Search results for: solar array vibration damping.
520 Numerical Example of Aperiodic Diffraction Grating
Authors: Youssef Khmou, Said Safi, Miloud Frikel
Abstract:
Diffraction grating is periodic module used in many engineering fields, its geometrical conception gives interesting properties of diffraction and interferences, a uniform and periodic diffraction grating consists of a number of identical apertures that are equally spaced, in this case, the amplitude of intensity distribution in the far field region is generally modulated by diffraction pattern of single aperture. In this paper, we study the case of aperiodic diffraction grating with identical rectangular apertures where theirs coordinates are modeled by square root function, we elaborate a computer simulation comparatively to the periodic array with same length and we discuss the numerical results.Keywords: Diffraction grating, interferences, amplitude modulation, laser.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1089519 Light Tracking Fault Tolerant Control System
Authors: J. Florescu, T. Vinay, L. Wang
Abstract:
A fault detection and identification (FDI) technique is presented to create a fault tolerant control system (FTC). The fault detection is achieved by monitoring the position of the light source using an array of light sensors. When a decision is made about the presence of a fault an identification process is initiated to locate the faulty component and reconfigure the controller signals. The signals provided by the sensors are predictable; therefore the existence of a fault is easily identified. Identification of the faulty sensor is based on the dynamics of the frame. The technique is not restricted to a particular type of controllers and the results show consistency.Keywords: algorithm, detection and diagnostic, fault-tolerantcontrol, fault detection and identification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1413518 Acoustic and Flow Field Analysis of a Perforated Muffler Design
Authors: Zeynep Parlar, Şengül Ari, Rıfat Yilmaz, Erdem Özdemir, Arda Kahraman
Abstract:
New regulations and standards for noise emission increasingly compel the automotive firms to make some improvements about decreasing the engine noise. Nowadays, the perforated reactive mufflers which have an effective damping capability are specifically used for this purpose. New designs should be analyzed with respect to both acoustics and back pressure. In this study, a reactive perforated muffler is investigated numerically and experimentally. For an acoustical analysis, the transmission loss which is independent of sound source of the present cross flow, the perforated muffler was analyzed by COMSOL. To be able to validate the numerical results, transmission loss was measured experimentally. Back pressure was obtained based on the flow field analysis and was also compared with experimental results. Numerical results have an approximate error of 20% compared to experimental results.
Keywords: Back Pressure, Perforated Muffler, Transmission Loss.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8342517 Design the Bowtie Antenna for the Detection of the Tumor in Microwave Tomography
Authors: Muhammd Hassan Khalil, Xu Jiadong
Abstract:
Early breast cancer detection is an emerging field of research as it can save the women infected by malignant tumors. Microwave breast imaging is based on the electrical property contrast between healthy and malignant tumor. This contrast can be detected by use of microwave energy with an array of antennas that illuminate the breast through coupling medium and by measuring the scattered fields. In this paper, author has been presented the design and simulation results of the bowtie antenna. This bowtie antenna is designed for the detection of breast cancer detection.
Keywords: Breast cancer detection, Microwave Imaging, Tomography.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2071516 Increased Capacity of Information Hiding in LSB-s Method for Text and Image
Authors: H.B.Kekre, Archana Athawale, Pallavi N.Halarnkar
Abstract:
Steganography, derived from Greek, literally means “covered writing". It includes a vast array of secret communications methods that conceal the message-s very existence. These methods include invisible inks, microdots, character arrangement, digital signatures, covert channels, and spread spectrum communications. This paper proposes a new improved version of Least Significant Bit (LSB) method. The approach proposed is simple for implementation when compared to Pixel value Differencing (PVD) method and yet achieves a High embedding capacity and imperceptibility. The proposed method can also be applied to 24 bit color images and achieve embedding capacity much higher than PVD.Keywords: Information Hiding, LSB Matching, PVD Steganography.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3174515 Magnetic Field Based Near Surface Haptic and Pointing Interface
Authors: Kasun Karunanayaka, Sanath Siriwardana, Chamari Edirisinghe, Ryohei Nakatsu, PonnampalamGopalakrishnakone
Abstract:
In this paper, we are presenting a new type of pointing interface for computers which provides mouse functionalities with near surface haptic feedback. Further, it can be configured as a haptic display where users may feel the basic geometrical shapes in the GUI by moving the finger on top of the device surface. These functionalities are achieved by tracking three dimensional positions of the neodymium magnet using Hall Effect sensors grid and generating like polarity haptic feedback using an electromagnet array. This interface brings the haptic sensations to the 3D space where previously it is felt only on top of the buttons of the haptic mouse implementations.
Keywords: Pointing interface, near surface haptic feedback, tactile display, tangible user interface.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2078514 Small Signal Stability Assessment of MEPE Test System in Free and Open Source Software
Authors: Kyaw Myo Lin
Abstract:
This paper presents small signal stability study carried over the 140-Bus, 31-Machine, 5-Area MEPE system and validated on free and open source software: PSAT. Well-established linearalgebra analysis, eigenvalue analysis, is employed to determine the small signal dynamic behavior of test system. The aspects of local and interarea oscillations which may affect the operation and behavior of power system are analyzed. Eigenvalue analysis is carried out to investigate the small signal behavior of test system and the participation factors have been determined to identify the participation of the states in the variation of different mode shapes. Also, the variations in oscillatory modes are presented to observe the damping performance of the test system.
Keywords: Eigenvalue analysis, Mode shapes, MEPE test system, Participation factors, Power System oscillations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2441513 Stability Analysis of Three-Lobe Journal Bearing Lubricated with a Micropolar Fluids
Authors: Boualem Chetti
Abstract:
In this paper, the dynamic characteristics of a threelobe journal bearing lubricated with micropolar fluids are determined by the linear stability theory. Lubricating oil containing additives and contaminants is modelled as micropolar fluid. The modified Reynolds equation is obtained using the micropolar lubrication theory .The finite difference technique has been used to determine the solution of the modified Reynolds equation. The dynamic characteristics in terms of stiffness, damping coefficients, the critical mass and whirl ratio are determined for various values of size of material characteristic length and the coupling number. The computed results show that the three-lobe bearing lubricated with micropolar fluid exhibits better stability compared with that lubricated with Newtonian fluid. According to the results obtained, the effect of the parameter micropolar fluid is remarkable on the dynamic characteristics and stability of the three-lobe bearing.
Keywords: Three-lobe bearings, Micropolar fluid, Dynamic characteristics, Stability analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2719512 Estimation of Structural Parameters in Time Domain Using One Dimensional Piezo Zirconium Titanium Patch Model
Authors: N. Jinesh, K. Shankar
Abstract:
This article presents a method of using the one dimensional piezo-electric patch on beam model for structural identification. A hybrid element constituted of one dimensional beam element and a PZT sensor is used with reduced material properties. This model is convenient and simple for identification of beams. Accuracy of this element is first verified against a corresponding 3D finite element model (FEM). The structural identification is carried out as an inverse problem whereby parameters are identified by minimizing the deviation between the predicted and measured voltage response of the patch, when subjected to excitation. A non-classical optimization algorithm Particle Swarm Optimization is used to minimize this objective function. The signals are polluted with 5% Gaussian noise to simulate experimental noise. The proposed method is applied on beam structure and identified parameters are stiffness and damping. The model is also validated experimentally.
Keywords: Structural identification, PZT patches, inverse problem, particle swarm optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 936511 Design of Power System Stabilizer with Neuro-Fuzzy UPFC Controller
Authors: U. Ramesh Babu, V. Vijay Kumar Reddy, S. Tara Kalyani
Abstract:
The growth in the demand of electrical energy is leading to load on the Power system which increases the occurrence of frequent oscillations in the system. The reason for the oscillations is due to the lack of damping torque which is required to dominate the disturbances of Power system. By using FACT devices, such as Unified Power Flow Controller (UPFC) can control power flow, reduce sub-synchronous resonances and increase transient stability. Hence, UPFC is used to damp the oscillations occurred in Power system. This research focuses on adapting the neuro fuzzy controller for the UPFC design by connecting the infinite bus (SMIB - Single machine Infinite Bus) to a linearized model of synchronous machine (Heffron-Phillips) in the power system. This model gains the capability to improve the transient stability and to damp the oscillations of the system.Keywords: Power System, UPFC, (ANFIS) Adaptive Neuro Fuzzy Inference System, transient, Low frequency oscillations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2008510 Robust Coordinated Design of Multiple Power System Stabilizers Using Particle Swarm Optimization Technique
Authors: Sidhartha Panda, C. Ardil
Abstract:
Power system stabilizers (PSS) are now routinely used in the industry to damp out power system oscillations. In this paper, particle swarm optimization (PSO) technique is applied to coordinately design multiple power system stabilizers (PSS) in a multi-machine power system. The design problem of the proposed controllers is formulated as an optimization problem and PSO is employed to search for optimal controller parameters. By minimizing the time-domain based objective function, in which the deviation in the oscillatory rotor speed of the generator is involved; stability performance of the system is improved. The non-linear simulation results are presented for various severe disturbances and small disturbance at different locations as well as for various fault clearing sequences to show the effectiveness and robustness of the proposed controller and their ability to provide efficient damping of low frequency oscillations.Keywords: Low frequency oscillations, Particle swarm optimization, power system stability, power system stabilizer, multimachine power system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 872509 Reduction of Rotor-Bearing-Support Finite Element Model through Substructuring
Authors: Abdur Rosyid, Mohamed El-Madany, Mohanad Alata
Abstract:
Due to simplicity and low cost, rotordynamic system is often modeled by using lumped parameters. Recently, finite elements have been used to model rotordynamic system as it offers higher accuracy. However, it involves high degrees of freedom. In some applications such as control design, this requires higher cost. For this reason, various model reduction methods have been proposed. This work demonstrates the quality of model reduction of rotor-bearing-support system through substructuring. The quality of the model reduction is evaluated by comparing some first natural frequencies, modal damping ratio, critical speeds, and response of both the full system and the reduced system. The simulation shows that the substructuring is proven adequate to reduce finite element rotor model in the frequency range of interest as long as the number and the location of master nodes are determined appropriately. However, the reduction is less accurate in an unstable or nearly-unstable system.
Keywords: Finite element model, rotordynamic system, model reduction, substructuring.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4079508 Distributed Load Flow Analysis using Graph Theory
Authors: D. P. Sharma, A. Chaturvedi, G.Purohit , R.Shivarudraswamy
Abstract:
In today scenario, to meet enhanced demand imposed by domestic, commercial and industrial consumers, various operational & control activities of Radial Distribution Network (RDN) requires a focused attention. Irrespective of sub-domains research aspects of RDN like network reconfiguration, reactive power compensation and economic load scheduling etc, network performance parameters are usually estimated by an iterative process and is commonly known as load (power) flow algorithm. In this paper, a simple mechanism is presented to implement the load flow analysis (LFA) algorithm. The reported algorithm utilizes graph theory principles and is tested on a 69- bus RDN.Keywords: Radial Distribution network, Graph, Load-flow, Array.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3150507 A PSO-based SSSC Controller for Improvement of Transient Stability Performance
Authors: Sidhartha Panda, N. P. Padhy
Abstract:
The application of a Static Synchronous Series Compensator (SSSC) controller to improve the transient stability performance of a power system is thoroughly investigated in this paper. The design problem of SSSC controller is formulated as an optimization problem and Particle Swarm Optimization (PSO) Technique is employed to search for optimal controller parameters. By minimizing the time-domain based objective function, in which the deviation in the oscillatory rotor angle of the generator is involved; transient stability performance of the system is improved. The proposed controller is tested on a weakly connected power system subjected to different severe disturbances. The non-linear simulation results are presented to show the effectiveness of the proposed controller and its ability to provide efficient damping of low frequency oscillations. It is also observed that the proposed SSSC controller improves greatly the voltage profile of the system under severe disturbances.
Keywords: Particle swarm optimization, transient stability, power system oscillations, SSSC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2697506 Assessment of Multi-Domain Energy Systems Modelling Methods
Authors: M. Stewart, Ameer Al-Khaykan, J. M. Counsell
Abstract:
Emissions are a consequence of electricity generation. A major option for low carbon generation, local energy systems featuring Combined Heat and Power with solar PV (CHPV) has significant potential to increase energy performance, increase resilience, and offer greater control of local energy prices while complementing the UK’s emissions standards and targets. Recent advances in dynamic modelling and simulation of buildings and clusters of buildings using the IDEAS framework have successfully validated a novel multi-vector (simultaneous control of both heat and electricity) approach to integrating the wide range of primary and secondary plant typical of local energy systems designs including CHP, solar PV, gas boilers, absorption chillers and thermal energy storage, and associated electrical and hot water networks, all operating under a single unified control strategy. Results from this work indicate through simulation that integrated control of thermal storage can have a pivotal role in optimizing system performance well beyond the present expectations. Environmental impact analysis and reporting of all energy systems including CHPV LES presently employ a static annual average carbon emissions intensity for grid supplied electricity. This paper focuses on establishing and validating CHPV environmental performance against conventional emissions values and assessment benchmarks to analyze emissions performance without and with an active thermal store in a notional group of non-domestic buildings. Results of this analysis are presented and discussed in context of performance validation and quantifying the reduced environmental impact of CHPV systems with active energy storage in comparison with conventional LES designs.
Keywords: CHPV, thermal storage, control, dynamic simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1525505 Instability Analysis of Laminated Composite Beams Subjected to Parametric Axial Load
Authors: Alireza Fereidooni, Kamran Behdinan, Zouheir Fawaz
Abstract:
The integral form of equations of motion of composite beams subjected to varying time loads are discretized using a developed finite element model. The model consists of a straight five node twenty-two degrees of freedom beam element. The stability analysis of the beams is studied by solving the matrix form characteristic equations of the system. The principle of virtual work and the first order shear deformation theory are employed to analyze the beams with large deformation and small strains. The regions of dynamic instability of the beam are determined by solving the obtained Mathieu form of differential equations. The effects of nonconservative loads, shear stiffness, and damping parameters on stability and response of the beams are examined. Several numerical calculations are presented to compare the results with data reported by other researchers.Keywords: Finite element beam model, Composite Beams, stability analysis
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2226504 An ICA Algorithm for Separation of Convolutive Mixture of Speech Signals
Authors: Rajkishore Prasad, Hiroshi Saruwatari, Kiyohiro Shikano
Abstract:
This paper describes Independent Component Analysis (ICA) based fixed-point algorithm for the blind separation of the convolutive mixture of speech, picked-up by a linear microphone array. The proposed algorithm extracts independent sources by non- Gaussianizing the Time-Frequency Series of Speech (TFSS) in a deflationary way. The degree of non-Gaussianization is measured by negentropy. The relative performances of algorithm under random initialization and Null beamformer (NBF) based initialization are studied. It has been found that an NBF based initial value gives speedy convergence as well as better separation performance
Keywords: Blind signal separation, independent component analysis, negentropy, convolutive mixture.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1786503 Efficiency Validation of Hybrid Cooling Application in Hot and Humid Climate Houses of KSA
Authors: Jamil Hijazi, Stirling Howieson
Abstract:
Reducing energy consumption and CO2 emissions are probably the greatest challenge now facing mankind. From considerations surrounding global warming and CO2 production, it has to be recognized that oil is a finite resource and the KSA like many other oil-rich countries will have to start to consider a horizon where hydro-carbons are not the dominant energy resource. The employment of hybrid ground-cooling pipes in combination with the black body solar collection and radiant night cooling systems may have the potential to displace a significant proportion of oil currently used to run conventional air conditioning plant. This paper presents an investigation into the viability of such hybrid systems with the specific aim of reducing cooling load and carbon emissions while providing all year-round thermal comfort in a typical Saudi Arabian urban housing block. Soil temperatures were measured in the city of Jeddah. A parametric study then was carried out by computational simulation software (DesignBuilder) that utilized the field measurements and predicted the cooling energy consumption of both a base case and an ideal scenario (typical block retro-fitted with insulation, solar shading, ground pipes integrated with hypocaust floor slabs/stack ventilation and radiant cooling pipes embed in floor). Initial simulation results suggest that careful ‘ecological design’ combined with hybrid radiant and ground pipe cooling techniques can displace air conditioning systems, producing significant cost and carbon savings (both capital and running) without appreciable deprivation of amenity.
Keywords: Cooling load, energy efficiency, ground pipe cooling, hybrid cooling strategy, hydronic radiant systems, low carbon emission, passive designs, thermal comfort.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 952502 Program Memories Error Detection and Correction On-Board Earth Observation Satellites
Authors: Y. Bentoutou
Abstract:
Memory Errors Detection and Correction aim to secure the transaction of data between the central processing unit of a satellite onboard computer and its local memory. In this paper, the application of a double-bit error detection and correction method is described and implemented in Field Programmable Gate Array (FPGA) technology. The performance of the proposed EDAC method is measured and compared with two different EDAC devices, using the same FPGA technology. Statistical analysis of single-event upset (SEU) and multiple-bit upset (MBU) activity in commercial memories onboard the first Algerian microsatellite Alsat-1 is given.
Keywords: Error Detection and Correction, On-board computer, small satellite missions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2229501 Improvement of Synchronous Machine Dynamic Characteristics via Neural Network Based Controllers
Authors: S. A. Gawish, F. A. Khalifa, R. M. Mostafa
Abstract:
This paper presents Simulation and experimental study aimed at investigating the effectiveness of an adaptive artificial neural network stabilizer on enhancing the damping torque of a synchronous generator. For this purpose, a power system comprising a synchronous generator feeding a large power system through a short tie line is considered. The proposed adaptive neuro-control system consists of two multi-layered feed forward neural networks, which work as a plant model identifier and a controller. It generates supplementary control signals to be utilized by conventional controllers. The details of the interfacing circuits, sensors and transducers, which have been designed and built for use in tests, are presented. The synchronous generator is tested to investigate the effect of tuning a Power System Stabilizer (PSS) on its dynamic stability. The obtained simulation and experimental results verify the basic theoretical concepts.Keywords: Adaptive artificial neural network, power system stabilizer, synchronous generator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1463500 Natural Convection in a Porous Medium Cavity with an Applied Vertical Magnetic Field using Lattice Boltzmann Method
Authors: H.A. Ashorynejad, M. Farhadi, K.Sedighi, A.Hasanpour
Abstract:
We report the results of an lattice Boltzmann simulation of magnetohydrodynamic damping of sidewall convection in a rectangular enclosure filled with a porous medium. In particular we investigate the suppression of convection when a steady magnetic field is applied in the vertical direction. The left and right vertical walls of the cavity are kept at constant but different temperatures while both the top and bottom horizontal walls are insulated. The effects of the controlling parameters involved in the heat transfer and hydrodynamic characteristics are studied in detail. The heat and mass transfer mechanisms and the flow characteristics inside the enclosure depended strongly on the strength of the magnetic field and Darcy number. The average Nusselt number decreases with rising values of the Hartmann number while this increases with increasing values of the Darcy number.Keywords: Lattice Boltzmann method , Natural convection , Magnetohydrodynamic , Porous medium
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1836499 Design and Development of Ferroelectric Material for Microstrip Patch Array Antenna
Abstract:
This paper presents the utilizing of ferroelectric material on antenna application. There are two different ferroelectric had been used on the proposed antennas which include of Barium Strontium Titanate (BST) and Bismuth Titanate (BiT), suitable for Access Points operating in the WLAN IEEE 802.11 b/g and WiMAX IEEE 802.16 within the range of 2.3 GHz to 2.5 GHz application. BST, which had been tested to own a dielectric constant of εr = 15 while BiT has a dielectric constant that higher than BST which is εr = 21 and both materials are in rectangular shaped. The influence of various parameters on antenna characteristics were investigated extensively using commercial electromagnetic simulations software by Communication Simulation Technology (CST). From theoretical analysis and simulation results, it was demonstrated that ferroelectric material used have not only improved the directive emission but also enhanced the radiation efficiency.Keywords: Ferroelectric material, WLAN, WiMAX, dielectric constant
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2017498 Mechanical Characteristics and Modeling of Multiple Trench Friction Pendulum System with Multi-intermediate Sliding Plates
Authors: C. S. Tsai, Yung-Chang Lin
Abstract:
In order to upgrade the seismic resistibility of structures and enhance the functionality of an isolator, a new base isolator called the multiple trench friction pendulum system (MTFPS) is proposed in this study. The proposed MTFPS isolator is composed of a trench concave surface and several intermediate sliding plates in two orthogonal directions. Mathematical formulations have been derived to examine the characteristics of the proposed MTFPS isolator possessing multiple intermediate sliding plates. By means of mathematical formulations, it can be inferred that the natural period and damping effect of the MTFPS isolator with several intermediate sliding plates can be altered continually and controllably during earthquakes. Furthermore, results obtained from shaking table tests demonstrate that the proposed isolator provides good protection to structures for prevention of damage from strong earthquakes.
Keywords: Friction Pendulum System, Multiple Friction Pendulum System, Base Isolation, Earthquake Engineering
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1861497 Creeping Insulation - Hong Kong Green Wall
Authors: X. L. Zhang, K. L. Li, R. M. Skitmore
Abstract:
Hong Kong is a densely populated city suffering badly from the urban heat island effect. Green wall offers a means of ameliorating the situation but there are doubts over its suitability in Hong Kong’s unique environment. In this paper, we look at the potential for green walls in Hong Kong first by summarizing some of the Chinese green walling systems and associated vegetation in use, then by an introduction to three existing green walls in Hong Kong, and finally through a small experiment aimed at identifying the likely main effects of green walled housing.
The results indicate that green walling in Hong Kong is likely to provide enhanced internal house environment in terms of warm weather temperature reduction, stabilization and damping, with direct energy savings in air-conditioning and indirect district benefits of reduced heat island effect and carbon emissions. The green walling insulation properties also suggest the possibility of warmer homes in winter and/or energy savings in mechanical heating provision.
Keywords: Case studies, experiment, green wall, Hong Kong.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3249496 Failure Analysis of a 304 Stainless Steel Flange Crack at Pipeline Transportation of Ethylene
Authors: Parisa Hasanpour, Bahram Borooghani, Vahid Asadi
Abstract:
In the current research, a catastrophic failure of a 304 stainless steel flange at pipeline transportation of ethylene in a petrochemical refinery was studied. Cracking was found in the flange after about 78840h service. Through the chemical analysis and tensile tests, in addition to microstructural analysis such as optical microscopy and Scanning Electron Microscopy (SEM) on the failed part, it found that the fatigue was responsible for the fracture of the flange, which originated from bumps and depressions on the outer surface and propagated by vibration caused by the working condition.
Keywords: Failure analysis, 304 stainless steel, fatigue, flange, petrochemical refinery.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 333495 Real-Coded Genetic Algorithm for Robust Power System Stabilizer Design
Authors: Sidhartha Panda, C. Ardil
Abstract:
Power system stabilizers (PSS) are now routinely used in the industry to damp out power system oscillations. In this paper, real-coded genetic algorithm (RCGA) optimization technique is applied to design robust power system stabilizer for both singlemachine infinite-bus (SMIB) and multi-machine power system. The design problem of the proposed controller is formulated as an optimization problem and RCGA is employed to search for optimal controller parameters. By minimizing the time-domain based objective function, in which the deviation in the oscillatory rotor speed of the generator is involved; stability performance of the system is improved. The non-linear simulation results are presented under wide range of operating conditions; disturbances at different locations as well as for various fault clearing sequences to show the effectiveness and robustness of the proposed controller and their ability to provide efficient damping of low frequency oscillations.
Keywords: Particle swarm optimization, power system stabilizer, low frequency oscillations, power system stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2067494 Fuzzy Control of a Quarter-Car Suspension System
Authors: M. M. M. Salem, Ayman A. Aly
Abstract:
An active suspension system has been proposed to improve the ride comfort. A quarter-car 2 degree-of-freedom (DOF) system is designed and constructed on the basis of the concept of a four-wheel independent suspension to simulate the actions of an active vehicle suspension system. The purpose of a suspension system is to support the vehicle body and increase ride comfort. The aim of the work described in the paper was to illustrate the application of fuzzy logic technique to the control of a continuously damping automotive suspension system. The ride comfort is improved by means of the reduction of the body acceleration caused by the car body when road disturbances from smooth road and real road roughness. The paper describes also the model and controller used in the study and discusses the vehicle response results obtained from a range of road input simulations. In the conclusion, a comparison of active suspension fuzzy control and Proportional Integration derivative (PID) control is shown using MATLAB simulations.Keywords: Fuzzy logic control, ride comfort, vehicle dynamics, active suspension system, quarter-car model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4218493 Frequency Modulation in Vibro-Acoustic Modulation Method
Authors: D. Liu, D. M. Donskoy
Abstract:
The vibroacoustic modulation method is based on the modulation effect of high-frequency ultrasonic wave (carrier) by low-frequency vibration in the presence of various defects, primarily contact-type such as cracks, delamination, etc. The presence and severity of the defect are measured by the ratio of the spectral sidebands and the carrier in the spectrum of the modulated signal. This approach, however, does not differentiate between amplitude and frequency modulations, AM and FM, respectfully. This paper is an attempt to explain the generation mechanisms of FM and its correlation with the flaw properties. Here we proposed two possible mechanisms leading to FM modulation based on nonlinear local defect resonance and dynamic acoustoelastic models.
Keywords: Non-destructive testing, nonlinear acoustics, structural health monitoring, acoustoelasticity, local defect resonance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 525492 Kohonen Self-Organizing Maps as a New Method for Determination of Salt Composition of Multi-Component Solutions
Authors: Sergey A. Burikov, Tatiana A. Dolenko, Kirill A. Gushchin, Sergey A. Dolenko
Abstract:
The paper presents the results of clusterization by Kohonen self-organizing maps (SOM) applied for analysis of array of Raman spectra of multi-component solutions of inorganic salts, for determination of types of salts present in the solution. It is demonstrated that use of SOM is a promising method for solution of clusterization and classification problems in spectroscopy of multicomponent objects, as attributing a pattern to some cluster may be used for recognition of component composition of the object.
Keywords: Kohonen self-organizing maps, clusterization, multicomponent solutions, Raman spectroscopy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1774491 Numerical Analysis of Dynamic Responses of the Plate Subjected to Impulsive Loads
Authors: Behzad Mohammadzadeh, Huyk Chun Noh
Abstract:
Plate is one of the popular structural elements used in a wide range of industries and structures. They may be subjected to blast loads during explosion events, missile attacks or aircraft attacks. This study is to investigate dynamic responses of the rectangular plate subjected to explosive loads. The effects of material properties and plate thickness on responses of the plate are to be investigated. The compressive pressure is applied to the surface of the plate. Different amounts of thickness in the range from 1mm to 30mm are considered for the plate to evaluate the changes in responses of the plate with respect to plate thickness. Two different properties are considered for the steel. First, the analysis is performed by considering only the elastic-plastic properties for the steel plate. Later on damping is considered to investigate its effects on the responses of the plate. To do analysis, numerical method using a finite element based package ABAQUS is applied. Finally, dynamic responses and graphs showing the relation between maximum displacement of the plate and aim parameters are provided.
Keywords: Impulsive loaded plates, dynamic analysis, abaqus, material nonlinearity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1830