Search results for: weak signal detection.
1863 Access Control System: Monitoring Tool for Fiber to the Home Passive Optical Network
Authors: Aswir Premadi, Mohammad Syuhaimi Ab. Rahman, Mohamad Najib Moh. Saupe, KasmiranJumari
Abstract:
An optical fault monitoring in FTTH-PON using ACS is demonstrated. This device can achieve real-time fault monitoring for protection feeder fiber. In addition, the ACS can distinguish optical fiber fault from the transmission services to other customers in the FTTH-PON. It is essential to use a wavelength different from the triple-play services operating wavelengths for failure detection. ACS is using the operating wavelength 1625 nm for monitoring and failure detection control. Our solution works on a standard local area network (LAN) using a specially designed hardware interfaced with a microcontroller integrated Ethernet.Keywords: ACS, monitoring tool, FTTH-PON.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26991862 Improving Multi-storey Building Sensor Network with an External Hub
Authors: Malka N. Halgamuge, Toong-Khuan Chan, Priyan Mendis
Abstract:
Monitoring and automatic control of building environment is a crucial application of Wireless Sensor Network (WSN) in which maximizing network lifetime is a key challenge. Previous research into the performance of a network in a building environment has been concerned with radio propagation within a single floor. We investigate the link quality distribution to obtain full coverage of signal strength in a four-storey building environment, experimentally. Our results indicate that the transitional region is of particular concern in wireless sensor network since it accommodates high variance unreliable links. The transitional region in a multi-storey building is mainly due to the presence of reinforced concrete slabs at each storey and the fac┬©ade which obstructs the radio signal and introduces an additional absorption term to the path loss.Keywords: Wireless sensor networks, radio propagation, building monitoring
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15511861 BPNN Based Processing for End Effects of HHT
Authors: Chun-Yao Lee, Yao-chen Lee
Abstract:
This paper describes a method of signal process applied on an end effects of Hilbert-Huang transform (HHT) to provide an improvement in the reality of spectrum. The method is based on back-propagation network (BPN). To improve the effect, the end extension of the original signal is obtained by back-propagation network. A full waveform including origin and its extension is decomposed by using empirical mode decomposition (EMD) to obtain intrinsic mode functions (IMFs) of the waveform. Then, the Hilbert transform (HT) is applied to the IMFs to obtain the Hilbert spectrum of the waveform. As a result, the method is superiority of the processing of end effect of HHT to obtain the real frequency spectrum of signals.Keywords: Neural network, back-propagation network, Hilbert-Huang transform
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17901860 Detection ofTensile Forces in Cable-Stayed Structures Using the Advanced Hybrid Micro-Genetic Algorithm
Authors: Sang-Youl Lee
Abstract:
This study deals with an advanced numerical techniques to detect tensile forces in cable-stayed structures. The proposed method allows us not only to avoid the trap of minimum at initial searching stage but also to find their final solutions in better numerical efficiency. The validity of the technique is numerically verified using a set of dynamic data obtained from a simulation of the cable model modeled using the finite element method. The results indicate that the proposed method is computationally efficient in characterizing the tensile force variation for cable-stayed structures.
Keywords: Tensile force detection, cable-stayed structures, hybrid system identification (h-SI), dynamic response.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21311859 Fast Algorithm of Infrared Point Target Detection in Fluctuant Background
Authors: Yang Weiping, Zhang Zhilong, Li Jicheng, Chen Zengping, He Jun
Abstract:
The background estimation approach using a small window median filter is presented on the bases of analyzing IR point target, noise and clutter model. After simplifying the two-dimensional filter, a simple method of adopting one-dimensional median filter is illustrated to make estimations of background according to the characteristics of IR scanning system. The adaptive threshold is used to segment canceled image in the background. Experimental results show that the algorithm achieved good performance and satisfy the requirement of big size image-s real-time processing.Keywords: Point target, background estimation, median filter, adaptive threshold, target detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18441858 Introduction of the Harmfulness of the Seismic Signal in the Assessment of the Performance of Reinforced Concrete Frame Structures
Authors: Kahil Amar, Boukais Said, Kezmane Ali, Hamizi Mohand, Hannachi Naceur Eddine
Abstract:
The principle of the seismic performance evaluation methods is to provide a measure of capability for a building or set of buildings to be damaged by an earthquake. The common objective of many of these methods is to supply classification criteria. The purpose of this study is to present a method for assessing the seismic performance of structures, based on Pushover method; we are particularly interested in reinforced concrete frame structures, which represent a significant percentage of damaged structures after a seismic event. The work is based on the characterization of seismic movement of the various earthquake zones in terms of PGA and PGD that is obtained by means of SIMQK_GR and PRISM software and the correlation between the points of performance and the scalar characterizing the earthquakes will developed.
Keywords: Seismic performance, Pushover method, characterization of seismic motion, harmfulness of the seismic signal
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20561857 Real-time Network Anomaly Detection Systems Based on Machine-Learning Algorithms
Authors: Zahra Ramezanpanah, Joachim Carvallo, Aurelien Rodriguez
Abstract:
This paper aims to detect anomalies in streaming data using machine learning algorithms. In this regard, we designed two separate pipelines and evaluated the effectiveness of each separately. The first pipeline, based on supervised machine learning methods, consists of two phases. In the first phase, we trained several supervised models using the UNSW-NB15 data set. We measured the efficiency of each using different performance metrics and selected the best model for the second phase. At the beginning of the second phase, we first, using Argus Server, sniffed a local area network. Several types of attacks were simulated and then sent the sniffed data to a running algorithm at short intervals. This algorithm can display the results of each packet of received data in real-time using the trained model. The second pipeline presented in this paper is based on unsupervised algorithms, in which a Temporal Graph Network (TGN) is used to monitor a local network. The TGN is trained to predict the probability of future states of the network based on its past behavior. Our contribution in this section is introducing an indicator to identify anomalies from these predicted probabilities.
Keywords: Cyber-security, Intrusion Detection Systems, Temporal Graph Network, Anomaly Detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5071856 Wormhole Attack Detection in Wireless Sensor Networks
Authors: Zaw Tun, Aung Htein Maw
Abstract:
The nature of wireless ad hoc and sensor networks make them very attractive to attackers. One of the most popular and serious attacks in wireless ad hoc networks is wormhole attack and most proposed protocols to defend against this attack used positioning devices, synchronized clocks, or directional antennas. This paper analyzes the nature of wormhole attack and existing methods of defending mechanism and then proposes round trip time (RTT) and neighbor numbers based wormhole detection mechanism. The consideration of proposed mechanism is the RTT between two successive nodes and those nodes- neighbor number which is needed to compare those values of other successive nodes. The identification of wormhole attacks is based on the two faces. The first consideration is that the transmission time between two wormhole attack affected nodes is considerable higher than that between two normal neighbor nodes. The second detection mechanism is based on the fact that by introducing new links into the network, the adversary increases the number of neighbors of the nodes within its radius. This system does not require any specific hardware, has good performance and little overhead and also does not consume extra energy. The proposed system is designed in ad hoc on-demand distance vector (AODV) routing protocol and analysis and simulations of the proposed system are performed in network simulator (ns-2).Keywords: AODV, Wormhole attacks, Wireless ad hoc andsensor networks
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34701855 Detection of Leaks in Water Mains Using Ground Penetrating Radar
Authors: Alaa Al Hawari, Mohammad Khader, Tarek Zayed, Osama Moselhi
Abstract:
Ground Penetrating Radar (GPR) is one of the most effective electromagnetic techniques for non-destructive non-invasive subsurface features investigation. Water leak from pipelines is the most common undesirable reason of potable water losses. Rapid detection of such losses is going to enhance the use of the Water Distribution Networks (WDN) and decrease threatens associated with water mains leaks. In this study, GPR approach was developed to detect leaks by implementing an appropriate imaging analyzing strategy based on image refinement, reflection polarity and reflection amplitude that would ease the process of interpreting the collected raw radargram image.Keywords: Water Networks, Leakage, Water pipelines, Ground Penetrating Radar.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23181854 Proposed Alternative System to Existing Traffic Signal System
Authors: Alluri Swaroopa, Lakkakula Venkata Narasimha Prasad
Abstract:
Alone with fast urbanization in world, traffic control became a big issue in urban construction. Having an efficient and reliable traffic control system is crucial to macro-traffic control. Traffic signal is used to manage conflicting requirement by allocating different sets of mutually compatible traffic movement during distinct time interval. Many approaches have been made proposed to solve this discrete stochastic problem. Recognizing the need to minimize right-of-way impacts while efficiently handling the anticipated high traffic volumes, the proposed alternative system gives effective design. This model allows for increased traffic capacity and reduces delays by eliminating a step in maneuvering through the freeway interchange. The concept proposed in this paper involves construction of bridges and ramps at intersection of four roads to control the vehicular congestion and to prevent traffic breakdown.
Keywords: Bridges, junctions, ramps, urban traffic control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31841853 Evaluation of GSM Radiation Power Density in Three Major Cities in Nigeria
Authors: B. O. Ayinmode, I. P. Farai
Abstract:
The levels of maximum power density of GSM signals in the cities of Lagos, Ibadan and Abuja were studied. Measurements were made with a calibrated hand held spectrum analyzer 200m away from 271 base stations, at 1.2m to the ground level. The maximum GSM 900 signal power density was 139.63μW/m2 in Lagos, 162.49μW/m2 in Ibadan and 5411.26μW/m2 in Abuja. Also, the maximum GSM 1800 signal power density was 296.82μW/m2 in Lagos, 116.82μW/m2 in Ibadan and 1263.00μW/m2 in Abuja. The level of power density of GSM 900 and GSM 1800 signals in the cities of Lagos, Ibadan and Abuja are far less than the recommended value of 4.5W/m2 for GSM 900 and 9.0 W/m2 for GSM 1800 by the ICNRP guideline. It can be concluded that exposure to GSM signals in these cities cannot contribute to the health detriments caused by thermal effects of radiofrequency radiation.
Keywords: Radiofrequency, power density, radiation exposure, base stations (BTS).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25691852 Recognition by Online Modeling – a New Approach of Recognizing Voice Signals in Linear Time
Authors: Jyh-Da Wei, Hsin-Chen Tsai
Abstract:
This work presents a novel means of extracting fixedlength parameters from voice signals, such that words can be recognized in linear time. The power and the zero crossing rate are first calculated segment by segment from a voice signal; by doing so, two feature sequences are generated. We then construct an FIR system across these two sequences. The parameters of this FIR system, used as the input of a multilayer proceptron recognizer, can be derived by recursive LSE (least-square estimation), implying that the complexity of overall process is linear to the signal size. In the second part of this work, we introduce a weighting factor λ to emphasize recent input; therefore, we can further recognize continuous speech signals. Experiments employ the voice signals of numbers, from zero to nine, spoken in Mandarin Chinese. The proposed method is verified to recognize voice signals efficiently and accurately.Keywords: Speech Recognition, FIR system, Recursive LSE, Multilayer Perceptron
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14171851 Multiscale Analysis and Change Detection Based on a Contrario Approach
Authors: F.Katlane, M.S.Naceur, M.A.Loghmari
Abstract:
Automatic methods of detecting changes through satellite imaging are the object of growing interest, especially beca²use of numerous applications linked to analysis of the Earth’s surface or the environment (monitoring vegetation, updating maps, risk management, etc...). This work implemented spatial analysis techniques by using images with different spatial and spectral resolutions on different dates. The work was based on the principle of control charts in order to set the upper and lower limits beyond which a change would be noted. Later, the a contrario approach was used. This was done by testing different thresholds for which the difference calculated between two pixels was significant. Finally, labeled images were considered, giving a particularly low difference which meant that the number of “false changes” could be estimated according to a given limit.Keywords: multi-scale, a contrario approach, significantthresholds, change detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14651850 High Performance Electrocardiogram Steganography Based on Fast Discrete Cosine Transform
Authors: Liang-Ta Cheng, Ching-Yu Yang
Abstract:
Based on fast discrete cosine transform (FDCT), the authors present a high capacity and high perceived quality method for electrocardiogram (ECG) signal. By using a simple adjusting policy to the 1-dimentional (1-D) DCT coefficients, a large volume of secret message can be effectively embedded in an ECG host signal and be successfully extracted at the intended receiver. Simulations confirmed that the resulting perceived quality is good, while the hiding capability of the proposed method significantly outperforms that of existing techniques. In addition, our proposed method has a certain degree of robustness. Since the computational complexity is low, it is feasible for our method being employed in real-time applications.Keywords: Data hiding, ECG steganography, fast discrete cosine transform, 1-D DCT bundle, real-time applications.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8121849 Predicting Application Layer DDoS Attacks Using Machine Learning Algorithms
Authors: S. Umarani, D. Sharmila
Abstract:
A Distributed Denial of Service (DDoS) attack is a major threat to cyber security. It originates from the network layer or the application layer of compromised/attacker systems which are connected to the network. The impact of this attack ranges from the simple inconvenience to use a particular service to causing major failures at the targeted server. When there is heavy traffic flow to a target server, it is necessary to classify the legitimate access and attacks. In this paper, a novel method is proposed to detect DDoS attacks from the traces of traffic flow. An access matrix is created from the traces. As the access matrix is multi dimensional, Principle Component Analysis (PCA) is used to reduce the attributes used for detection. Two classifiers Naive Bayes and K-Nearest neighborhood are used to classify the traffic as normal or abnormal. The performance of the classifier with PCA selected attributes and actual attributes of access matrix is compared by the detection rate and False Positive Rate (FPR).
Keywords: Distributed Denial of Service (DDoS) attack, Application layer DDoS, DDoS Detection, K- Nearest neighborhood classifier, Naive Bayes Classifier, Principle Component Analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 52801848 Semi-Automatic Artifact Rejection Procedure Based on Kurtosis, Renyi's Entropy and Independent Component Scalp Maps
Authors: Antonino Greco, Nadia Mammone, Francesco Carlo Morabito, Mario Versaci
Abstract:
Artifact rejection plays a key role in many signal processing applications. The artifacts are disturbance that can occur during the signal acquisition and that can alter the analysis of the signals themselves. Our aim is to automatically remove the artifacts, in particular from the Electroencephalographic (EEG) recordings. A technique for the automatic artifact rejection, based on the Independent Component Analysis (ICA) for the artifact extraction and on some high order statistics such as kurtosis and Shannon-s entropy, was proposed some years ago in literature. In this paper we try to enhance this technique proposing a new method based on the Renyi-s entropy. The performance of our method was tested and compared to the performance of the method in literature and the former proved to outperform the latter.
Keywords: Artifact, EEG, Renyi's entropy, kurtosis, independent component analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18561847 On the Effectivity of Different Pseudo-Noise and Orthogonal Sequences for Speech Encryption from Correlation Properties
Authors: V. Anil Kumar, Abhijit Mitra, S. R. Mahadeva Prasanna
Abstract:
We analyze the effectivity of different pseudo noise (PN) and orthogonal sequences for encrypting speech signals in terms of perceptual intelligence. Speech signal can be viewed as sequence of correlated samples and each sample as sequence of bits. The residual intelligibility of the speech signal can be reduced by removing the correlation among the speech samples. PN sequences have random like properties that help in reducing the correlation among speech samples. The mean square aperiodic auto-correlation (MSAAC) and the mean square aperiodic cross-correlation (MSACC) measures are used to test the randomness of the PN sequences. Results of the investigation show the effectivity of large Kasami sequences for this purpose among many PN sequences.
Keywords: Speech encryption, pseudo-noise codes, maximallength, Gold, Barker, Kasami, Walsh-Hadamard, autocorrelation, crosscorrelation, figure of merit.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20411846 Improvising Intrusion Detection for Malware Activities on Dual-Stack Network Environment
Authors: Zulkiflee M., Robiah Y., Nur Azman Abu, Shahrin S.
Abstract:
Malware is software which was invented and meant for doing harms on computers. Malware is becoming a significant threat in computer network nowadays. Malware attack is not just only involving financial lost but it can also cause fatal errors which may cost lives in some cases. As new Internet Protocol version 6 (IPv6) emerged, many people believe this protocol could solve most malware propagation issues due to its broader addressing scheme. As IPv6 is still new compares to native IPv4, some transition mechanisms have been introduced to promote smoother migration. Unfortunately, these transition mechanisms allow some malwares to propagate its attack from IPv4 to IPv6 network environment. In this paper, a proof of concept shall be presented in order to show that some existing IPv4 malware detection technique need to be improvised in order to detect malware attack in dual-stack network more efficiently. A testbed of dual-stack network environment has been deployed and some genuine malware have been released to observe their behaviors. The results between these different scenarios will be analyzed and discussed further in term of their behaviors and propagation methods. The results show that malware behave differently on IPv6 from the IPv4 network protocol on the dual-stack network environment. A new detection technique is called for in order to cater this problem in the near future.
Keywords: Dual-Stack, Malware, Worm, IPv6;IDS
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20051845 A Distributed Mobile Agent Based on Intrusion Detection System for MANET
Authors: Maad Kamal Al-Anni
Abstract:
This study is about an algorithmic dependence of Artificial Neural Network on Multilayer Perceptron (MPL) pertaining to the classification and clustering presentations for Mobile Adhoc Network vulnerabilities. Moreover, mobile ad hoc network (MANET) is ubiquitous intelligent internetworking devices in which it has the ability to detect their environment using an autonomous system of mobile nodes that are connected via wireless links. Security affairs are the most important subject in MANET due to the easy penetrative scenarios occurred in such an auto configuration network. One of the powerful techniques used for inspecting the network packets is Intrusion Detection System (IDS); in this article, we are going to show the effectiveness of artificial neural networks used as a machine learning along with stochastic approach (information gain) to classify the malicious behaviors in simulated network with respect to different IDS techniques. The monitoring agent is responsible for detection inference engine, the audit data is collected from collecting agent by simulating the node attack and contrasted outputs with normal behaviors of the framework, whenever. In the event that there is any deviation from the ordinary behaviors then the monitoring agent is considered this event as an attack , in this article we are going to demonstrate the signature-based IDS approach in a MANET by implementing the back propagation algorithm over ensemble-based Traffic Table (TT), thus the signature of malicious behaviors or undesirable activities are often significantly prognosticated and efficiently figured out, by increasing the parametric set-up of Back propagation algorithm during the experimental results which empirically shown its effectiveness for the ratio of detection index up to 98.6 percentage. Consequently it is proved in empirical results in this article, the performance matrices are also being included in this article with Xgraph screen show by different through puts like Packet Delivery Ratio (PDR), Through Put(TP), and Average Delay(AD).
Keywords: Mobile ad hoc network, MANET, intrusion detection system, back propagation algorithm, neural networks, traffic table, multilayer perceptron, feed-forward back-propagation, network simulator 2.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9291844 An Approach for the Prediction of Cardiovascular Diseases
Authors: Nebi Gedik
Abstract:
Regardless of age or gender, cardiovascular illnesses are a serious health concern because of things like poor eating habits, stress, a sedentary lifestyle, hard work schedules, alcohol use, and weight. It tends to happen suddenly and has a high rate of recurrence. Machine learning models can be implemented to assist healthcare systems in the accurate detection and diagnosis of cardiovascular disease (CVD) in patients. Improved heart failure prediction is one of the primary goals of researchers using the heart disease dataset. The purpose of this study is to identify the feature or features that offer the best classification prediction for CVD detection. The support vector machine classifier is used to compare each feature's performance. It has been determined which feature produces the best results.
Keywords: Cardiovascular disease, feature extraction, supervised learning, support vector machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1711843 A Distributed Algorithm for Intrinsic Cluster Detection over Large Spatial Data
Authors: Sauravjyoti Sarmah, Rosy Das, Dhruba Kr. Bhattacharyya
Abstract:
Clustering algorithms help to understand the hidden information present in datasets. A dataset may contain intrinsic and nested clusters, the detection of which is of utmost importance. This paper presents a Distributed Grid-based Density Clustering algorithm capable of identifying arbitrary shaped embedded clusters as well as multi-density clusters over large spatial datasets. For handling massive datasets, we implemented our method using a 'sharednothing' architecture where multiple computers are interconnected over a network. Experimental results are reported to establish the superiority of the technique in terms of scale-up, speedup as well as cluster quality.Keywords: Clustering, Density-based, Grid-based, Adaptive Grid.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15981842 Low Complexity Hybrid Scheme for PAPR Reduction in OFDM Systems Based on SLM and Clipping
Authors: V. Sudha, D. Sriram Kumar
Abstract:
In this paper, we present a low complexity hybrid scheme using conventional selective mapping (C-SLM) and clipping algorithms to reduce the high peak-to-average power ratio (PAPR) of orthogonal frequency division multiplexing (OFDM) signal. In the proposed scheme, the input data sequence (X) is divided into two sub-blocks, then clipping algorithm is applied to the first sub-block, whereas C-SLM algorithm is applied to the second sub-block in order to reduce both computational complexity and PAPR. The resultant time domain OFDM signal is obtained by combining the output of two sub-blocks. The simulation results show that the proposed hybrid scheme provides 0.45 dB PAPR reduction gain at CCDF value of 10-2 and 52% of computational complexity reduction when compared to C-SLM scheme at the expense of slight degradation in bit error rate (BER) performance.Keywords: CCDF, Clipping, OFDM, PAPR, SLM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12741841 EPR Hiding in Medical Images for Telemedicine
Authors: K. A. Navas, S. Archana Thampy, M. Sasikumar
Abstract:
Medical image data hiding has strict constrains such as high imperceptibility, high capacity and high robustness. Achieving these three requirements simultaneously is highly cumbersome. Some works have been reported in the literature on data hiding, watermarking and stegnography which are suitable for telemedicine applications. None is reliable in all aspects. Electronic Patient Report (EPR) data hiding for telemedicine demand it blind and reversible. This paper proposes a novel approach to blind reversible data hiding based on integer wavelet transform. Experimental results shows that this scheme outperforms the prior arts in terms of zero BER (Bit Error Rate), higher PSNR (Peak Signal to Noise Ratio), and large EPR data embedding capacity with WPSNR (Weighted Peak Signal to Noise Ratio) around 53 dB, compared with the existing reversible data hiding schemes.Keywords: Biomedical imaging, Data security, Datacommunication, Teleconferencing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27571840 The Use of KREISIG Computer Simulation Program to Optimize Signalized Roundabout
Authors: Ahmad Munawar
Abstract:
KREISIG is a computer simulation program, firstly developed by Munawar (1994) in Germany to optimize signalized roundabout. The traffic movement is based on the car following theory. Turbine method has been implemented for signal setting. The program has then been further developed in Indonesia to meet the traffic characteristics in Indonesia by adjusting the sensitivity of the drivers. Trial and error method has been implemented to adjust the saturation flow. The saturation flow output has also been compared to the calculation method according to 1997 Indonesian Highway Capacity Manual. It has then been implemented to optimize signalized roundabout at Kleringan roundabout in Malioboro area, Yogyakarta, Indonesia. It is found that this method can optimize the signal setting of this roundabout. Therefore, it is recommended to use this program to optimize signalized roundabout.
Keywords: KREISIG, signalized roundabout, traffic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15001839 Automotive 3-Microphone Noise Canceller in a Frequently Moving Noise Source Environment
Authors: Z. Qi, T. J. Moir
Abstract:
A combined three-microphone voice activity detector (VAD) and noise-canceling system is studied to enhance speech recognition in an automobile environment. A previous experiment clearly shows the ability of the composite system to cancel a single noise source outside of a defined zone. This paper investigates the performance of the composite system when there are frequently moving noise sources (noise sources are coming from different locations but are not always presented at the same time) e.g. there is other passenger speech or speech from a radio when a desired speech is presented. To work in a frequently moving noise sources environment, whilst a three-microphone voice activity detector (VAD) detects voice from a “VAD valid zone", the 3-microphone noise canceller uses a “noise canceller valid zone" defined in freespace around the users head. Therefore, a desired voice should be in the intersection of the noise canceller valid zone and VAD valid zone. Thus all noise is suppressed outside this intersection of area. Experiments are shown for a real environment e.g. all results were recorded in a car by omni-directional electret condenser microphones.
Keywords: Signal processing, voice activity detection, noise canceller, microphone array beam forming.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16121838 Analysis of EEG Signals Using Wavelet Entropy and Approximate Entropy: A Case Study on Depression Patients
Authors: Subha D. Puthankattil, Paul K. Joseph
Abstract:
Analyzing brain signals of the patients suffering from the state of depression may lead to interesting observations in the signal parameters that is quite different from a normal control. The present study adopts two different methods: Time frequency domain and nonlinear method for the analysis of EEG signals acquired from depression patients and age and sex matched normal controls. The time frequency domain analysis is realized using wavelet entropy and approximate entropy is employed for the nonlinear method of analysis. The ability of the signal processing technique and the nonlinear method in differentiating the physiological aspects of the brain state are revealed using Wavelet entropy and Approximate entropy.
Keywords: EEG, Depression, Wavelet entropy, Approximate entropy, Relative Wavelet energy, Multiresolution decomposition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 36401837 Performance Comparison of Real Time EDAC Systems for Applications On-Board Small Satellites
Authors: Y. Bentoutou
Abstract:
On-board Error Detection and Correction (EDAC) devices aim to secure data transmitted between the central processing unit (CPU) of a satellite onboard computer and its local memory. This paper presents a comparison of the performance of four low complexity EDAC techniques for application in Random Access Memories (RAMs) on-board small satellites. The performance of a newly proposed EDAC architecture is measured and compared with three different EDAC strategies, using the same FPGA technology. A statistical analysis of single-event upset (SEU) and multiple-bit upset (MBU) activity in commercial memories onboard Alsat-1 is given for a period of 8 yearsKeywords: Error Detection and Correction; On-board computer; small satellite missions
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22631836 Optimal Estimation of Surface Reflectance from Landsat TM Visible and Mid Infrared Data over Penang Island
Authors: H. S. Lim, M. Z. MatJafri, K. Abdullah, N. Mohd. Saleh
Abstract:
Retrieval of the surface reflectance is important in the remotely sensed data analysis to obtain the atmospheric reflectance or atmospheric correction. The relationship between visible and mid infrared reflectance over land was investigated and developed in this study. The surface reflectances of the two visible bands were measured using a handheld spectroradiometer collected around Penang Island. In this study, we use the assumption that the 2.1 μm band is not affected by aerosol and it is transparent to most aerosol types (except dust). Therefore the satellite observed signal is the same as the surface signal in 2.1 μm band. The correlation between the surface reflectance measured by the spectroradiometer in the blue and red region and the 2.1 μm observed by the satellite has been established. We investigate five dates of Landsat TM scenes in this study. The finding obtained by this study indicates that the surface reflectance can be retrieved from the 2.1 μm band.Keywords: Surface Reflectance, Landsat TM, Aerosol, Spectroradiometer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11981835 Efficient Boosting-Based Active Learning for Specific Object Detection Problems
Authors: Thuy Thi Nguyen, Nguyen Dang Binh, Horst Bischof
Abstract:
In this work, we present a novel active learning approach for learning a visual object detection system. Our system is composed of an active learning mechanism as wrapper around a sub-algorithm which implement an online boosting-based learning object detector. In the core is a combination of a bootstrap procedure and a semi automatic learning process based on the online boosting procedure. The idea is to exploit the availability of classifier during learning to automatically label training samples and increasingly improves the classifier. This addresses the issue of reducing labeling effort meanwhile obtain better performance. In addition, we propose a verification process for further improvement of the classifier. The idea is to allow re-update on seen data during learning for stabilizing the detector. The main contribution of this empirical study is a demonstration that active learning based on an online boosting approach trained in this manner can achieve results comparable or even outperform a framework trained in conventional manner using much more labeling effort. Empirical experiments on challenging data set for specific object deteciton problems show the effectiveness of our approach.Keywords: Computer vision, object detection, online boosting, active learning, labeling complexity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17851834 Design of a Novel Inclination Sensor Utilizing Grayscale Image
Authors: Tuhin Subhra Sarkar, Subir Das
Abstract:
Several research works have been done in recent times utilizing grayscale image for the measurement of many physical phenomena. In this present paper, we have designed an embedded based inclination sensor utilizing the grayscale image with a resolution of 0.3º. The sensor module consists of a circular shaped metal disc, laminated with grayscale image and an optical transreceiver. The sensor principle is based on temporal changes in light intensity by the movement of grayscale image with the inclination of the target surface and the variation of light intensity has been detected in terms of voltage by the signal processing circuit (SPC).The output of SPC is fed to a microcontroller program to display the inclination angel digitally. The experimental results are shown a satisfactory performance of the sensor in a small inclination measuring range of -40º to + 40º with a sensitivity of 62 mV/°.
Keywords: Grayscale image, Inclination Sensor, Microcontroller Program, Signal Processing Circuit.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1821