamci in 2004. However an inaccuracy in this table was detected and pointed-out in the present work. Moreover the above mentioned table was expanded in order to enclose any k order type disturbance.

Keywords: Coefficient diagram method, control system design, disturbance rejection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2219
7661 Mixed Integer Programing for Multi-Tier Rebate with Discontinuous Cost Function

Authors: Y. Long, L. Liu, K. V. Branin

Abstract:

One challenge faced by procurement decision-maker during the acquisition process is how to compare similar products from different suppliers and allocate orders among different products or services. This work focuses on allocating orders among multiple suppliers considering rebate. The objective function is to minimize the total acquisition cost including purchasing cost and rebate benefit. Rebate benefit is complex and difficult to estimate at the ordering step. Rebate rules vary for different suppliers and usually change over time. In this work, we developed a system to collect the rebate policies, standardized the rebate policies and developed two-stage optimization models for ordering allocation. Rebate policy with multi-tiers is considered in modeling. The discontinuous cost function of rebate benefit is formulated for different scenarios. A piecewise linear function is used to approximate the discontinuous cost function of rebate benefit. And a Mixed Integer Programing (MIP) model is built for order allocation problem with multi-tier rebate. A case study is presented and it shows that our optimization model can reduce the total acquisition cost by considering rebate rules.

Keywords: Discontinuous cost function, mixed integer programming, optimization, procurement, rebate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 663
7660 Learning the Dynamics of Articulated Tracked Vehicles

Authors: Mario Gianni, Manuel A. Ruiz Garcia, Fiora Pirri

Abstract:

In this work, we present a Bayesian non-parametric approach to model the motion control of ATVs. The motion control model is based on a Dirichlet Process-Gaussian Process (DP-GP) mixture model. The DP-GP mixture model provides a flexible representation of patterns of control manoeuvres along trajectories of different lengths and discretizations. The model also estimates the number of patterns, sufficient for modeling the dynamics of the ATV.

Keywords: Dirichlet processes, Gaussian processes, robot control learning, tracked vehicles.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1783
7659 A Laplace Transform Dual-Reciprocity Boundary Element Method for Axisymmetric Elastodynamic Problems

Authors: B. I. Yun

Abstract:

A dual-reciprocity boundary element method is presented for the numerical solution of a class of axisymmetric elastodynamic problems. The domain integrals that arise in the integrodifferential formulation are converted to line integrals by using the dual-reciprocity method together suitably constructed interpolating functions. The second order time derivatives of the displacement in the governing partial differential equations are suppressed by using Laplace transformation. In the Laplace transform domain, the problem under consideration is eventually reduced to solving a system of linear algebraic equations. Once the linear algebraic equations are solved, the displacement and stress fields in the physical domain can be recovered by using a numerical technique for inverting Laplace transforms.

Keywords: Axisymmetric elasticity, boundary element method, dual-reciprocity method, Laplace transform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1671
7658 Statistics of Exon Lengths in Animals, Plants, Fungi, and Protists

Authors: Alexander Kaplunovsky, Vladimir Khailenko, Alexander Bolshoy, Shara Atambayeva, AnatoliyIvashchenko

Abstract:

Eukaryotic protein-coding genes are interrupted by spliceosomal introns, which are removed from the RNA transcripts before translation into a protein. The exon-intron structures of different eukaryotic species are quite different from each other, and the evolution of such structures raises many questions. We try to address some of these questions using statistical analysis of whole genomes. We go through all the protein-coding genes in a genome and study correlations between the net length of all the exons in a gene, the number of the exons, and the average length of an exon. We also take average values of these features for each chromosome and study correlations between those averages on the chromosomal level. Our data show universal features of exon-intron structures common to animals, plants, and protists (specifically, Arabidopsis thaliana, Caenorhabditis elegans, Drosophila melanogaster, Cryptococcus neoformans, Homo sapiens, Mus musculus, Oryza sativa, and Plasmodium falciparum). We have verified linear correlation between the number of exons in a gene and the length of a protein coded by the gene, while the protein length increases in proportion to the number of exons. On the other hand, the average length of an exon always decreases with the number of exons. Finally, chromosome clustering based on average chromosome properties and parameters of linear regression between the number of exons in a gene and the net length of those exons demonstrates that these average chromosome properties are genome-specific features.

Keywords: Comparative genomics, exon-intron structure, eukaryotic clustering, linear regression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2573
7657 Building an e-Learning System Model with Implications for Research and Instructional Use

Authors: Kuan-Chou Chen, Keh-Wen “Carin” Chuang

Abstract:

This paper demonstrates a model of an e-Learning system based on nowadays learning theory and distant education practice. The relationships in the model are designed to be simple and functional and do not necessarily represent any particular e- Learning environments. It is meant to be a generic e-Learning system model with implications for any distant education course instructional design. It allows online instructors to move away from the discrepancy between the courses and body of knowledge. The interrelationships of four primary sectors that are at the e-Learning system are presented in this paper. This integrated model includes [1] pedagogy, [2] technology, [3] teaching, and [4] learning. There are interactions within each of these sectors depicted by system loop map.

Keywords: e-Learning system, online courses instructionaldesign, integrated model, interrelationships.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1517
7656 Forecasting for Financial Stock Returns Using a Quantile Function Model

Authors: Yuzhi Cai

Abstract:

In this talk, we introduce a newly developed quantile function model that can be used for estimating conditional distributions of financial returns and for obtaining multi-step ahead out-of-sample predictive distributions of financial returns. Since we forecast the whole conditional distributions, any predictive quantity of interest about the future financial returns can be obtained simply as a by-product of the method. We also show an application of the model to the daily closing prices of Dow Jones Industrial Average (DJIA) series over the period from 2 January 2004 - 8 October 2010. We obtained the predictive distributions up to 15 days ahead for the DJIA returns, which were further compared with the actually observed returns and those predicted from an AR-GARCH model. The results show that the new model can capture the main features of financial returns and provide a better fitted model together with improved mean forecasts compared with conventional methods. We hope this talk will help audience to see that this new model has the potential to be very useful in practice.

Keywords: DJIA, Financial returns, predictive distribution, quantile function model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1637
7655 A Simulation Model for the H-gate PDSOI MOSFET

Authors: Bu Jianhui, Bi Jinshun, Liu Mengxin, Luo Jiajun, Han Zhengsheng

Abstract:

The floating body effect is a serious problem for the PDSOI MOSFET, and the H-gate layout is frequently used as the body contact to eliminate this effect. Unfortunately, most of the standard commercial SOI MOSFET model is for the device with finger gate, the necessity of the new models for the H-gate device arises. A simulation model for the H-gate PDSOI MOSFET is proposed based on the 0.35μm PDSOI process developed by the Institute of Microelectronics of the Chinese Academy of Sciences (IMECAS), and then the model is well verified by the ring-oscillator.

Keywords: PDSOI H-gate Device model Body contact.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2243
7654 Effect of Mica Content in Sand on Site Response Analyses

Authors: Volkan Isbuga, Joman M. Mahmood, Ali Firat Cabalar

Abstract:

This study presents the site response analysis of mica-sand mixtures available in certain parts of the world including Izmir, a highly populated city and located in a seismically active region in western part of Turkey. We performed site response analyses by employing SHAKE, an equivalent linear approach, for the micaceous soil deposits consisting of layers with different amount of mica contents and thicknesses. Dynamic behavior of micaceous sands such as shear modulus reduction and damping ratio curves are input for the ground response analyses. Micaceous sands exhibit a unique dynamic response under a scenario earthquake with a magnitude of Mw=6. Results showed that higher amount of mica caused higher spectral accelerations.

Keywords: Micaceous sands, site response, equivalent linear approach, SHAKE.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1687
7653 Drag models for Simulation Gas-Solid Flow in the Bubbling Fluidized Bed of FCC Particles

Authors: S. Benzarti, H. Mhiri, H. Bournot

Abstract:

In the current work, a numerical parametric study was performed in order to model the fluid mechanics in the riser of a bubbling fluidized bed (BFB). The gas-solid flow was simulated by mean of a multi-fluid Eulerian model incorporating the kinetic theory for solid particles. The bubbling fluidized bed was simulated two dimensionally by mean of a Computational Fluid Dynamic (CFD) commercial software package, Fluent. The effects of using different inter-phase drag function (the drag model of Gidaspow, Syamlal and O-Brien and the EMMS drag model) on the model predictions were evaluated and compared. The results showed that the drag models of Gidaspow and Syamlal and O-Brien overestimated the drag force for the FCC particles and predicted a greater bed expansion in comparison to the EMMS drag model.

Keywords: Bubbling fluidized bed, CFD, drag model, EMMS

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6740
7652 Dry Relaxation Shrinkage Prediction of Bordeaux Fiber Using a Feed Forward Neural

Authors: Baeza S. Roberto

Abstract:

The knitted fabric suffers a deformation in its dimensions due to stretching and tension factors, transverse and longitudinal respectively, during the process in rectilinear knitting machines so it performs a dry relaxation shrinkage procedure and thermal action of prefixed to obtain stable conditions in the knitting. This paper presents a dry relaxation shrinkage prediction of Bordeaux fiber using a feed forward neural network and linear regression models. Six operational alternatives of shrinkage were predicted. A comparison of the results was performed finding neural network models with higher levels of explanation of the variability and prediction. The presence of different reposes is included. The models were obtained through a neural toolbox of Matlab and Minitab software with real data in a knitting company of Southern Guanajuato. The results allow predicting dry relaxation shrinkage of each alternative operation.

Keywords: Neural network, dry relaxation, knitting, linear regression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1760
7651 Moving Beyond the Limits of Disability Inclusion: Using the Concept of Belonging Through Friendship to Improve the Outcome of the Social Model of Disability

Authors: Luke S. Carlos A. Thompson

Abstract:

The medical model of disability, though beneficial for the medical professional, is often exclusionary, restrictive and dehumanizing when applied to the lived experience of disability. As a result, a critique of this model was constructed called the social model of disability. Much of the language used to articulate the purpose behind the social model of disability can be summed up within the word inclusion. However, this essay asserts that inclusiveness is an incomplete aspiration. The social model, as it currently stands, does not aid in creating a society where those with impairments actually belong. Rather, the social model aids in lessening the visibility, or negative consequence of, difference. Therefore, the social model does not invite society to welcome those with physical and intellectual impairments. It simply aids society in ignoring the existence of impairment by removing explicit forms of exclusion. Rather than simple inclusion, then, this essay uses John Swinton’s concept of friendship and Jean Vanier’s understanding of belonging to better articulate the intended outcome of the social model—a society where everyone can belong.

Keywords: Belong, community, disability, exclusion, friendship, inclusion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2280
7650 Optimizing Turning Parameters for Cylindrical Parts Using Simulated Annealing Method

Authors: Farhad Kolahan, Mahdi Abachizadeh

Abstract:

In this paper, a simulated annealing algorithm has been developed to optimize machining parameters in turning operation on cylindrical workpieces. The turning operation usually includes several passes of rough machining and a final pass of finishing. Seven different constraints are considered in a non-linear model where the goal is to achieve minimum total cost. The weighted total cost consists of machining cost, tool cost and tool replacement cost. The computational results clearly show that the proposed optimization procedure has considerably improved total operation cost by optimally determining machining parameters.

Keywords: Optimization, Simulated Annealing, Machining Parameters, Turning Operation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1822
7649 Traffic Signal Coordinated Control Optimization: A Case Study

Authors: Pengdi Diao, Zhuo Wang, Zundong Zhang, Hua Cheng

Abstract:

In the urban traffic network, the intersections are the “bottleneck point" of road network capacity. And the arterials are the main body in road network and the key factor which guarantees the normal operation of the city-s social and economic activities. The rapid increase in vehicles leads to seriously traffic jam and cause the increment of vehicles- delay. Most cities of our country are traditional single control system, which cannot meet the need for the city traffic any longer. In this paper, Synchro6.0 as a platform to minimize the intersection delay, optimizesingle signal cycle and split for Zhonghua Street in Handan City. Meanwhile, linear control system uses to optimize the phase for the t arterial road in this system. Comparing before and after use the control, capacities and service levels of this road and the adjacent road have improved significantly.

Keywords: linear control system; delay mode; signal optimization; synchro6.0 simulation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2125
7648 Numerical Modeling of the Depth-Averaged Flow Over a Hill

Authors: Anna Avramenko, Heikki Haario

Abstract:

This paper reports the development and application of a 2D1 depth-averaged model. The main goal of this contribution is to apply the depth averaged equations to a wind park model in which the treatment of the geometry, introduced on the mathematical model by the mass and momentum source terms. The depth-averaged model will be used in future to find the optimal position of wind turbines in the wind park. κ − ε and 2D LES turbulence models were consider in this article. 2D CFD2 simulations for one hill was done to check the depth-averaged model in practise.

Keywords: Depth-averaged equations, numerical modeling, CFD

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1943
7647 Image Compression Using Multiwavelet and Multi-Stage Vector Quantization

Authors: S. Esakkirajan, T. Veerakumar, V. Senthil Murugan, P. Navaneethan

Abstract:

The existing image coding standards generally degrades at low bit-rates because of the underlying block based Discrete Cosine Transform scheme. Over the past decade, the success of wavelets in solving many different problems has contributed to its unprecedented popularity. Due to implementation constraints scalar wavelets do not posses all the properties such as orthogonality, short support, linear phase symmetry, and a high order of approximation through vanishing moments simultaneously, which are very much essential for signal processing. New class of wavelets called 'Multiwavelets' which posses more than one scaling function overcomes this problem. This paper presents a new image coding scheme based on non linear approximation of multiwavelet coefficients along with multistage vector quantization. The performance of the proposed scheme is compared with the results obtained from scalar wavelets.

Keywords: Image compression, Multiwavelets, Multi-stagevector quantization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1937
7646 A Single-chip Proportional to Absolute Temperature Sensor Using CMOS Technology

Authors: AL.AL, M. B. I. Reaz, S. M. A. Motakabber, Mohd Alauddin Mohd Ali

Abstract:

Nowadays it is a trend for electronic circuit designers to integrate all system components on a single-chip. This paper proposed the design of a single-chip proportional to absolute temperature (PTAT) sensor including a voltage reference circuit using CEDEC 0.18m CMOS Technology. It is a challenge to design asingle-chip wide range linear response temperature sensor for many applications. The channel widths between the compensation transistor and the reference transistor are critical to design the PTAT temperature sensor circuit. The designed temperature sensor shows excellent linearity between -100°C to 200° and the sensitivity is about 0.05mV/°C. The chip is designed to operate with a single voltage source of 1.6V.

Keywords: PTAT, single-chip circuit, linear temperature sensor, CMOS technology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3431
7645 Modeling and Simulation of a Serial Production Line with Constant Work-In-Process

Authors: Mehmet Savsar

Abstract:

This paper presents a model for an unreliable production line, which is operated according to demand with constant work-in-process (CONWIP). A simulation model is developed based on the discrete model and several case problems are analyzed using the model. The model is utilized to optimize storage space capacities at intermediate stages and the number of kanbans at the last stage, which is used to trigger the production at the first stage. Furthermore, effects of several line parameters on production rate are analyzed using design of experiments.

Keywords: Production line simulator, Push-pull system, JIT system, Constant WIP, Machine failures.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2011
7644 Measuring the Comprehensibility of a UML-B Model and a B Model

Authors: Rozilawati Razali, Paul W. Garratt

Abstract:

Software maintenance, which involves making enhancements, modifications and corrections to existing software systems, consumes more than half of developer time. Specification comprehensibility plays an important role in software maintenance as it permits the understanding of the system properties more easily and quickly. The use of formal notation such as B increases a specification-s precision and consistency. However, the notation is regarded as being difficult to comprehend. Semi-formal notation such as the Unified Modelling Language (UML) is perceived as more accessible but it lacks formality. Perhaps by combining both notations could produce a specification that is not only accurate and consistent but also accessible to users. This paper presents an experiment conducted on a model that integrates the use of both UML and B notations, namely UML-B, versus a B model alone. The objective of the experiment was to evaluate the comprehensibility of a UML-B model compared to a traditional B model. The measurement used in the experiment focused on the efficiency in performing the comprehension tasks. The experiment employed a cross-over design and was conducted on forty-one subjects, including undergraduate and masters students. The results show that the notation used in the UML-B model is more comprehensible than the B model.

Keywords: Model comprehensibility, formal and semi-formal notation, empirical assessment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1598
7643 Artificial Neural Network Modeling of a Closed Loop Pulsating Heat Pipe

Authors: Vipul M. Patel, Hemantkumar B. Mehta

Abstract:

Technological innovations in electronic world demand novel, compact, simple in design, less costly and effective heat transfer devices. Closed Loop Pulsating Heat Pipe (CLPHP) is a passive phase change heat transfer device and has potential to transfer heat quickly and efficiently from source to sink. Thermal performance of a CLPHP is governed by various parameters such as number of U-turns, orientations, input heat, working fluids and filling ratio. The present paper is an attempt to predict the thermal performance of a CLPHP using Artificial Neural Network (ANN). Filling ratio and heat input are considered as input parameters while thermal resistance is set as target parameter. Types of neural networks considered in the present paper are radial basis, generalized regression, linear layer, cascade forward back propagation, feed forward back propagation; feed forward distributed time delay, layer recurrent and Elman back propagation. Linear, logistic sigmoid, tangent sigmoid and Radial Basis Gaussian Function are used as transfer functions. Prediction accuracy is measured based on the experimental data reported by the researchers in open literature as a function of Mean Absolute Relative Deviation (MARD). The prediction of a generalized regression ANN model with spread constant of 4.8 is found in agreement with the experimental data for MARD in the range of ±1.81%.

Keywords: ANN models, CLPHP, filling ratio, generalized regression, spread constant.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1184
7642 The Relationship between Excreta Viscosity and TMEn in SBM

Authors: Ali Nouri Emamzadeh

Abstract:

The experiment was performed to study the relationship between excreta viscosity and Nitrogen-corrected true metabolisable energy quantities of soybean meals using conventional addition method (CAM) in adult cockerels for 7 d: a 3-d preexperiment and a 4-d experiment period. Results indicated that differences between the excreta viscosity values were (P<0.01) significant for SBMs. The excreta viscosity values were less (P<0.01) for SBMs 6, 2, 8, 1 and 3 than other SBMs. The mean TMEn (kcal/kg) values were significant (P<0.01) between SBMs. The most TMEn values were (P<0.01) for SBMs 6, 2, 8 and 1, also the lowest TMEn values were (P<0.01) for SBMs 3, 7, 4, 9 and 5. There was a reverse linear relationship between the values of excreta viscosity and TMEn in SBMs. In conclusion, there was a reverse linear relationship between the values of excreta viscosity and TMEn in SBMs probably due to their various soluble NSPs.

Keywords: soybean meals (SBMs), Nitrogen-corrected true metabolisable energy (TMEn), viscosity

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1656