Search results for: shape matching
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1108

Search results for: shape matching

208 3D Shape Modelling of Left Ventricle: Towards Correlation of Myocardial Scintigraphy Data and Coronarography Result

Authors: A. Ben Abdallah, H. Essabbah, M. H. Bedoui

Abstract:

The myocardial sintigraphy is an imaging modality which provides functional informations. Whereas, coronarography modality gives useful informations about coronary arteries anatomy. In case of coronary artery disease (CAD), the coronarography can not determine precisely which moderate lesions (artery reduction between 50% and 70%), known as the “gray zone", are haemodynamicaly significant. In this paper, we aim to define the relationship between the location and the degree of the stenosis in coronary arteries and the observed perfusion on the myocardial scintigraphy. This allows us to model the impact evolution of these stenoses in order to justify a coronarography or to avoid it for patients suspected being in the gray zone. Our approach is decomposed in two steps. The first step consists in modelling a coronary artery bed and stenoses of different location and degree. The second step consists in modelling the left ventricle at stress and at rest using the sphercical harmonics model and myocardial scintigraphic data. We use the spherical harmonics descriptors to analyse left ventricle model deformation between stress and rest which permits us to conclude if ever an ischemia exists and to quantify it.

Keywords: Spherical harmonics model, vascular bed, 3D reconstruction, left ventricle, myocardial scintigraphy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1794
207 A Simulation for Estimation of the Blood Pressure using Arterial Pressure-volume Model

Authors: Gye-rok Jeon, Jae-hee Jung, In-cheol Kim, Ah-young Jeon, Sang-hwa Yoon, Jung-man Son, Jae-hyung Kim, Soo-young Ye, Jung-hoon Ro, Dong-hyun Kim, Chul-han Kim

Abstract:

A analysis on the conventional the blood pressure estimation method using an oscillometric sphygmomanometer was performed through a computer simulation using an arterial pressure-volume (APV) model. Traditionally, the maximum amplitude algorithm (MAP) was applied on the oscillation waveforms of the APV model to obtain the mean arterial pressure and the characteristic ratio. The estimation of mean arterial pressure and characteristic ratio was significantly affected with the shape of the blood pressure waveforms and the cutoff frequency of high-pass filter (HPL) circuitry. Experimental errors are due to these effects when estimating blood pressure. To find out an algorithm independent from the influence of waveform shapes and parameters of HPL, the volume oscillation of the APV model and the phase shift of the oscillation with fast fourier transform (FFT) were testified while increasing the cuff pressure from 1 mmHg to 200 mmHg (1 mmHg per second). The phase shift between the ranges of volume oscillation was then only observed between the systolic and the diastolic blood pressures. The same results were also obtained from the simulations performed on two different the arterial blood pressure waveforms and one hyperthermia waveform.

Keywords: Arterial blood pressure, oscillometric method

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3337
206 Determining the Width and Depths of Cut in Milling on the Basis of a Multi-Dexel Model

Authors: Jens Friedrich, Matthias A. Gebele, Armin Lechler, Alexander Verl

Abstract:

Chatter vibrations and process instabilities are the most important factors limiting the productivity of the milling process. Chatter can leads to damage of the tool, the part or the machine tool. Therefore, the estimation and prediction of the process stability is very important. The process stability depends on the spindle speed, the depth of cut and the width of cut. In milling, the process conditions are defined in the NC-program. While the spindle speed is directly coded in the NC-program, the depth and width of cut are unknown. This paper presents a new simulation based approach for the prediction of the depth and width of cut of a milling process. The prediction is based on a material removal simulation with an analytically represented tool shape and a multi-dexel approach for the workpiece. The new calculation method allows the direct estimation of the depth and width of cut, which are the influencing parameters of the process stability, instead of the removed volume as existing approaches do. The knowledge can be used to predict the stability of new, unknown parts. Moreover with an additional vibration sensor, the stability lobe diagram of a milling process can be estimated and improved based on the estimated depth and width of cut.

Keywords: Dexel, process stability, material removal, milling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2261
205 Investigation on Polymer Based Nano-Silver as Food Packaging Materials

Authors: A. M. Metak, T. T. Ajaal

Abstract:

Commercial nanocomposite food packaging type nano-silver containers were characterised using scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). The presence of nanoparticles consistent with the incorporation of 1% nano-silver (Ag) and 0.1% titanium dioxide (TiO2) nanoparticle into polymeric materials formed into food containers was confirmed. Both nanomaterials used in this type of packaging appear to be embedded in a layered configuration within the bulk polymer. The dimensions of the incorporated nanoparticles were investigated using X-ray diffraction (XRD) and determined by calculation using the Scherrer Formula; these were consistent with Ag and TiO2 nanoparticles in the size range 20-70nm both were spherical shape nanoparticles. Antimicrobial assessment of the nanocomposite container has also been performed and the results confirm the antimicrobial activity of Ag and TiO2 nanoparticles in food packaging containers. Migration assessments were performed in a wide range of food matrices to determine the migration of nanoparticles from the packages. The analysis was based upon the relevant European safety Directives and involved the application of inductively coupled plasma mass spectrometry (ICP-MS) to identify the range of migration risk. The data pertain to insignificance levels of migration of Ag and TiO2 nanoparticles into the selected food matrices.

Keywords: Nano-silver, antimicrobial food packaging, migration, titanium dioxide.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6348
204 The Role of Paper in the Copy Identification of Safavid Era Shahnamehs of Tabriz Doctrine

Authors: Ashrafosadat Mousavi Lar, Elahe Moravej

Abstract:

To investigate and explain the history of each copy, we must refer to its past because it highlights parts of the civilization of people among which this copy has been codified. In this paper, eight Ferdowsi’s Shahnameh of Safavid era of Tabriz doctrine available in Iranian libraries and museums are studied. Undoubtedly, it can be said that Ferdowsi’s Shahnameh is one of the most important books that has been transcribed many times in different eras because it explains the Iranian champions’ prowess and it includes the history of Iran from Pishdadian to Sasanian dynasty. In addition, it has been attractive for governors and artists. The research methodology of this article is based on the analytical-descriptive arguments. The research hypothesis is based on papers used in Shahnameh writing in Safavid era of Tabriz doctrine were mostly Isfahanian papers existed. At that time, Isfahanian paper was unique in terms of quality, clarity, flatness of the sheets, volume, shape, softness and elegance, strength, and smoothness. This paper was mostly used to prepare the courtier and exquisite copies. This shows that the prepared copies in Safavid era of Tabriz doctrine were very important because the artists and people who ordered and were out of the court have ordered Isfahanian paper for writing their books.

Keywords: Shahnameh, Safavid era, Tabriz doctrine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 780
203 On the Computation of a Common n-finger Robotic Grasp for a Set of Objects

Authors: Avishai Sintov, Roland Menassa, Amir Shapiro

Abstract:

Industrial robotic arms utilize multiple end-effectors, each for a specific part and for a specific task. We propose a novel algorithm which will define a single end-effector’s configuration able to grasp a given set of objects with different geometries. The algorithm will have great benefit in production lines allowing a single robot to grasp various parts. Hence, reducing the number of endeffectors needed. Moreover, the algorithm will reduce end-effector design and manufacturing time and final product cost. The algorithm searches for a common grasp over the set of objects. The search algorithm maps all possible grasps for each object which satisfy a quality criterion and takes into account possible external wrenches (forces and torques) applied to the object. The mapped grasps are- represented by high-dimensional feature vectors which describes the shape of the gripper. We generate a database of all possible grasps for each object in the feature space. Then we use a search and classification algorithm for intersecting all possible grasps over all parts and finding a single common grasp suitable for all objects. We present simulations of planar and spatial objects to validate the feasibility of the approach.

Keywords: Common Grasping, Search Algorithm, Robotic End-Effector.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1677
202 The Emission Spectra Due to Exciton-Exciton Collisions in GaAs/AlGaAs Quantum Well System

Authors: Surendra K Pandey

Abstract:

Optical emission based on excitonic scattering processes becomes important in dense exciton systems in which the average distance between excitons is of the order of a few Bohr radii but still below the exciton screening threshold. The phenomena due to interactions among excited states play significant role in the emission near band edge of the material. The theory of two-exciton collisions for GaAs/AlGaAs quantum well systems is a mild attempt to understand the physics associated with the optical spectra due to excitonic scattering processes in these novel systems. The four typical processes considered give different spectral shape, peak position and temperature dependence of the emission spectra. We have used the theory of scattering together with the second order perturbation theory to derive the radiative power spontaneously emitted at an energy ħω by these processes. The results arrived at are purely qualitative in nature. The intensity of emitted light in quantum well systems varies inversely to the square of temperature, whereas in case of bulk materials it simply decreases with the  temperature.

Keywords: Exciton-Exciton Collisions, Excitonic Scattering Processes, Interacting Excitonic States, Quantum Wells.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1440
201 Influence of Pressure from Compression Textile Bands: Their Using in the Treatment of Venous Human Leg Ulcers

Authors: Bachir Chemani, Rachid Halfaoui

Abstract:

The aim of study was to evaluate pressure distribution characteristics of the elastic textile bandages using two instrumental techniques: a prototype Instrument and a load Transference. The prototype instrument which simulates shape of real leg has pressure sensors which measure bandage pressure. Using this instrument, the results show that elastic textile bandages presents different pressure distribution characteristics and none produces a uniform distribution around lower limb.

The load transference test procedure is used to determine whether a relationship exists between elastic textile bandage structure and pressure distribution characteristics. The test procedure assesses degree of load, directly transferred through a textile when loads series are applied to bandaging surface. A range of weave fabrics was produced using needle weaving machine and a sewing technique. A textile bandage was developed with optimal characteristics far superior pressure distribution than other bandages. From results, we find that theoretical pressure is not consistent exactly with practical pressure. It is important in this study to make a practical application for specialized nurses in order to verify the results and draw useful conclusions for predicting the use of this type of elastic band.

Keywords: Textile, cotton, pressure, venous ulcers, elastic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1750
200 An Intelligent Text Independent Speaker Identification Using VQ-GMM Model Based Multiple Classifier System

Authors: Cheima Ben Soltane, Ittansa Yonas Kelbesa

Abstract:

Speaker Identification (SI) is the task of establishing identity of an individual based on his/her voice characteristics. The SI task is typically achieved by two-stage signal processing: training and testing. The training process calculates speaker specific feature parameters from the speech and generates speaker models accordingly. In the testing phase, speech samples from unknown speakers are compared with the models and classified. Even though performance of speaker identification systems has improved due to recent advances in speech processing techniques, there is still need of improvement. In this paper, a Closed-Set Tex-Independent Speaker Identification System (CISI) based on a Multiple Classifier System (MCS) is proposed, using Mel Frequency Cepstrum Coefficient (MFCC) as feature extraction and suitable combination of vector quantization (VQ) and Gaussian Mixture Model (GMM) together with Expectation Maximization algorithm (EM) for speaker modeling. The use of Voice Activity Detector (VAD) with a hybrid approach based on Short Time Energy (STE) and Statistical Modeling of Background Noise in the pre-processing step of the feature extraction yields a better and more robust automatic speaker identification system. Also investigation of Linde-Buzo-Gray (LBG) clustering algorithm for initialization of GMM, for estimating the underlying parameters, in the EM step improved the convergence rate and systems performance. It also uses relative index as confidence measures in case of contradiction in identification process by GMM and VQ as well. Simulation results carried out on voxforge.org speech database using MATLAB highlight the efficacy of the proposed method compared to earlier work.

Keywords: Feature Extraction, Speaker Modeling, Feature Matching, Mel Frequency Cepstrum Coefficient (MFCC), Gaussian mixture model (GMM), Vector Quantization (VQ), Linde-Buzo-Gray (LBG), Expectation Maximization (EM), pre-processing, Voice Activity Detection (VAD), Short Time Energy (STE), Background Noise Statistical Modeling, Closed-Set Tex-Independent Speaker Identification System (CISI).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1889
199 Treatment of the Modern Management Mechanism of the Debris Flow Processes Expected in the Mletiskhevi

Authors: G. Chakhaia, S. Gogilava, L. Tsulukidze, Z. Laoshvili, I. Khubulava, S. Bosikashvili, T. Gugushvili

Abstract:

The work reviewed and evaluated various genesis debris flow phenomena recently formatted in the Mletiskhevi, accordingly it revealed necessity of treatment modern debris flow against measures. Based on this, it is proposed the debris flow against truncated semi cone shape construction, which elements are contained in the car’s secondary tires. its constituent elements (sections), due to the possibilities of amortization and geometric shapes is effective and sustainable towards debris flow hitting force. The construction is economical, because after crossing the debris flows in the river bed, the riverbed is not cleanable, also the elements of the building are resource saving. For assessment of influence of cohesive debris flow at the construction and evaluation of the construction effectiveness have been implemented calculation in the specific assumptions with approved methodology. According to the calculation, it was established that after passing debris flow in the debris flow construction (in 3 row case) its hitting force reduces 3 times, that causes reduce of debris flow speed and kinetic energy, as well as sedimentation on a certain section of water drain in the lower part of the construction. Based on the analysis and report on the debris flow against construction, it can be said that construction is effective, inexpensive, technically relatively easy-to-reach measure, that’s why its implementation is prospective.

Keywords: Construction, debris flow, sections, theoretical calculation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 401
198 Finite Element Analysis of Thermally-Induced Bistable Plate Using Four Plate Elements

Authors: Jixiao Tao, Xiaoqiao He

Abstract:

The present study deals with the finite element (FE) analysis of thermally-induced bistable plate using various plate elements. The quadrilateral plate elements include the 4-node conforming plate element based on the classical laminate plate theory (CLPT), the 4-node and 9-node Mindlin plate element based on the first-order shear deformation laminated plate theory (FSDT), and a displacement-based 4-node quadrilateral element (RDKQ-NL20). Using the von-Karman’s large deflection theory and the total Lagrangian (TL) approach, the nonlinear FE governing equations for plate under thermal load are derived. Convergence analysis for four elements is first conducted. These elements are then used to predict the stable shapes of thermally-induced bistable plate. Numerical test shows that the plate element based on FSDT, namely the 4-node and 9-node Mindlin, and the RDKQ-NL20 plate element can predict two stable cylindrical shapes while the 4-node conforming plate predicts a saddles shape. Comparing the simulation results with ABAQUS, the RDKQ-NL20 element shows the best accuracy among all the elements.

Keywords: Finite element method, geometrical nonlinearity, bistable, quadrilateral plate elements.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 788
197 Analysis of the Communication Methods of an iCIM 3000 System within the Frame of Research Purpose

Authors: Radovan Holubek, Daynier Rolando Delgado Sobrino, Roman Ruzarovsky

Abstract:

Current trends in manufacturing are characterized by production broadening, innovation cycle shortening, and the products having a new shape, material and functions. The production strategy focused on time needed change from the traditional functional production structure to flexible manufacturing cells and lines. Production by automated manufacturing system (AMS) is one of the most important manufacturing philosophies in the last years. The main goals of the project we are involved in lies on building a laboratory in which will be located a flexible manufacturing system consisting of at least two production machines with NC control (milling machines, lathe). These machines will be linked to a transport system and they will be served by industrial robots. Within this flexible manufacturing system a station for the quality control consisting of a camera system and rack warehouse will be also located. The design, analysis and improvement of this manufacturing system, specially with a special focus on the communication among devices constitute the main aims of this paper. The key determining factors for the manufacturing system design are: the product, the production volume, the used machines, the disposable manpower, the disposable infrastructure and the legislative frame for the specific cases.

Keywords: Paperless manufacturing, flexible manufacturing, robotized manufacturing, material flow, iCIM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1804
196 Geometrically Non-Linear Axisymmetric Free Vibration Analysis of Functionally Graded Annular Plates

Authors: Boutahar Lhoucine, El Bikri Khalid, Benamar Rhali

Abstract:

In this paper, the non-linear free axisymmetric vibration of a thin annular plate made of functionally graded material (FGM) has been studied by using the energy method and a multimode approach. FGM properties vary continuously as well as non-homogeneity through the thickness direction of the plate. The theoretical model is based on the classical plate theory and the Von Kármán geometrical non-linearity assumptions. An approximation has been adopted in the present work consisting of neglecting the in-plane deformation in the formulation. Hamilton’s principle is used to derive the governing equation of motion. The problem is solved by a numerical iterative procedure in order to obtain more accurate results for vibration amplitudes up to 1.5 times the plate thickness. The numerical results are given for the first axisymmetric non-linear mode shape for a wide range of vibration amplitudes and they are presented either in tabular form or in graphical form to show the effect that the vibration amplitude and the variation in material properties have significant effects on the frequencies and the bending stresses in large amplitude vibration of the functionally graded annular plate.

Keywords: Non-linear vibrations, Annular plates, Large amplitudes, FGM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2181
195 Fuzzy Mathematical Morphology approach in Image Processing

Authors: Yee Yee Htun, Dr. Khaing Khaing Aye

Abstract:

Morphological operators transform the original image into another image through the interaction with the other image of certain shape and size which is known as the structure element. Mathematical morphology provides a systematic approach to analyze the geometric characteristics of signals or images, and has been applied widely too many applications such as edge detection, objection segmentation, noise suppression and so on. Fuzzy Mathematical Morphology aims to extend the binary morphological operators to grey-level images. In order to define the basic morphological operations such as fuzzy erosion, dilation, opening and closing, a general method based upon fuzzy implication and inclusion grade operators is introduced. The fuzzy morphological operations extend the ordinary morphological operations by using fuzzy sets where for fuzzy sets, the union operation is replaced by a maximum operation, and the intersection operation is replaced by a minimum operation. In this work, it consists of two articles. In the first one, fuzzy set theory, fuzzy Mathematical morphology which is based on fuzzy logic and fuzzy set theory; fuzzy Mathematical operations and their properties will be studied in details. As a second part, the application of fuzziness in Mathematical morphology in practical work such as image processing will be discussed with the illustration problems.

Keywords: Binary Morphological, Fuzzy sets, Grayscalemorphology, Image processing, Mathematical morphology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3247
194 Constructing a Bayesian Network for Solar Energy in Egypt Using Life Cycle Analysis and Machine Learning Algorithms

Authors: Rawaa H. El-Bidweihy, Hisham M. Abdelsalam, Ihab A. El-Khodary

Abstract:

In an era where machines run and shape our world, the need for a stable, non-ending source of energy emerges. In this study, the focus was on the solar energy in Egypt as a renewable source, the most important factors that could affect the solar energy’s market share throughout its life cycle production were analyzed and filtered, the relationships between them were derived before structuring a Bayesian network. Also, forecasted models were built for multiple factors to predict the states in Egypt by 2035, based on historical data and patterns, to be used as the nodes’ states in the network. 37 factors were found to might have an impact on the use of solar energy and then were deducted to 12 factors that were chosen to be the most effective to the solar energy’s life cycle in Egypt, based on surveying experts and data analysis, some of the factors were found to be recurring in multiple stages. The presented Bayesian network could be used later for scenario and decision analysis of using solar energy in Egypt, as a stable renewable source for generating any type of energy needed.

Keywords: ARIMA, auto correlation, Bayesian network, forecasting models, life cycle, partial correlation, renewable energy, SARIMA, solar energy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 782
193 Simultaneous Optimization of Machining Parameters and Tool Geometry Specifications in Turning Operation of AISI1045 Steel

Authors: Farhad Kolahan, Mohsen Manoochehri, Abbas Hosseini

Abstract:

Machining is an important manufacturing process used to produce a wide variety of metallic parts. Among various machining processes, turning is one of the most important one which is employed to shape cylindrical parts. In turning, the quality of finished product is measured in terms of surface roughness. In turn, surface quality is determined by machining parameters and tool geometry specifications. The main objective of this study is to simultaneously model and optimize machining parameters and tool geometry in order to improve the surface roughness for AISI1045 steel. Several levels of machining parameters and tool geometry specifications are considered as input parameters. The surface roughness is selected as process output measure of performance. A Taguchi approach is employed to gather experimental data. Then, based on signal-to-noise (S/N) ratio, the best sets of cutting parameters and tool geometry specifications have been determined. Using these parameters values, the surface roughness of AISI1045 steel parts may be minimized. Experimental results are provided to illustrate the effectiveness of the proposed approach.

Keywords: Taguchi method, turning parameters, tool geometry specifications, S/N ratio, statistical analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2325
192 Automatic Extraction of Roads from High Resolution Aerial and Satellite Images with Heavy Noise

Authors: Yan Li, Ronald Briggs

Abstract:

Aerial and satellite images are information rich. They are also complex to analyze. For GIS systems, many features require fast and reliable extraction of roads and intersections. In this paper, we study efficient and reliable automatic extraction algorithms to address some difficult issues that are commonly seen in high resolution aerial and satellite images, nonetheless not well addressed in existing solutions, such as blurring, broken or missing road boundaries, lack of road profiles, heavy shadows, and interfering surrounding objects. The new scheme is based on a new method, namely reference circle, to properly identify the pixels that belong to the same road and use this information to recover the whole road network. This feature is invariable to the shape and direction of roads and tolerates heavy noise and disturbances. Road extraction based on reference circles is much more noise tolerant and flexible than the previous edge-detection based algorithms. The scheme is able to extract roads reliably from images with complex contents and heavy obstructions, such as the high resolution aerial/satellite images available from Google maps.

Keywords: Automatic road extraction, Image processing, Feature extraction, GIS update, Remote sensing, Geo-referencing

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1701
191 Reflections of Utopia and the Ideal City in the Development of Physical Structure of Nikšić Aspect of Visual Perception

Authors: Svetlana Perović, Svetislav Popović

Abstract:

Aspect of visual perception occupies a central position in shaping the physical structure of a city. This paper discusses the visual characteristics of utopian cities and their impact on the shaping of real urban structures. Utopian examples of cities will not be discussed in terms of social and sociological conditions, but rather the emphasis is on urban utopias and ideal cities that have achieved or have had potential impact on the shape of the physical structure of Nikšić. It is a Renaissance-Baroque period with a touch of classicism. The paper’s emphasis is on the physical dimension, not excluding the importance of social equilibrium, studies of which are dating back to Aristotle, Plato, Thomas More, Robert Owen, Tommaso Campanella and others. The emphasis is on urban utopias and their impact on the development of sustainable physical structure of a real city in the context of visual perception. In the case of Nikšić, this paper identifies the common features of a real city and a utopian city, as well as criteria for sustainable urban development in the context of visual achievement.

Keywords: Physical Structure of Nikšić, Utopia and Ideal City, Visual Perception.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3148
190 Preparation and Fabrication of Lithium Disilicate Glass Ceramic as Dental Crowns via Hot Pressing Method

Authors: A. Srion, W. Thepsuwan, N. Monmaturapoj

Abstract:

Two Lithium Disilicate (LD) glass ceramics based on SiO2-Li2O-K2O-Al2O3 system were prepared through a glass melting method. The glass rods were then fabricated into dental crowns via a hot pressing at 900˚C and 850˚C in order to study the effect of the pressing temperatures on the phase formation and microstructure of the glasses. Different samples of as cast glass and heat treated samples (600˚C and 700˚C) were used to press for investigating the effect of an initial microstructure on the hot pressing technique. Xray diffraction (XRD) and scanning electron microscopy (SEM) were performed to determine the phase formation and microstructure of the samples, respectively. XRD results show that the main crystalline structure was Li2Si2O5 by having Li3PO4, Li0.6Al0.6Si2O6, Li2SiO3, Ca5 (PO4)3F and SiO2 as minor phases. Glass compositions with different heat treatment temperatures exhibited a difference phase formations but have less effect during pressing. SEM micrographs showed the microstructure of Li2Si2O5 as lath-like shape in all glasses. With increasing the initial heat treatment temperature, the longer the lath-like crystals of lithium disilicate were increased especially when using glass heat treatment at 700˚C followed by pressing at 900˚C. This could be suggested that LD1 heat treatment at 700˚C which pressing at 900˚C presented the best formation by the hot pressing and compiled microstructure.

Keywords: Lithium disilicate, Hot pressing, Dental crown, Microstructure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4193
189 Strong Adhesion and High Wettability at Polyetheretherketone-Resin/Titanium-Dioxide Interface Obtained with Crystal-Orientation Control

Authors: Tomio Iwasaki, Yosuke Kawahito

Abstract:

The adhesion strength and wettability at the interfaces between a polyetheretherketone (PEEK) resin and titanium dioxide (TiO2) have become more important because direct joining of PEEK resin and titanium (Ti), whose surface has usually the oxide (TiO2), is needed not only in vehicles such as airplanes, automobiles, and space vehicles, but also in medical devices such as implants. To realize strong joint between the PEEK resin and TiO2, the dependence of the adhesion strength and wettability on crystal orientations of rutile TiO2 were investigated by using molecular simulations. Molecular dynamics simulations were conducted by combining quantum-mechanics equation of electrons with Newton’s equation of motion of nuclear coordinates (atomic coordinates). By putting a PEEK-resin sphere on a rutile TiO2 surface and by heating the system to 650 K, the contact angles at the interfaces were calculated to evaluate the wettability. After the system is cooled to 300 K from 650 K, to evaluate the adhesin strength, the adhesive fracture energy is calculated as the difference between the energy of the PEEK-TiO2 attached state and that of the PEEK-TiO2 detached state. The results of the contact angles showed that PEEK resin on the TiO2(100) and that on the TiO2(001) surface has low wettability with large contact angles. On the other hand, PEEK resin on the TiO2(110) surface has high wettability with a small contact angle. The results of the adhesive fracture energies showed that the adhesion at the PEEK-resin/TiO2(100) and PEEK-resin/TiO2(001) interfaces are weak. On the other hand, the adhesion at the PEEK-resin/TiO2(110) interface is strong. To clarify the reason that the higher wettability and stronger adhesion are obtained at the PEEK/TiO2(110) interface than at the at the PEEK/TiO2(100) and PEEK/TiO2(001) interfaces, atomic configurations at the interfaces were visualized. The atomic configuration at the PEEK/TiO2(110) interface showed that the lattice-matched coherent interface is realized, and the atomic density is high. On the other hand, the atomic configuration at the PEEK/TiO2(001) interface showed the lattice-unmatched incoherent interface. The atomic configuration at the PEEK/TiO2(100) interface showed that the atomic density is very low although the lattice-matched interface is realized. Therefore, the lattice matching and the high atomic density at the PEEK/TiO2(001) interface are considered to be dominant factors in the high wettability and strong adhesion.

Keywords: Adhesion, direct joining, PEEK, TiO2, wettability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 450
188 Analysis of Train Passenger Seat Using Ergonomic Function Deployment Method

Authors: Robertoes K. K. Wibowo, Siswoyo Soekarno, Irma Puspitasari

Abstract:

Indonesian people use trains for their transportation, especially they use economy class train transportation because it is cheaper and has a more precise schedule than any other ground transportation. Nevertheless, the economy class passenger seat raises some inconvenience issues for passengers. This is due to the design of the chair on the economic class of trains that did not adjusted to the shape of anthropometry of Indonesian people. Thus, research needs to be conducted on the design of the seats in the economic class of trains. The purpose of this research is to make the design of economy class passenger seats ergonomic. This research method uses questionnaires and anthropometry measurements. The data obtained is processed using House of Quality of Ergonomic Function Development. From the results of analysis and data processing were obtained important changes from the original design. Ergonomic chair design according to the analysis is a stainless steel frame, seat height 390 mm, with a seat width for each passenger of 400 mm and a depth of 400 mm. Design of the backrest has a height of 840 mm, width of 430 mm and length of 300 mm that can move at the angle of 105-115 degrees. The width of the footrest is 42 mm and 400 mm length. The thickness of the seat cushion is 100 mm.

Keywords: Chair, ergonomics, function development, train passenger.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1828
187 A Ring-Shaped Tri-Axial Force Sensor for Minimally Invasive Surgery

Authors: Beibei Han, Yong-Jin Yoon, Muhammad Hamidullah, Angel Tsu-Hui Lin, Woo-Tae Park

Abstract:

This paper presents the design of a ring-shaped tri-axial fore sensor that can be incorporated into the tip of a guidewire for use in minimally invasive surgery (MIS). The designed sensor comprises a ring-shaped structure located at the center of four cantilever beams. The ringdesign allows surgical tools to be easily passed through which largely simplified the integration process. Silicon nanowires (SiNWs) are used aspiezoresistive sensing elementsembeddedon the four cantilevers of the sensor to detect the resistance change caused by the applied load.An integration scheme with new designed guidewire tip structure having two coils at the distal end is presented. Finite element modeling has been employed in the sensor design to find the maximum stress location in order to put the SiNWs at the high stress regions to obtain maximum output. A maximum applicable force of 5 mN is found from modeling. The interaction mechanism between the designed sensor and a steel wire has been modeled by FEM. A linear relationship between the applied load on the steel wire and the induced stress on the SiNWs were observed.

Keywords: Triaxial MEMS force sensor, Ring shape, Silicon Nanowire, Minimally invasive surgery.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2277
186 Real-time 3D Feature Extraction without Explicit 3D Object Reconstruction

Authors: Kwangjin Hong, Chulhan Lee, Keechul Jung, Kyoungsu Oh

Abstract:

For the communication between human and computer in an interactive computing environment, the gesture recognition is studied vigorously. Therefore, a lot of studies have proposed efficient methods about the recognition algorithm using 2D camera captured images. However, there is a limitation to these methods, such as the extracted features cannot fully represent the object in real world. Although many studies used 3D features instead of 2D features for more accurate gesture recognition, the problem, such as the processing time to generate 3D objects, is still unsolved in related researches. Therefore we propose a method to extract the 3D features combined with the 3D object reconstruction. This method uses the modified GPU-based visual hull generation algorithm which disables unnecessary processes, such as the texture calculation to generate three kinds of 3D projection maps as the 3D feature: a nearest boundary, a farthest boundary, and a thickness of the object projected on the base-plane. In the section of experimental results, we present results of proposed method on eight human postures: T shape, both hands up, right hand up, left hand up, hands front, stand, sit and bend, and compare the computational time of the proposed method with that of the previous methods.

Keywords: Fast 3D Feature Extraction, Gesture Recognition, Computer Vision.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1638
185 Flow Modeling and Runner Design Optimization in Turgo Water Turbines

Authors: John S. Anagnostopoulos, Dimitrios E. Papantonis

Abstract:

The incorporation of computational fluid dynamics in the design of modern hydraulic turbines appears to be necessary in order to improve their efficiency and cost-effectiveness beyond the traditional design practices. A numerical optimization methodology is developed and applied in the present work to a Turgo water turbine. The fluid is simulated by a Lagrangian mesh-free approach that can provide detailed information on the energy transfer and enhance the understanding of the complex, unsteady flow field, at very small computing cost. The runner blades are initially shaped according to hydrodynamics theory, and parameterized using Bezier polynomials and interpolation techniques. The use of a limited number of free design variables allows for various modifications of the standard blade shape, while stochastic optimization using evolutionary algorithms is implemented to find the best blade that maximizes the attainable hydraulic efficiency of the runner. The obtained optimal runner design achieves considerably higher efficiency than the standard one, and its numerically predicted performance is comparable to a real Turgo turbine, verifying the reliability and the prospects of the new methodology.

Keywords: Turgo turbine, Lagrangian flow modeling, Surface parameterization, Design optimization, Evolutionary algorithms.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4057
184 Strongly Coupled Finite Element Formulation of Electromechanical Systems with Integrated Mesh Morphing using Radial Basis Functions

Authors: D. Kriebel, J. E. Mehner

Abstract:

The paper introduces a method to efficiently simulate nonlinear changing electrostatic fields occurring in micro-electromechanical systems (MEMS). Large deflections of the capacitor electrodes usually introduce nonlinear electromechanical forces on the mechanical system. Traditional finite element methods require a time-consuming remeshing process to capture exact results for this physical domain interaction. In order to accelerate the simulation process and eliminate the remeshing process, a formulation of a strongly coupled electromechanical transducer element will be introduced which uses a combination of finite-element with an advanced mesh morphing technique using radial basis functions (RBF). The RBF allows large geometrical changes of the electric field domain while retain high element quality of the deformed mesh. Coupling effects between mechanical and electrical domains are directly included within the element formulation. Fringing field effects are described accurate by using traditional arbitrary shape functions.

Keywords: electromechanical, electric field, transducer, simulation, modeling, finite-element, mesh morphing, radial basis function

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 517
183 Attention Based Fully Convolutional Neural Network for Simultaneous Detection and Segmentation of Optic Disc in Retinal Fundus Images

Authors: Sandip Sadhukhan, Arpita Sarkar, Debprasad Sinha, Goutam Kumar Ghorai, Gautam Sarkar, Ashis K. Dhara

Abstract:

Accurate segmentation of the optic disc is very important for computer-aided diagnosis of several ocular diseases such as glaucoma, diabetic retinopathy, and hypertensive retinopathy. The paper presents an accurate and fast optic disc detection and segmentation method using an attention based fully convolutional network. The network is trained from scratch using the fundus images of extended MESSIDOR database and the trained model is used for segmentation of optic disc. The false positives are removed based on morphological operation and shape features. The result is evaluated using three-fold cross-validation on six public fundus image databases such as DIARETDB0, DIARETDB1, DRIVE, AV-INSPIRE, CHASE DB1 and MESSIDOR. The attention based fully convolutional network is robust and effective for detection and segmentation of optic disc in the images affected by diabetic retinopathy and it outperforms existing techniques.

Keywords: Ocular diseases, retinal fundus image, optic disc detection and segmentation, fully convolutional network, overlap measure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 780
182 A New Perturbation Technique in Numerical Study on Buckling of Composite Shells under Axial Compression

Authors: Zia R. Tahir, P. Mandal

Abstract:

A numerical study is presented on buckling and post buckling behaviour of laminated carbon fiber reinforced plastic (CFRP) thin-walled cylindrical shells under axial compression using asymmetric meshing technique (AMT). Asymmetric meshing technique is a perturbation technique to introduce disturbance without changing geometry, boundary conditions or loading conditions. Asymmetric meshing affects predicted buckling load, buckling mode shape and post-buckling behaviour. Linear (eigenvalue) and nonlinear (Riks) analyses have been performed to study the effect of asymmetric meshing in the form of a patch on buckling behaviour. The reduction in the buckling load using Asymmetric meshing technique was observed to be about 15%. An isolated dimple formed near the bifurcation point and the size of which increased to reach a stable state in the post-buckling region. The load-displacement curve behaviour applying asymmetric meshing is quite similar to the curve obtained using initial geometric imperfection in the shell model.

Keywords: CFRP Composite Cylindrical Shell, Finite Element Analysis, Perturbation Technique, Asymmetric Meshing Technique, Linear Eigenvalue analysis, Non-linear Riks Analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2378
181 Three-Dimensional, Non-Linear Finite Element Analysis of Bullet Penetration through Thin AISI 4340 Steel Target Plate

Authors: Abhishek Soni, A. Kumaraswamy, M. S. Mahesh

Abstract:

Bullet penetration in steel plate is investigated with the help of three-dimensional, non-linear, transient, dynamic, finite elements analysis using explicit time integration code LSDYNA. The effect of large strain, strain-rate and temperature at very high velocity regime was studied from number of simulations of semi-spherical nose shape bullet penetration through single layered circular plate with 2 mm thickness at impact velocities of 500, 1000, and 1500 m/s with the help of Johnson Cook material model. Mie-Gruneisen equation of state is used in conjunction with Johnson Cook material model to determine pressure-volume relationship at various points of interests. Two material models viz. Plastic-Kinematic and Johnson- Cook resulted in different deformation patterns in steel plate. It is observed from the simulation results that the velocity drop and loss of kinetic energy occurred very quickly up to perforation of plate, after that the change in velocity and changes in kinetic energy are negligibly small. The physics behind this kind of behaviour is presented in the paper.

Keywords: AISI 4340 steel, ballistic impact simulation, bullet penetration, non-linear FEM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1264
180 Vickers Indentation Simulation of Buffer Layer Thickness Effect for DLC Coated Materials

Authors: Abdul Wasy, Balakrishnan G., Yi Qi Wang, Atta Ur Rehman, Jung Il Song

Abstract:

Vickers indentation is used to measure the hardness of materials. In this study, numerical simulation of Vickers indentation experiment was performed for Diamond like Carbon (DLC) coated materials. DLC coatings were deposited on stainless steel 304 substrates with Chromium buffer layer using RF Magnetron and T-shape Filtered Cathodic Vacuum Arc Dual system The objective of this research is to understand the elastic plastic properties, stress strain distribution, ring and lateral crack growth and propagation, penetration depth of indenter and delamination of coating from substrate with effect of buffer layer thickness. The effect of Poisson-s ratio of DLC coating was also analyzed. Indenter penetration is more in coated materials with thin buffer layer as compared to thicker one, under same conditions. Similarly, the specimens with thinner buffer layer failed quickly due to high residual stress as compared to the coated materials with reasonable thickness of 200nm buffer layer. The simulation results suggested the optimized thickness of 200 nm among the prepared specimens for durable and long service.

Keywords: Thin film, buffer layer. Diamond like Carbon, Vickers indentation, Poisson's ratio, Finite element.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2936
179 Tribological Behaviour Improvement of Lubricant Using Copper (II) Oxide Nanoparticles as Additive

Authors: M. A. Hassan, M. H. Sakinah, K. Kadirgama, D. Ramasamy, M. M. Noor, M. M. Rahman

Abstract:

Tribological properties that include nanoparticles are an alternative to improve the tribological behaviour of lubricating oil, which has been investigated by many researchers for the past few decades. Various nanostructures can be used as additives for tribological improvement. However, this also depends on the characteristics of the nanoparticles. In this study, tribological investigation was performed to examine the effect of CuO nanoparticles on the tribological behaviour of Syntium 800 SL 10W−30. Three parameters used in the analysis using the wear tester (piston ring) were load, revolutions per minute (rpm), and concentration. The specifications of the nanoparticles, such as size, concentration, hardness, and shape, can affect the tribological behaviour of the lubricant. The friction and wear experiment was conducted using a tribo-tester and the Response Surface Methodology method was used to analyse any improvement of the performance. Therefore, two concentrations of 40 nm nanoparticles were used to conduct the experiments, namely, 0.005 wt % and 0.01 wt % and compared with base oil 0 wt % (control). A water bath sonicator was used to disperse the nanoparticles in base oil, while a tribo-tester was used to measure the coefficient of friction and wear rate. In addition, the thermal properties of the nanolubricant were also measured. The results have shown that the thermal conductivity of the nanolubricant was increased when compared with the base oil. Therefore, the results indicated that CuO nanoparticles had improved the tribological behaviour as well as the thermal properties of the nanolubricant oil.

Keywords: Concentration, improvement, tribological, Copper (II) oxide, nanolubricant.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1892