
Real-time Network Anomaly Detection Systems
Based on Machine-Learning Algorithms

Zahra Ramezanpanah, Joachim Carvallo, Aurelien Rodriguez

Abstract—This paper aims to detect anomalies in streaming data
using machine learning algorithms. In this regard, we designed two
separate pipelines and evaluated the effectiveness of each separately.
The first pipeline, based on supervised machine learning methods,
consists of two phases. In the first phase, we trained several
supervised models using the UNSW-NB15 data set. We measured the
efficiency of each using different performance metrics and selected
the best model for the second phase. At the beginning of the second
phase, we first, using Argus Server, sniffed a local area network.
Several types of attacks were simulated and then sent the sniffed data
to a running algorithm at short intervals. This algorithm can display
the results of each packet of received data in real-time using the
trained model. The second pipeline presented in this paper is based
on unsupervised algorithms, in which a Temporal Graph Network
(TGN) is used to monitor a local network. The TGN is trained to
predict the probability of future states of the network based on its past
behavior. Our contribution in this section is introducing an indicator
to identify anomalies from these predicted probabilities.

Keywords—Cyber-security, Intrusion Detection Systems, Temporal
Graph Network, Anomaly Detection.

I. INTRODUCTION

TODAY, life without the Internet is inconceivable, and this

use of the Internet is not limited to spending time on

social media and entertainment. Today, we need the Internet

to do our daily work. According to [24], since the beginning of

2021, there have been 4.66 billion in active Internet users, and

this number represents an increase of 316 million compared

to the 2020 figures. In other words, the growth of active

Internet users worldwide (7.3% percent) is more than seven

times faster than the growth of the total population, which

is 1%. With the pervasiveness of the Internet in everyday

life, especially in storing personal, confidential, and essential

information of individuals and companies on servers, the

urgent need to automatically detect attacks and unusual events

(intrusion) in networks has become essential. In this regard,

Intrusion Detection Systems (IDS) technology, which is

hardware or software programs that monitor network activities

to detect malicious behavior or policy violations, has emerged

and attracted much attention. IDS have four techniques for

performing their tasks, [1]: Signature-based, Anomaly-based,

Specification-based, and hybrid. Signature-based techniques

can identify anomalies whose specifications have already been

documented. Anomaly-based techniques consist in collecting

data and detecting system anomalies based on a threshold

value, and they are still considered to be at an early stage

of development. Those methods effectively detect unknown

and unseen attacks, but the need for large memory, inducing

Zahra Ramezanpanah is with MYTEAM.ai, France (e-mail:
zahra.ramezanpanah@gmail.com).

high processing costs, constitutes an important limitation to

their prevalence. Specification-based techniques continuously

evaluate system performance. In this approach, network

administrators define specific policies, and the processes

are constantly monitored to make sure they respect the

policies. Hybrid-based techniques combine anomalies and

signature-based methods to better trade-off between storage

and calculation costs with fewer false-positive alerts. In this

paper, we used a Signature-based technique to design the first

pipeline and an Anomaly-based technique to design the second

pipeline. Using these two pipelines, the contributions of this

study are: (1) Deploy an offline to an online pipeline to detect

anomalies in real-time; (2) Introducing a new indicator to

detect anomalies using a Temporal Graph Network.

II. BACKGROUND AND RELATED WORKS

Numerous studies have been conducted in cyber security

to detect various types of anomalies and cyberattacks

or intrusions. Among the available methods for detecting

anomalies and preventing cyberattacks, Signature-based

intrusion detection systems (SIDS) and Anomaly-based

intrusion detection systems (AIDS) are the most efficient

[3]. SIDS are formed on the signatures of known anomalies

[5]. AIDS, on the other hand, can detect previously unseen

anomalies that are invisible to SIDS [6], [7]. Since machine

learning classification-based methods can automatically learn

from network data [8] we first focus on these methods.

Different machine learning methods have been used for

different purposes in this topic. For example, the authors in [9]

detected anomalies in a network using Support Vector Machine

(SVM) classification. They achieved 98.62% accuracy by

implementing their proposed method on the KDD cup 99

data set [10]. Anomalies detection by SVM was also used by

many other researchers such as [11], [12]. K-Nearest Neighbor

(KNN) is another machine learning method that stores the

specifications of all input data and classifies new data based

on its similarity to existing data. The authors in [13], [14] used

KNN to classify network attacks in their research. In [15],

Restricted Boltzmann Machine (RBM) is used to reduce the

features, and SVM is implemented to identify the anomalies.

This method has an accuracy of 87%. Subsequently, while

many studies are using ML and DL algorithms in the design

of IDS, to our knowledge, the real-time application of these

algorithms on a network has not been well discussed.

We review below some current research work on

recognizing anomalies in real-time. In order to reduce network

data processing time, the authors in [16] proposed a real-time

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:17, No:2, 2023

93International Scholarly and Scientific Research & Innovation 17(2) 2023 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

7,
 N

o:
2,

 2
02

3
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

12
93

3.
pd

f

IDS using a multi-operating system (MAS-IDS). They succeed

in analyzing a large volume of data in a network in the shortest

possible time. For this purpose, they divided the traffic data

network into several subsets and processed these subsets in

parallel, using a set of analysis agents. Another important

conclusion of their proposed system was reducing the time

for recognizing anomalies. At the same time, the accuracy

of IDS was acceptable and was not much different from the

traditional method, which does not include division. In order to

improve the performance of anomaly detection, in [17], deep

learning (DL) is used in the combustion anomaly detection

system. The researchers in this paper used deep learning to

learn the hierarchical features of an exhaust gas temperature

sensor. They then used these features as the input of a neural

network classifier to detect combustion anomalies. Since these

features highlight the complex relationships between all sensor

measurements, abnormalities detection is significantly more

accurate. De et al. The authors in [18], used a Graph Neural

Network (GNN) mechanism and fully connected networks to

create an edge and node classifier. This mechanism leads to

the probability of infection in a relevant node and vertices.

Analyzing graph representations, they exchanged information

in the neighborhood of an agent that helped identify anomalies

and security breaches based on their interactions. They used

the response of a node to the health status of its neighboring

nodes to solve the problem of an inadequate number of

monitors against distributed attack patterns and the glands’

lack of awareness of their infected status. At the same time,

they sought to reduce resources such as bandwidth and power

consumption compared to centralized IDS. Each active node

applies GNNs to connection attribute values in its local

neighborhood. To train and test GNN, they used real-world

data sets of normal traffic patterns and, in addition, generated

data based on the Mirai’s [19] anomalous distribution. They

used three different classifiers (SVM, DT, RT) and two

advanced approaches to train and test generated data, thus

evaluating the accuracy scores of their proposed method.

In this paper, we monitor the network and identify

anomalies in real-time using supervised (first system) and

unsupervised (second system) ML methods. For this purpose,

in the first system, using the information available in studies

conducted in the literature, we selected the best parameters for

training the model in the online phase. In the second system,

by presenting an index and using the proposed method in

[20], we were able to monitor a simulated network and detect

anomalies.

III. MACHINE LEARNING ALGORITHMS AND

PERFORMANCE METRICS

A. Methods

In this paper, we trained five algorithms [25], namely

Support Vector Machine (SVM), Decision Tree (DT), Random

Forest (RF), Gradient Boosting Decision Tree (GBDT), and

Logistic Regression (LR) to design the first system based on

supervised ML algorithms. To design the second system, we

used a Temporal Graph Network (TGN), whose details have

changed a bit, and we will explain it below.

1) Temporal Graph Networks (TGN): [20] are an efficient

framework for deep learning on “continuous-time dynamic

graphs”. This title refers to graphs that can be represented as a

sequence of time-stamped events, such as adding or removing

an edge or a node. In this paper, nodes represent machines

in a network whose number is constant, and edges represent

network traffic (packets exchanged between machines) and

are therefore constantly changing over time. A neural model

for dynamic graphs can be defined as an encoder-decoder

pair in which the encoder is a function that maps the node

embedding (a vector of important information of nodes) [21],

from a dynamic graph. A decoder receives one or more

node embedding as input and performs its task based on

these inputs. In our case, the decoder task is to calculate the

probability of interaction between two nodes at any given time.

A TGN consists of the following modules:

False Message Generator (FMG): For each batch

containing p ∈ N interactions, this module randomly

generates p false interactions. For each interaction on the

network, t, s, and d represent the time, the source node,

and the destination node. This module is not explicitly

described in [20] because the paper does not focus on the

task of future edge prediction. We decided here to give

it a name for better clarity. In [20]], this module works

as follows: duplicate the interactions of the current batch

and randomly modify the destinations d. We consider in

this work that this module is more general and that any

false message generation can be considered.

Message Function (MSG): This module generates two

messages from each interaction in the batch: one for the

source and one for the destination.

Message Aggregator (AGG): This module handles the

cases where the same node has multiple messages. There

are several ways to solve this issue, such as considering

only the most recent message or considering the mean of

duplicated messages.

Memory (S): This module contains a vector si(t) for

each machine in the network. This memory vector, which

represents the history of each node, is updated after each

batch using the Memory updater.

Memory Updater (MEM): This module takes as input the

messages and the Memory to update the Memory.

Embedding (EMB): This module computes embeddings

for each node at any time t and its main purpose is to

prevent the problem of memory staleness. [22].

Decoder (DEC): This module (in our case) takes as

input the embeddings of the source and destination of

interaction and classify the interaction between false and

real.

Raw Messages Store (RMS): This module is a container

for the batch at the end of a training step.

In order to train a TGN, we detail the procedure in

Algorithm 1.

B. Performance Metrics

We evaluated the performance of the supervised ML

algorithms by 3 criteria: Accuracy, False Alarm Rate, and

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:17, No:2, 2023

94International Scholarly and Scientific Research & Innovation 17(2) 2023 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

7,
 N

o:
2,

 2
02

3
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

12
93

3.
pd

f

Algorithm 1 Train a TGN

Input: {B(i) = (t(i), s(i), d(i)) = {(t(i)j , s
(i)
j , d

(i)
j)}0≤j≤p}: Training data

1: [S]S ← 0 � Initialize memory to zeros

2: [RMS]RMS ← {} � Initialize raw messages

3: for each B(i) ∈ training data do
4: B

(i)
neg ← [FMG]FMG(B(i)) � Sample fasle interactions

5: m ← [MSG]MSG([RMS]RMS) � Compute messages from the previous batch

6: m̄ ← [AGG]AGG(m) � Aggregate messages for the same node

7: Ŝ ← [MEM]MEM(m̄, S) � Get updated memory

8: z ← [EMB]EMBŜ([B
(i), B

(i)
neg]) � Compute embeddings

9: p(i), p
(i)
neg ← [DEC]DEC(z) � Compute interaction probabilities

10: loss ← binary cross-entropy(p(i), p(i)neg)
11: [RMS]RMS ← B(i) � Store the batch

12: [S]S ← Ŝ � Update the memory

13: end for

F1-Score derived from the confusion matrix [23].

IV. PROPOSED SYSTEMS

A. Supervised Prediction

As shown in Fig. 1, we need a trained model to identify

anomalies in real-time. For this purpose, using 70% of a public

data set called UNSW-NB15[4], we trained 5 ML algorithms

and selected the one with the best results for use in the

online phase. In order to use the training data as input to the

algorithms, the data must first go through the preparation steps,

which include removing highly correlated features, adding

new features (Total bytes transferred by the network), and

standardizing by applying standardscaler. After this, all the

features will have mean 0 and std 1.

The algorithms trained by this processed data were then

evaluated by the remaining 30% of the data set using the

confusion matrix and other criteria described in Section III-B.

Then in the next step, to identify the anomalies in real-time,

we need to run the four functions parallel as follows.

Sniffing function: sniffs the network traffic using Argus

server1 in real time.

Feature extraction function: extracts the same features

that we used in the offline phase from the sniffed network

using Argus.

Pre-processing function: prepares features as the inputs

for next function.

Predictions function: classifies the network flow in real

time. All labels predicted by the model are recorded in

the data set.

B. Unsupervised Prediction

This section presents our method for performing

unsupervised anomaly detection on a network using a

TGN and our new indicator. The steps are as follows:

1) Training of a TGN using algorithm 1, on a network

behaving normally (without anomalies). After training

the model, one can interpret its prediction for an

1http://qosient.com/argus/index.shtml

interaction at a given time t as an estimate of the

probability that this interaction occurs in the network

(assuming normal network behavior).

2) Estimation of the probability of every new interaction

(ti, si, di) occurring on the network, using the trained

TGN (with its memory up-to-date with all messages

that occurred before ti). We obtain an estimate of the

sequence of probabilities of consecutive interactions on

our network p0, p1, ..., pn at times t0, t1, ..., tn ≤ T .

3) Computation of the indicator A(T) (1), which represents

the “anomaly level” at time T . The calculation of this

indicator is done iteratively by dividing the time into

fixed intervals of size Δt. This indicator associates

successive low probabilities with a more abnormal

network state.

A(t+Δt) = A(t)×β+
∑

t≤ti≤t+Δt

1

(pe(ti) + ε)α
−1 (1)

in which A(0) = 0, β ∈]0, 1[controls the speed of the

exponential decay of the indicator, α ∈ R+ controls the

amplitude of the jumps induced by the right-hand side

of (1) and 0 ≤ ε prevents the division by zero problem

and reduces the importance of probabilities very close

to zero.

4) Setting a threshold so that if A(T) exceeds it, an alarm

is triggered. The choice of this threshold monitors the

compromise between the number of false alarms and the

rate of correctly detected anomalies.

The outline of this process is summarized in the following

algorithm 2.

After employing Algorithm 2 to evaluate anomaly level on

the network at time T , through the indicator A(T), it is not

necessary to redo all the calculations to obtain A again at a

later time Tnew > T . Instead, Algorithm 2 can be re-applied

with the new interactions {(ti, si, di) : T < ti < Tnew} as

input and the memory S, the indicator A and the time tnew
from the last iteration should not be re-initialized to zero.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:17, No:2, 2023

95International Scholarly and Scientific Research & Innovation 17(2) 2023 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

7,
 N

o:
2,

 2
02

3
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

12
93

3.
pd

f

Fig. 1 Supervised machine learning-based intrusion detection system pipeline

Algorithm 2 Evaluation phase

Input: {(t0, s0, d0), . . . , (ti, si, di), . . . , (tn, sn, dn)}, ti < T : Current time

Output: 0 or 1

1: [S]S ← 0
2: [RMS]RMS ← {}
3: for each (ti, si, di) do
4: m ← [MSG]MSG([RMS]RMS)
5: Ŝ ← [MEM]MEM(m,S)
6: zsi , zdi ← [EMB]EMBŜ(si, ti), [EMB]EMBŜ(di, ti)
7: pi ← [DEC]DEC(zsi , zdi)
8: [RMS]RMS ← {(ti, si, di)}
9: [S]S ← Ŝ

10: end for
11: [indicator]A ← 0

12: tnew ← 0
13: while tnew < T do
14: [indicator]A ← [indicator]A × β +∑

tnew≤ti≤tnew+Δt
1

(pi+ε)α − 1
15: tnew ← tnew +Δt
16: end while
17: if [indicator]A > threshold then
18: return 1

19: else
20: return 0

21: end if

V. EXPERIMENTAL RESULTS AND DISCUSSION

A. Supervised Prediction

The first step in this system is data preparation. There are 5

categorical columns with text data which can not be processed

by ML algorithms: 1. srcip, 2. dstip, 3. proto, 4 state and

5. service. This data set is a public one. Our goal in this

article is to identify anomalies in real-time, which our local

office network evaluated, so the first two features (source IP

and destination IP) that change according to the used network

were removed. In order to convert the remaining three columns

to numeric columns, we used a one-hot encoder, which assigns

one if the value is available for the row, and the rest of

the columns will be 0. Afterward, we removed the features

with a high correlation with other features. Highly correlated

features do not necessarily worsen the model, but they do not

improve it either. So in order to reduce the computation time,

which is very important in real-time detection, we removed

them. To do this, we used the Pearson Correlation coefficient,

r, to calculate the degree of similarity between two features

according to the following formula:

r =

∑n
i=1(xi − x̃)(yi − ỹ)√∑n
i=1(xi − x̃)2(yi − ỹ)2

(2)

where x̃ and ỹ represents the mean of all records in features

x and y respectively. The Pearson Correlation returns a value

from −1 to 1. Proximity of this value to 1 indicates a high

degree of correlation between the two features. In the next

step, we added the total bytes transferred by the network.

This feature represents the sum of ’sbytes’ and ’dbytes’. In

order to reduce the real-time calculations, we used only one

ZEEK to extract the features, so we removed the properties that

ZEEK could not extract from the data, and finally kept only the

features dttl, swin, stime, tcprtt, synack, ackdat, dur, sbytes,

dbytes, sload, dload, spkts, stcpb, dtcpb, smeansz, dmeansz,

network bytes, proto and state. Given that the proto and state

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:17, No:2, 2023

96International Scholarly and Scientific Research & Innovation 17(2) 2023 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

7,
 N

o:
2,

 2
02

3
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

12
93

3.
pd

f

features using onehot method have been converted to Boolean

data, 169 features remain for training at the end. Finally, we

trained LR, Linear SVC, DT, RF and GBDT and calculated

accuracy, F1-score and False Alarm Rate (FAR) for training

and testing data, the results of which are shown in Table I.

TABLE I
SUPERVISED CCLASSIFICATION RESULTS

MODEL DATA SET ACCURACY F1-SCORE FAR
LR Train-Test 0.99-0.99 0.95-0.95 0.0086-0.0087
SVC Train-Test 0.99-0.99 0.95-0.95 0.009-0.009
DT Train-Test 0.98-0.98 0.96-0.96 0.019-0.019
RF Train-Test 0.99-0.98 0.987-0.980 0.007-0.010
GBDT Train-Test 0.99-0.99 0.99-0.98 0.003-0.008

According to the results in Table I, it can be concluded

that by using LR, we can have a model that has the highest

accuracy, the lowest false alarm rate and without having the

problem of overfitting. In the next step, we upgraded this

model to an online model and used sniffed data from our local

network as test data. We selected a machine as the attacking

machine and sent the port scanning packets to another machine

using Nmap [2] and sniffed the data at that time. The designed

algorithm detected the anomaly in real-time, and the data

processing time was less than 1 second. In order to obtain the

accuracy of the algorithm in identifying the anomalies in the

online mode, we labeled the data over 5 minutes. All packets

sent from the attacking machine to the victim machine were

labeled as an attack in this labeling. Table II shows the results

obtained.

TABLE II
ONLINE CLASSIFICATION RESULTS

MODE DATA SET ACCURACY F1-SCORE FAR
Online Test 0.95 0.91 0.049

B. Unsupervised Prediction

1) Data: In this system, our focus is on recognizing

anomalies that could come from any machine within a

network. Public data sets are often designed for only a few

machines with fixed addresses responsible for carrying out

attacks. For this reason, in this section, we simulated our

network to provide the required data as follows:

Normal Network: This network consists of 10 machines

whose interaction with each other is controlled by

node-dependent rules. Fig. 2 shows the average of all

interactions formed between every two machines on the

network, where blue nodes represent the machines and black

arrows represent the interaction between them.

The interactions generated by each machine are divided

into two categories: random and deterministic. Each machine

randomly interacts with its neighbors according to a

probability distribution of its own; these are random

interactions. Each machine reacts to the interactions it receives

according to five simple rules; these are the deterministic

interactions. In this network, each interaction is associated

with four features. One of them is binary, and the other three

are continuous, following a normal distribution. Each machine

Fig. 2 Average behavior of the synthetic network

Fig. 3 Unsupervised anomaly detection results: Confusion matrix

Fig. 4 Unsupervised anomaly detection results: ROC curve

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:17, No:2, 2023

97International Scholarly and Scientific Research & Innovation 17(2) 2023 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

7,
 N

o:
2,

 2
02

3
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

12
93

3.
pd

f

has its parameters for the distribution governing the features

associated with its interactions.

Generation of Anomalies: The next step after network

construction and its normal interactions is to simulate

abnormal interactions, which follow three scenarios:

• Scenario No. 1: Sending messages between two machines

that do not normally interact with each other;

• Scenario No. 2: Sending a similar message from a

machine to one of its neighbors several times in a short

time;

• Scenario No. 3: Changing the parameters of the

probability rule of a feature associated with a message.

Finally, we generate a training dataset without anomalies for

the TGN and a test dataset including anomalies within normal

data.

2) Evaluation: Our test dataset is not a table with normal

and abnormal interactions independent of each other, allowing

simple classifier evaluation. Our data are temporal and

non-independent with abnormal periods rather than abnormal

interactions. To get back to a normal classification evaluation,

we divided the global period into small windows, each window

considered as a test sample. In the following two cases,

classification is done correctly: (1) the window contains an

anomaly, and the anomaly indicator, A, exceeds the threshold

at least once during the period; (2) the window has no anomaly,

and A never exceeds the threshold. We chose time frame

“windows” using the following procedure: we defined a fixed

time frame, τ , and subdivided the global interval as [ti, ti+1]
in such a way that an anomaly always correspond to a date

ti, and |ti+1 − ti| = τ except for cases in which ti+1 is the

time of an anomaly, in that case |ti+1 − ti| may be shorter.

Such “shorter” time frames are normalized in the evaluation

procedure. This was a simple way of keeping almost constant

time frames without overlapping anomalies in the ”interval of

observation.”

3) Model Hyper-Parameters: In this section, you will find

the hyper-parameters and the exact architecture that we used

to obtain the results reported in Section V-B4. These were

obtained by grid search optimizing the results.

• Message encoder: 1-layer MLP

• Message aggregator: Mean message

• Memory dimension: 100

• Memory updater: 1-layer GRU

• Embedding: 1-layer Temporal Graph Attention

• Decoder: 5-layers MLP

• False message generator: (1) Generate random source and

destination, randomly sample features from training data

; (2) Sample real messages from the batch, randomly

permute dummy features and multiply quantitative

features by a random factor.

• Time encoding dimension: 10

• Node features: Count of communications with every other

machines last 0.3, 1 and 10 seconds.

TABLE III
HYPERPARAMETERS FOR LEARNING AND FOR [INDICATOR]A

Initial learning rate 10−3 Minimal learning rate 10−5

Decay rate 1− 10−4 Batch size 10
β 0.25 α 0.25
ε 10−3 Δt 0.02
threshold 0.284 - -

Fig. 5 Abnormality indicator A(t)

4) Results: Fig. 5 shows the evolution of the anomaly

indicator A(t) over 50 seconds. In red dashes is indicated

the threshold. We can clearly distinguish spikes in the

indicator, largely exceeding the threshold, which corresponds

to abnormal messages. The indicator oscillates in a range

close to zero for the rest of the time. Figs. 3 and 4 present

the global results of the unsupervised approach. We obtain

a global accuracy of 96.1%, an F1-score of 0.818, and an

AUC ROC (area under the ROC curve) of 0.98, respectively.

Table IV presents the accuracy according to each scenario of

our test dataset. We can see that the method detects almost

all messages with abnormal features (Scenario No. 3: 99.8%

accuracy). The method also performs very well on messages

between two machines that do not normally interact (Scenario

No. 1: 92.7% accuracy). Finally, the method is less accurate

when the anomaly increases the rate of messages between two

machines (Scenario No. 2: 66.2% accuracy). However, it is

useful to note that these figures depend on the choice of the

threshold and can thus be improved at the cost of a decrease

in accuracy in the normal scenarios, i.e., a higher false alarm

rate.

TABLE IV
ACCURACY FOR EACH TYPE OF ANOMALY

Scenario No. Normal 1 2 3
Accuracy 0.967 0.927 0.662 0.998

VI. DISCUSSION AND FUTURE WORKS

We proposed two systems for recognizing anomalies in a

network in this work. The first one is based on supervised ML

algorithms, and the second one is designed using a Temporal

Graph Network. LR, DT, linear SVM, GBDT, and Random

Forrest algorithms were implemented in the first system. By

comparing the results of performance metrics, Table I, we

concluded that LR is the best method for identifying anomalies

in the proposed pipeline. According to Table I, the accuracy

results obtained from the various algorithms are very close to

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:17, No:2, 2023

98International Scholarly and Scientific Research & Innovation 17(2) 2023 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

7,
 N

o:
2,

 2
02

3
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

12
93

3.
pd

f

each other. After the removal of RF due to the lower accuracy

of test data compared to training data, DT due to lower

accuracy than other methods, and GBDT due to lower F1-score

and FAR on test data compared to training data, among the

other two methods, we chose the method that has the lower

FAR. The FAR performance metric in this work is important

because the existing data sets in cybersecurity are unbalanced.

This imbalance stems from the fact that the number of regular

interactions is much higher than the number of anomalous

interactions in a network. Therefore, after accuracy, the “False

Alarm Rate” is critical. We chose the LR method to build a

trained model for the reasons mentioned. In the second phase

of the supervised methods, we deployed our model to an

online model so that we could analyze streaming data that

are being sniffed from a network in real-time. The calculated

performance metrics in the online mode show us that we

had better results in the offline model. One of the essential

factors in this reduction in performance can be the amount of

exchanged data in the network, which is much lower than the

amount of data in the training set. Another reason could be

attack simulation because the method of simulating them in

test data is different from that of simulating them in trained

data. This method has been deliberately chosen differently so

that we can test the efficiency of the algorithm in different

modes. We compared the results obtained from the proposed

method with other results in the literature. As can be seen,

our results are better than many other results, but it is not the

best result, and it is in third place by a very short margin.

This difference is that we tried to use features that could be

extracted in the online module, so we removed many features

and did not use them for training the model. This removal

can lead to a decrease in detection accuracy. However, since

this decrease in accuracy is very small, those features can be

ignored and instead reduce the time of extraction of features

in accurate time detection. The second system in this paper

is based on Temporal Graph Network. In this regard, we

simulated two sets of data. The first set simulates a typical

network behavior during a given period, while the second

set simulates the traffic anomalies in the network according

to the defined scenarios. The TGN is trained on the created

data set using the modules defined in Section III-A1. Then

we presented an indicator to distinguish abnormalities from

normal behaviors based on a predetermined threshold. This

system can detect anomalies with 96.7% accuracy. We will

evaluate the proposed IDS systems in a network with real

attacks and a greater variety of attacks in future work.

REFERENCES

[1] Godala, Sravanthi, and Rama Prasad V. Vaddella. ”A study on intrusion
detection system in wireless sensor networks.” International Journal of
Communication Networks and Information Security 12.1 (2020): 127-141.

[2] Lyon GF. Nmap network scanning: The official Nmap project guide to
network discovery and security scanning. Insecure. Com LLC (US); 2008.

[3] Sarker, Iqbal H., et al. ”Cybersecurity data science: an overview from
machine learning perspective.” Journal of Big data 7.1 (2020): 1-29.

[4] Moustafa N, Slay J. UNSW-NB15: a comprehensive data set for network
intrusion detection systems (UNSW-NB15 network data set). In2015
military communications and information systems conference (MilCIS)
2015 Nov 10 (pp. 1-6). IEEE.

[5] Seufert, Stefan, and Darragh O’Brien. ”Machine learning for automatic
defence against distributed denial of service attacks.” 2007 IEEE
International Conference on Communications. IEEE, 2007.

[6] Alazab, Ammar, et al. ”Using feature selection for intrusion
detection system.” 2012 international symposium on communications and
information technologies (ISCIT). IEEE, 2012.

[7] Buczak, Anna L., and Erhan Guven. ”A survey of data mining and
machine learning methods for cyber security intrusion detection.” IEEE
Communications surveys & tutorials 18.2 (2015): 1153-1176.

[8] Sarker, Iqbal H., A. S. M. Kayes, and Paul Watters. ”Effectiveness
analysis of machine learning classification models for predicting
personalized context-aware smartphone usage.” Journal of Big Data 6.1
(2019): 1-28.

[9] Li, Yinhui, et al. ”An efficient intrusion detection system based on support
vector machines and gradually feature removal method.” Expert systems
with applications 39.1 (2012): 424-430.

[10] Brugger, T. ”KDD cup’99 dataset (network intrusion) considered
harmful, 15 September 2007. Retrieved January 26, 2008.” (2007).

[11] Hosseinzadeh, Mehdi, et al. ”Improving security using SVM-based
anomaly detection: issues and challenges.” Soft Computing 25.4 (2021):
3195-3223.

[12] Yang, Kun, Samory Kpotufe, and Nick Feamster. ”An Efficient
One-Class SVM for Anomaly Detection in the Internet of Things.” arXiv
preprint arXiv:2104.11146 (2021).

[13] Shapoorifard, Hossein, and Pirooz Shamsinejad. ”Intrusion detection
using a novel hybrid method incorporating an improved KNN.” Int. J.
Comput. Appl 173.1 (2017): 5-9.

[14] Serpen, Gursel, and Ehsan Aghaei. ”Host-based misuse intrusion
detection using PCA feature extraction and kNN classification algorithms.”
Intelligent Data Analysis 22.5 (2018): 1101-1114.

[15] Salama, Mostafa A., et al. ”Hybrid intelligent intrusion detection
scheme.” Soft computing in industrial applications. Springer, Berlin,
Heidelberg, 2011. 293-303.

[16] Al-Yaseen, Wathiq Laftah, Zulaiha Ali Othman, and Mohd Zakree
Ahmad Nazri. ”Real-time intrusion detection system using multi-agent
system.” IAENG International Journal of Computer Science 43.1 (2016):
80-90.

[17] Yan, Weizhong, and Lijie Yu. ”On accurate and reliable anomaly
detection for gas turbine combustors: A deep learning approach.” arXiv
preprint arXiv:1908.09238 (2019).

[18] Protogerou, Aikaterini, et al. ”A graph neural network method for
distributed anomaly detection in IoT.” Evolving Systems 12.1 (2021):
19-36.

[19] Kolias, Constantinos, et al. ”DDoS in the IoT: Mirai and other botnets.”
Computer 50.7 (2017): 80-84.

[20] Rossi, Emanuele, et al. ”Temporal graph networks for deep learning on
dynamic graphs.” arXiv preprint arXiv:2006.10637 (2020).

[21] Béres, Ferenc, et al. ”Node embeddings in dynamic graphs.” Applied
Network Science 4.1 (2019): 1-25.

[22] Kazemi, Seyed Mehran, et al. ”Representation Learning for Dynamic
Graphs: A Survey.” J. Mach. Learn. Res. 21.70 (2020): 1-73.

[23] Sokolova, Marina, and Guy Lapalme. ”A systematic analysis of
performance measures for classification tasks.” Information processing &
management 45.4 (2009): 427-437.

[24] DataReportal (2021), “Digital 2021 Global Digital Overview,” retrieved
from https://datareportal.com/reports/digital-2021-global-digital-overview

[25] Liu, Hongyu, and Bo Lang. ”Machine learning and deep learning
methods for intrusion detection systems: A survey.” applied sciences 9.20
(2019): 4396.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:17, No:2, 2023

99International Scholarly and Scientific Research & Innovation 17(2) 2023 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

7,
 N

o:
2,

 2
02

3
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

12
93

3.
pd

f

