Search results for: Solution approaches.
2770 Effects of Free-Hanging Horizontal Sound Absorbers on the Cooling Performance of Thermally Activated Building Systems
Authors: L. Marcos Domínguez, Nils Rage, Ongun B. Kazanci, Bjarne W. Olesen
Abstract:
Thermally Activated Building Systems (TABS) have proven to be an energy-efficient solution to provide buildings with an optimal indoor thermal environment. This solution uses the structure of the building to store heat, reduce the peak loads, and decrease the primary energy demand. TABS require the heated or cooled surfaces to be as exposed as possible to the indoor space, but exposing the bare concrete surfaces has a diminishing effect on the acoustic qualities of the spaces in a building. Acoustic solutions capable of providing optimal acoustic comfort and allowing the heat exchange between the TABS and the room are desirable. In this study, the effects of free-hanging units on the cooling performance of TABS and the occupants’ thermal comfort was measured in a full-scale TABS laboratory. Investigations demonstrate that the use of free-hanging sound absorbers are compatible with the performance of TABS and the occupant’s thermal comfort, but an appropriate acoustic design is needed to find the most suitable solution for each case. The results show a reduction of 11% of the cooling performance of the TABS when 43% of the ceiling area is covered with free-hanging horizontal sound absorbers, of 23% for 60% ceiling coverage ratio and of 36% for 80% coverage. Measurements in actual buildings showed an increase of the room operative temperature of 0.3 K when 50% of the ceiling surface is covered with horizontal panels and of 0.8 to 1 K for a 70% coverage ratio. According to numerical simulations using a new TRNSYS Type, the use of comfort ventilation has a considerable influence on the thermal conditions in the room; if the ventilation is removed, then the operative temperature increases by 1.8 K for a 60%-covered ceiling.Keywords: Acoustic comfort, concrete core activation, full-scale measurements, thermally activated building systems, TRNSYS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14252769 Compromise Ratio Method for Decision Making under Fuzzy Environment using Fuzzy Distance Measure
Authors: Debashree Guha, Debjani Chakraborty
Abstract:
The aim of this paper is to adopt a compromise ratio (CR) methodology for fuzzy multi-attribute single-expert decision making proble. In this paper, the rating of each alternative has been described by linguistic terms, which can be expressed as triangular fuzzy numbers. The compromise ratio method for fuzzy multi-attribute single expert decision making has been considered here by taking the ranking index based on the concept that the chosen alternative should be as close as possible to the ideal solution and as far away as possible from the negative-ideal solution simultaneously. From logical point of view, the distance between two triangular fuzzy numbers also is a fuzzy number, not a crisp value. Therefore a fuzzy distance measure, which is itself a fuzzy number, has been used here to calculate the difference between two triangular fuzzy numbers. Now in this paper, with the help of this fuzzy distance measure, it has been shown that the compromise ratio is a fuzzy number and this eases the problem of the decision maker to take the decision. The computation principle and the procedure of the compromise ratio method have been described in detail in this paper. A comparative analysis of the compromise ratio method previously proposed [1] and the newly adopted method have been illustrated with two numerical examples.
Keywords: Compromise ratio method, Fuzzy multi-attributesingle-expert decision making, Fuzzy number, Linguistic variable
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14192768 Fighter Aircraft Evaluation and Selection Process Based on Triangular Fuzzy Numbers in Multiple Criteria Decision Making Analysis Using the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS)
Authors: C. Ardil
Abstract:
This article presents a multiple criteria evaluation approach to uncertainty, vagueness, and imprecision analysis for ranking alternatives with fuzzy data for decision making using the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS). The fighter aircraft evaluation and selection decision making problem is modeled in a fuzzy environment with triangular fuzzy numbers. The fuzzy decision information related to the fighter aircraft selection problem is taken into account in ordering the alternatives and selecting the best candidate. The basic fuzzy TOPSIS procedure steps transform fuzzy decision matrices into matrices of alternatives evaluated according to all decision criteria. A practical numerical example illustrates the proposed approach to the fighter aircraft selection problem.
Keywords: triangular fuzzy number (TFN), multiple criteria decision making analysis, decision making, aircraft selection, MCDMA, fuzzy TOPSIS
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4732767 Removal of Pb (II) from Aqueous Solutions using Fuller's Earth
Authors: Tarun Kumar Naiya, Biswajit Singha, Ashim Kumar Bhattacharya, Sudip Kumar Das
Abstract:
Fuller’s earth is a fine-grained, naturally occurring substance that has a substantial ability to adsorb impurities. In the present study Fuller’s earth has been characterized and used for the removal of Pb(II) from aqueous solution. The effect of various physicochemical parameters such as pH, adsorbent dosage and shaking time on adsorption were studied. The result of the equilibrium studies showed that the solution pH was the key factor affecting the adsorption. The optimum pH for adsorption was 5. Kinetics data for the adsorption of Pb(II) was best described by pseudo-second order model. The effective diffusion co-efficient for Pb(II) adsorption was of the order of 10-8 m2/s. The adsorption data for metal adsorption can be well described by Langmuir adsorption isotherm. The maximum uptake of metal was 103.3 mg/g of adsorbent. Mass transfer analysis was also carried out for the adsorption process. The values of mass transfer coefficients obtained from the study indicate that the velocity of the adsorbate transport from bulk to the solid phase was quite fast. The mean sorption energy calculated from Dubinin-Radushkevich isotherm indicated that the metal adsorption process was chemical in nature.
Keywords: Fuller's earth, Pseudo second order, Mass Transfer co-efficient, Langmuir
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18612766 Production and Purification of Monosaccharides by Hydrolysis of Sugar Cane Bagasse in an Ionic Liquid Medium
Authors: T. R. Bandara, H. Jaelani, G. J. Griffin
Abstract:
The conversion of lignocellulosic waste materials, such as sugar cane bagasse, to biofuels such as ethanol has attracted significant interest as a potential element for transforming transport fuel supplies to totally renewable sources. However, the refractory nature of the cellulosic structure of lignocellulosic materials has impeded progress on developing an economic process, whereby the cellulose component may be effectively broken down to glucose monosaccharides and then purified to allow downstream fermentation. Ionic liquid (IL) treatment of lignocellulosic biomass has been shown to disrupt the crystalline structure of cellulose thus potentially enabling the cellulose to be more readily hydrolysed to monosaccharides. Furthermore, conventional hydrolysis of lignocellulosic materials yields byproducts that are inhibitors for efficient fermentation of the monosaccharides. However, selective extraction of monosaccharides from an aqueous/IL phase into an organic phase utilizing a combination of boronic acids and quaternary amines has shown promise as a purification process. Hydrolysis of sugar cane bagasse immersed in an aqueous solution with IL (1-ethyl-3-methylimidazolium acetate) was conducted at different pH and temperature below 100 ºC. It was found that the use of a high concentration of hydrochloric acid to acidify the solution inhibited the hydrolysis of bagasse. At high pH (i.e. basic conditions), using sodium hydroxide, catalyst yields were reduced for total reducing sugars (TRS) due to the rapid degradation of the sugars formed. For purification trials, a supported liquid membrane (SLM) apparatus was constructed, whereby a synthetic solution containing xylose and glucose in an aqueous IL phase was transported across a membrane impregnated with phenyl boronic acid/Aliquat 336 to an aqueous phase. The transport rate of xylose was generally higher than that of glucose indicating that a SLM scheme may not only be useful for purifying sugars from undesirable toxic compounds, but also for fractionating sugars to improve fermentation efficiency.
Keywords: Biomass, bagasse, hydrolysis, monosaccharide, supported liquid membrane, purification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13592765 Automated Transformation of 3D Point Cloud to Building Information Model: Leveraging Algorithmic Modeling for Efficient Reconstruction
Authors: Radul Shishkov, Petar Penchev
Abstract:
The digital era has revolutionized architectural practices, with Building Information Modeling (BIM) emerging as a pivotal tool for architects, engineers, and construction professionals. However, the transition from traditional methods to BIM-centric approaches poses significant challenges, particularly in the context of existing structures. This research presents a technical approach to bridge this gap through the development of algorithms that facilitate the automated transformation of 3D point cloud data into detailed BIM models. The core of this research lies in the application of algorithmic modeling and computational design methods to interpret and reconstruct point cloud data — a collection of data points in space, typically produced by 3D scanners — into comprehensive BIM models. This process involves complex stages of data cleaning, feature extraction, and geometric reconstruction, which are traditionally time-consuming and prone to human error. By automating these stages, our approach significantly enhances the efficiency and accuracy of creating BIM models for existing buildings. The proposed algorithms are designed to identify key architectural elements within point clouds, such as walls, windows, doors, and other structural components, and to translate these elements into their corresponding BIM representations. This includes the integration of parametric modeling techniques to ensure that the generated BIM models are not only geometrically accurate but also embedded with essential architectural and structural information. This research contributes significantly to the field of architectural technology by providing a scalable and efficient solution for the integration of existing structures into the BIM framework. It paves the way for more seamless and integrated workflows in renovation and heritage conservation projects, where the accuracy of existing conditions plays a critical role. The implications of this study extend beyond architectural practices, offering potential benefits in urban planning, facility management, and historical preservation.
Keywords: Algorithmic modeling, Building Information Modeling, point cloud, reconstruction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 422764 Trainer Aircraft Selection Using Preference Analysis for Reference Ideal Solution (PARIS)
Authors: C. Ardil
Abstract:
This article presents a multiple criteria evaluation for a trainer aircraft selection problem using "preference analysis for reference ideal solution (PARIS)” approach. The available relevant literature points to the use of multiple criteria decision making analysis (MCDMA) methods for the problem of trainer aircraft selection, which often involves conflicting multiple criteria. Therefore, this MCDMA study aims to propose a robust systematic integrated framework focusing on the trainer aircraft selection problem. For this purpose, an integrated preference analysis approach based the mean weight and entropy weight procedures with PARIS, and TOPSIS was used for a MCDMA compensating solution. In this study, six trainer aircraft alternatives were evaluated according to six technical decision criteria, and data were collected from the current relevant literature. As a result, the King Air C90GTi alternative was identified as the most suitable trainer aircraft alternative. In order to verify the stability and accuracy of the results obtained, comparisons were made with existing MCDMA methods during the sensitivity and validity analysis process.The results of the application were further validated by applying the comparative analysis-based PARIS, and TOPSIS method. The proposed integrated MCDMA systematic structure is also expected to address the issues encountered in the aircraft selection process. Finally, the analysis results obtained show that the proposed MCDMA method is an effective and accurate tool that can help analysts make better decisions.
Keywords: aircraft, trainer aircraft selection, multiple criteria decision making, multiple criteria decision making analysis, mean weight, entropy weight, MCDMA, PARIS, TOPSIS
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4312763 Development of Molecular Imprinted Polymers (MIPs) for the Selective Removal of Carbamazepine from Aqueous Solution
Authors: Bianca Schweiger, Lucile Bahnweg, Barbara Palm, Ute Steinfeld
Abstract:
The occurrence and removal of trace organic contaminants in the aquatic environment has become a focus of environmental concern. For the selective removal of carbamazepine from loaded waters molecularly imprinted polymers (MIPs) were synthesized with carbamazepine as template. Parameters varied were the type of monomer, crosslinker, and porogen, the ratio of starting materials, and the synthesis temperature. Best results were obtained with a template to crosslinker ratio of 1:20, toluene as porogen, and methacrylic acid (MAA) as monomer. MIPs were then capable to recover carbamazepine by 93% from a 10-5 M landfill leachate solution containing also caffeine and salicylic acid. By comparison, carbamazepine recoveries of 75% were achieved using a nonimprinted polymer (NIP) synthesized under the same conditions, but without template. In landfill leachate containing solutions carbamazepine was adsorbed by 93-96% compared with an uptake of 73% by activated carbon. The best solvent for desorption was acetonitrile, with which the amount of solvent necessary and dilution with water was tested. Selected MIPs were tested for their reusability and showed good results for at least five cycles. Adsorption isotherms were prepared with carbamazepine solutions in the concentration range of 0.01 M to 5*10-6 M. The heterogeneity index showed a more homogenous binding site distribution.Keywords: Carbamazepine, landfill leachate, removal, reuse
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21732762 Bio-Inspired Design Approach Analysis: A Case Study of Antoni Gaudi and Santiago Calatrava
Authors: Marzieh Imani
Abstract:
Antoni Gaudi and Santiago Calatrava have reputation for designing bio-inspired creative and technical buildings. Even though they have followed different independent approaches towards design, the source of bio-inspiration seems to be common. Taking a closer look at their projects reveals that Calatrava has been influenced by Gaudi in terms of interpreting nature and applying natural principles into the design process. This research firstly discusses the dialogue between Biomimicry and architecture. This review also explores human/nature discourse during the history by focusing on how nature revealed itself to the fine arts. This is explained by introducing naturalism and romantic style in architecture as the outcome of designers’ inclination towards nature. Reviewing the literature, theoretical background and practical illustration of nature have been included. The most dominant practical aspects of imitating nature are form and function. Nature has been reflected in architectural science resulted in shaping different architectural styles such as organic, green, sustainable, bionic, and biomorphic. By defining a set of common aspects of Gaudi and Calatrava‘s design approach and by considering biomimetic design categories (organism, ecosystem, and behaviour as the main division and form, function, process, material, and construction as subdivisions), Gaudi’s and Calatrava’s project have been analysed. This analysis explores if their design approaches are equivalent or different. Based on this analysis, Gaudi’s architecture can be recognised as biomorphic while Calatrava’s projects are literally biomimetic. Referring to these architects, this review suggests a new set of principles by which a bio-inspired project can be determined either biomorphic or biomimetic.
Keywords: Biomimicry, Calatrava, Gaudi, nature.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33152761 Introduction of an Approach of Complex Virtual Devices to Achieve Device Interoperability in Smart Building Systems
Authors: Thomas Meier
Abstract:
One of the major challenges for sustainable smart building systems is to support device interoperability, i.e. connecting sensor or actuator devices from different vendors, and present their functionality to the external applications. Furthermore, smart building systems are supposed to connect with devices that are not available yet, i.e. devices that become available on the market sometime later. It is of vital importance that a sustainable smart building platform provides an appropriate external interface that can be leveraged by external applications and smart services. An external platform interface must be stable and independent of specific devices and should support flexible and scalable usage scenarios. A typical approach applied in smart home systems is based on a generic device interface used within the smart building platform. Device functions, even of rather complex devices, are mapped to that generic base type interface by means of specific device drivers. Our new approach, presented in this work, extends that approach by using the smart building system’s rule engine to create complex virtual devices that can represent the most diverse properties of real devices. We examined and evaluated both approaches by means of a practical case study using a smart building system that we have developed. We show that the solution we present allows the highest degree of flexibility without affecting external application interface stability and scalability. In contrast to other systems our approach supports complex virtual device configuration on application layer (e.g. by administration users) instead of device configuration at platform layer (e.g. platform operators). Based on our work, we can show that our approach supports almost arbitrarily flexible use case scenarios without affecting the external application interface stability. However, the cost of this approach is additional appropriate configuration overhead and additional resource consumption at the IoT platform level that must be considered by platform operators. We conclude that the concept of complex virtual devices presented in this work can be applied to improve the usability and device interoperability of sustainable intelligent building systems significantly.Keywords: Complex virtual devices, device integration, device interoperability, Internet of Things, smart building platform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7572760 Performances Assessment of Direct Torque Controlled IM Drives Using Fuzzy Logic Control and Space Vector Modulation Strategy
Authors: L. Moussaoui, L. Rahmani
Abstract:
This paper deals with the direct torque control (DTC) of the induction motor. This type of control allows decoupling control between the flux and the torque without the need for a transformation of coordinates. However, as with other hysteresis-based systems, the classical DTC scheme represents a high ripple, in both the electromagnetic torque and the stator flux and a distortion in the stator current. As well, it suffers from variable switching frequency. To solve these problems various modifications, in conventional DTC scheme, have been made during the last decade. Indeed the DTC based on space vector modulation (SVM) has proved to generate very low ripples in torque and flux with constant switching frequency. It also shows almost the same dynamic performances as the classical DTC system. On the other hand, fuzzy logic is considered as an interesting alternative approach for its advantages: Analysis close to the exigencies of user, ability of nonlinear systems control, best dynamic performances and inherent quality of robustness.
Therefore, two fuzzy direct torque control approaches, for the induction motor fed by SVM-voltage source inverter, are proposed in this paper. By using these two approaches of DTC, the advantages of fuzzy logic control, space vector modulation, and direct torque control method are combined. The performances of these DTC schemes are evaluated through digital simulation using Matlab/Simulink platform and fuzzy logic tools. Simulation results illustrate the effectiveness and the superiority of the proposed Fuzzy DTC-SVM schemes in comparison to the classical DTC.
Keywords: Direct torque control, Fuzzy logic control, Induction motor, Switching frequency, Space vector modulation, Torque and flux ripples.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23982759 A New Heuristic Approach for the Large-Scale Generalized Assignment Problem
Authors: S. Raja Balachandar, K.Kannan
Abstract:
This paper presents a heuristic approach to solve the Generalized Assignment Problem (GAP) which is NP-hard. It is worth mentioning that many researches used to develop algorithms for identifying the redundant constraints and variables in linear programming model. Some of the algorithms are presented using intercept matrix of the constraints to identify redundant constraints and variables prior to the start of the solution process. Here a new heuristic approach based on the dominance property of the intercept matrix to find optimal or near optimal solution of the GAP is proposed. In this heuristic, redundant variables of the GAP are identified by applying the dominance property of the intercept matrix repeatedly. This heuristic approach is tested for 90 benchmark problems of sizes upto 4000, taken from OR-library and the results are compared with optimum solutions. Computational complexity is proved to be O(mn2) of solving GAP using this approach. The performance of our heuristic is compared with the best state-ofthe- art heuristic algorithms with respect to both the quality of the solutions. The encouraging results especially for relatively large size test problems indicate that this heuristic approach can successfully be used for finding good solutions for highly constrained NP-hard problems.
Keywords: Combinatorial Optimization Problem, Generalized Assignment Problem, Intercept Matrix, Heuristic, Computational Complexity, NP-Hard Problems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23492758 Multimedia Firearms Training System
Authors: Aleksander Nawrat, Karol Jędrasiak, Artur Ryt, Dawid Sobel
Abstract:
The goal of the article is to present a novel Multimedia Firearms Training System. The system was developed in order to compensate for major problems of existing shooting training systems. The designed and implemented solution can be characterized by five major advantages: algorithm for automatic geometric calibration, algorithm of photometric recalibration, firearms hit point detection using thermal imaging camera, IR laser spot tracking algorithm for after action review analysis, and implementation of ballistics equations. The combination of the abovementioned advantages in a single multimedia firearms training system creates a comprehensive solution for detecting and tracking of the target point usable for shooting training systems and improving intervention tactics of uniformed services. The introduced algorithms of geometric and photometric recalibration allow the use of economically viable commercially available projectors for systems that require long and intensive use without most of the negative impacts on color mapping of existing multi-projector multimedia shooting range systems. The article presents the results of the developed algorithms and their application in real training systems.
Keywords: Firearms shot detection, geometric recalibration, photometric recalibration, IR tracking algorithm, thermography, ballistics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13362757 Study on Optimization Design of Pressure Hull for Underwater Vehicle
Authors: Qasim Idrees, Gao Liangtian, Liu Bo, Miao Yiran
Abstract:
In order to improve the efficiency and accuracy of the pressure hull structure, optimization of underwater vehicle based on response surface methodology, a method for optimizing the design of pressure hull structure was studied. To determine the pressure shell of five dimensions as a design variable, the application of thin shell theory and the Chinese Classification Society (CCS) specification was carried on the preliminary design. In order to optimize variables of the feasible region, different methods were studied and implemented such as Opt LHD method (to determine the design test sample points in the feasible domain space), parametric ABAQUS solution for each sample point response, and the two-order polynomial response for the surface model of the limit load of structures. Based on the ultimate load of the structure and the quality of the shell, the two-generation genetic algorithm was used to solve the response surface, and the Pareto optimal solution set was obtained. The final optimization result was 41.68% higher than that of the initial design, and the shell quality was reduced by about 27.26%. The parametric method can ensure the accuracy of the test and improve the efficiency of optimization.
Keywords: Parameterization, response surface, structure optimization, pressure hull.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11632756 Application of Extreme Learning Machine Method for Time Series Analysis
Authors: Rampal Singh, S. Balasundaram
Abstract:
In this paper, we study the application of Extreme Learning Machine (ELM) algorithm for single layered feedforward neural networks to non-linear chaotic time series problems. In this algorithm the input weights and the hidden layer bias are randomly chosen. The ELM formulation leads to solving a system of linear equations in terms of the unknown weights connecting the hidden layer to the output layer. The solution of this general system of linear equations will be obtained using Moore-Penrose generalized pseudo inverse. For the study of the application of the method we consider the time series generated by the Mackey Glass delay differential equation with different time delays, Santa Fe A and UCR heart beat rate ECG time series. For the choice of sigmoid, sin and hardlim activation functions the optimal values for the memory order and the number of hidden neurons which give the best prediction performance in terms of root mean square error are determined. It is observed that the results obtained are in close agreement with the exact solution of the problems considered which clearly shows that ELM is a very promising alternative method for time series prediction.Keywords: Chaotic time series, Extreme learning machine, Generalization performance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35222755 Automated Fact-Checking By Incorporating Contextual Knowledge and Multi-Faceted Search
Authors: Wenbo Wang, Yi-fang Brook Wu
Abstract:
The spread of misinformation and disinformation has become a major concern, particularly with the rise of social media as a primary source of information for many people. As a means to address this phenomenon, automated fact-checking has emerged as a safeguard against the spread of misinformation and disinformation. Existing fact-checking approaches aim to determine whether a news claim is true or false, and they have achieved decent veracity prediction accuracy. However, the state of the art methods rely on manually verified external information to assist the checking model in making judgments, which requires significant human resources. This study presents a framework, SAC, which focuses on 1) augmenting the representation of a claim by incorporating additional context using general-purpose, comprehensive and authoritative data; 2) developing a search function to automatically select relevant, new and credible references; 3) focusing on the important parts of the representations of a claim and its reference that are most relevant to the fact-checking task. The experimental results demonstrate that: 1) Augmenting the representations of claims and references through the use of a knowledge base, combined with the multi-head attention technique, contributes to improved performance of fact-checking. 2) SAC with auto-selected references outperforms existing fact-checking approaches with manual selected references. Future directions of this study include I) exploring knowledge graph in Wikidata to dynamically augment the representations of claims and references without introducing too much noises; II) exploring semantic relations in claims and references to further enhance fact-checking.
Keywords: Fact checking, claim verification, Deep Learning, Natural Language Processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 892754 Fuzzy Control of Thermally Isolated Greenhouse Building by Utilizing Underground Heat Exchanger and Outside Weather Conditions
Authors: Raghad Alhusari, Farag Omar, Moustafa Fadel
Abstract:
A traditional greenhouse is a metal frame agricultural building used for cultivation plants in a controlled environment isolated from external climatic changes. Using greenhouses in agriculture is an efficient way to reduce the water consumption, where agriculture field is considered the biggest water consumer world widely. Controlling greenhouse environment yields better productivity of plants but demands an increase of electric power. Although various control approaches have been used towards greenhouse automation, most of them are applied to traditional greenhouses with ventilation fans and/or evaporation cooling system. Such approaches are still demanding high energy and water consumption. The aim of this research is to develop a fuzzy control system that minimizes water and energy consumption by utilizing outside weather conditions and underground heat exchanger to maintain the optimum climate of the greenhouse. The proposed control system is implemented on an experimental model of thermally isolated greenhouse structure with dimensions of 6x5x2.8 meters. It uses fans for extracting heat from the ground heat exchanger system, motors for automatic open/close of the greenhouse windows and LED as lighting system. The controller is integrated also with environmental condition sensors. It was found that using the air-to-air horizontal ground heat exchanger with 90 mm diameter and 2 mm thickness placed 2.5 m below the ground surface results in decreasing the greenhouse temperature of 3.28 ˚C which saves around 3 kW of consumed energy. It also eliminated the water consumption needed in evaporation cooling systems which are traditionally used for cooling the greenhouse environment.Keywords: Automation, earth-to-air heat exchangers, fuzzy control, greenhouse, sustainable buildings.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6982753 Mercury Removal Using Pseudomonas putida (ATTC 49128): Effect of Acclimatization Time, Speed and Temperature of Incubator Shaker
Authors: A. A. M. Azoddein, R. M. Yunus, N. M. Sulaiman, A. B. Bustary, K. Sabar
Abstract:
Microbes have been used to solve environmental problems for many years. The role of microorganism to sequester, precipitate or alter the oxidation state of various heavy metals has been extensively studied. Treatment using microorganism interacts with toxic metal are very diverse. The purpose of this research is to remove the mercury using Pseudomonas putida (P. putida), pure culture ATTC 49128 at optimum growth parameters such as techniques of culture, acclimatization time and speed of incubator shaker. Thus, in this study, the optimum growth parameters of P. putida were obtained to achieve the maximum of mercury removal. Based on the optimum parameters of P. putida for specific growth rate, the removal of two different mercury concentration, 1 ppm and 4 ppm were studied. From mercury nitrate solution, a mercuryresistant bacterial strain which is able to reduce from ionic mercury to metallic mercury was used to reduce ionic mercury. The overall levels of mercury removal in this study were between 80% and 89%. The information obtained in this study is of fundamental for understanding of the survival of P. putida ATTC 49128 in mercury solution. Thus, microbial mercury removal is a potential bioremediation for wastewater especially in petrochemical industries in Malaysia.Keywords: Pseudomonas putida, growth kinetic, biosorption, mercury, petrochemical wastewater.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24232752 A Survey on Principal Aspects of Secure Image Transmission
Authors: Ali Soleymani, Zulkarnain Md Ali, Md Jan Nordin
Abstract:
This paper is a review on the aspects and approaches of design an image cryptosystem. First a general introduction given for cryptography and images encryption and followed by different techniques in image encryption and related works for each technique surveyed. Finally, general security analysis methods for encrypted images are mentioned.
Keywords: Image, cryptography, encryption, security, analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23852751 Effect of Precursors Aging Time on the Photocatalytic Activity of ZnO Thin Films
Authors: N. Kaneva, A. Bojinova, K. Papazova
Abstract:
Thin ZnO films are deposited on glass substrates via sol–gel method and dip-coating. The films are prepared from zinc acetate dehydrate as a starting reagent. After that the as-prepared ZnO sol is aged for different periods (0, 1, 3, 5, 10, 15 and 30 days). Nanocrystalline thin films are deposited from various sols. The effect ZnO sols aging time on the structural and photocatalytic properties of the films is studied. The films surface is studied by Scanning Electron Microscopy. The effect of the aging time of the starting solution is studied in the photocatalytic degradation of Reactive Black 5 (RB5) by UV-vis spectroscopy. The experiments are conducted upon UV-light illumination and in complete darkness. The variation of the absorption spectra shows the degradation of RB5 dissolved in water, as a result of the reaction, occurring on the surface of the films and promoted by UV irradiation. The initial concentrations of dye (5, 10 and 20 ppm) and the effect of the aging time are varied during the experiments. The results show, that the increasing aging time of starting solution with respect to ZnO generally promotes photocatalytic activity. The thin films obtained from ZnO sol, which is aged 30 days have best photocatalytic degradation of the dye (97,22%) in comparison with the freshly prepared ones (65,92%). The samples and photocatalytic experimental results are reproducible. Nevertheless, all films exhibit a substantial activity in both UV light and darkness, which is promising for the development of new ZnO photocatalysts by sol-gel method.
Keywords: ZnO thin films, sol-gel, photocatalysis, aging time.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24502750 Amino Acid Coated Silver Nanoparticles: A Green Catalyst for Methylene Blue Reduction
Authors: Abhishek Chandra, Man Singh
Abstract:
Highly stable and homogeneously dispersed amino acid coated silver nanoparticles (ANP) of ≈ 10 nm diameter, ranging from 420 to 430 nm are prepared on AgNO3 solution addition to gum of Azadirachta indica solution at 373.15 K. The amino acids were selected based on their polarity. The synthesized nanoparticles were characterized by UV-Vis, FTIR spectroscopy, HR-TEM, XRD, SEM and 1H-NMR. The coated nanoparticles were used as catalyst for the reduction of methylene blue dye in presence of Sn(II) in aqueous, anionic and cationic micellar media. The rate of reduction of dye was determined by measuring the absorbance at 660 nm, spectrophotometrically and followed the order: Kcationic > Kanionic > Kwater. After 12 min and in absence of the ANP, only 2%, 3% and 6% of the dye reduction was completed in aqueous, anionic and cationic micellar media respectively while, in presence of ANP coated by polar neutral amino acid with non-polar -R group, the reduction completed to 84%, 95% and 98% respectively. The ANP coated with polar neutral amino acid having non-polar -R group, increased the rate of reduction of the dye by 94, 3205 and 6370 folds in aqueous, anionic and cationic micellar media respectively. Also, the rate of reduction of the dye increased by three folds when the micellar media was changed from anionic to cationic when the ANP is coated by a polar neutral amino acid having a non-polar -R group.Keywords: Silver nanoparticle, surfactant, methylene blue, amino acid.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25302749 Fuzzy Uncertainty Theory for Stealth Fighter Aircraft Selection in Entropic Fuzzy TOPSIS Decision Analysis Process
Authors: C. Ardil
Abstract:
The purpose of this paper is to present fuzzy TOPSIS in an entropic fuzzy environment. Due to the ambiguous concepts often represented in decision data, exact values are insufficient to model real-life situations. In this paper, the rating of each alternative is defined in fuzzy linguistic terms, which can be expressed with triangular fuzzy numbers. The weight of each criterion is then derived from the decision matrix using the entropy weighting method. Next, a vertex method is proposed to calculate the distance between two triangular fuzzy numbers. According to the TOPSIS concept, a closeness coefficient is defined to determine the ranking order of all alternatives by simultaneously calculating the distances to both the fuzzy positive-ideal solution (FPIS) and the fuzzy negative-ideal solution (FNIS). Finally, an illustrative example of selecting stealth fighter aircraft is shown at the end of this article to highlight the procedure of the proposed method. Correlation analysis and validation analysis using TOPSIS, WSM, and WPM methods were performed to compare the ranking order of the alternatives.
Keywords: stealth fighter aircraft selection, fuzzy uncertainty theory (FUT), fuzzy entropic decision (FED), fuzzy linguistic variables, triangular fuzzy numbers, multiple criteria decision making analysis, MCDMA, TOPSIS, WSM, WPM
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6042748 Stackelberg Security Game for Optimizing Security of Federated Internet of Things Platform Instances
Authors: Violeta Damjanovic-Behrendt
Abstract:
This paper presents an approach for optimal cyber security decisions to protect instances of a federated Internet of Things (IoT) platform in the cloud. The presented solution implements the repeated Stackelberg Security Game (SSG) and a model called Stochastic Human behaviour model with AttRactiveness and Probability weighting (SHARP). SHARP employs the Subjective Utility Quantal Response (SUQR) for formulating a subjective utility function, which is based on the evaluations of alternative solutions during decision-making. We augment the repeated SSG (including SHARP and SUQR) with a reinforced learning algorithm called Naïve Q-Learning. Naïve Q-Learning belongs to the category of active and model-free Machine Learning (ML) techniques in which the agent (either the defender or the attacker) attempts to find an optimal security solution. In this way, we combine GT and ML algorithms for discovering optimal cyber security policies. The proposed security optimization components will be validated in a collaborative cloud platform that is based on the Industrial Internet Reference Architecture (IIRA) and its recently published security model.
Keywords: Security, internet of things, cloud computing, Stackelberg security game, machine learning, Naïve Q-learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16562747 Free Flapping Vibration of Rotating Inclined Euler Beams
Authors: Chih-Ling Huang, Wen-Yi Lin, Kuo-Mo Hsiao
Abstract:
A method based on the power series solution is proposed to solve the natural frequency of flapping vibration for the rotating inclined Euler beam with constant angular velocity. The vibration of the rotating beam is measured from the position of the corresponding steady state axial deformation. In this paper the governing equations for linear vibration of a rotating Euler beam are derived by the d'Alembert principle, the virtual work principle and the consistent linearization of the fully geometrically nonlinear beam theory in a rotating coordinate system. The governing equation for flapping vibration of the rotating inclined Euler beam is linear ordinary differential equation with variable coefficients and is solved by a power series with four independent coefficients. Substituting the power series solution into the corresponding boundary conditions at two end nodes of the rotating beam, a set of homogeneous equations can be obtained. The natural frequencies may be determined by solving the homogeneous equations using the bisection method. Numerical examples are studied to investigate the effect of inclination angle on the natural frequency of flapping vibration for rotating inclined Euler beams with different angular velocity and slenderness ratio.Keywords: Flapping vibration, Inclination angle, Natural frequency, Rotating beam.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21882746 Growth and Characterization of L-Asparagine (LAS) Crystal Admixture of Paranitrophenol (PNP): A NLO Material
Authors: Grace Sahaya Sheba, P. Omegala Priyakumari, M. Gunasekaran
Abstract:
L-asparagine admixture Paranitrophenol (LAPNP) single crystals were grown successfully by solution method with slow evaporation technique at room temperature. Crystals of size 12mm×5 mm×3mm have been obtained in 15 days. The grown crystals were Brown color and transparent. The solubility of the grown samples has been found out at various temperatures. The lattice parameters of the grown crystals were determined by X-ray diffraction technique. The reflection planes of the sample were confirmed by the powder X-ray diffraction study and diffraction peaks were indexed. Fourier transform infrared (FTIR) studies were used to confirm the presence of various functional groups in the crystals. UV–visible absorption spectrum was recorded to study the optical transparency of grown crystal. The nonlinear optical (NLO) property of the grown crystal was confirmed by Kurtz–Perry powder technique and a study of its second harmonic generation efficiency in comparison with potassium dihydrogen phosphate (KDP) has been made. The mechanical strength of the crystal was estimated by Vickers hardness test. The grown crystals were subjected to thermo gravimetric and differential thermal analysis (TG/DTA). The dielectric behavior of the sample was also studied
Keywords: Characterization, Microhardnes, Non-linear optical materials, Solution growth, Spectroscopy, XRD.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29982745 A Novel Approach to Allocate Channels Dynamically in Wireless Mesh Networks
Authors: Y. Harold Robinson, M. Rajaram
Abstract:
Wireless mesh networking is rapidly gaining in popularity with a variety of users: from municipalities to enterprises, from telecom service providers to public safety and military organizations. This increasing popularity is based on two basic facts: ease of deployment and increase in network capacity expressed in bandwidth per footage; WMNs do not rely on any fixed infrastructure. Many efforts have been used to maximizing throughput of the network in a multi-channel multi-radio wireless mesh network. Current approaches are purely based on either static or dynamic channel allocation approaches. In this paper, we use a hybrid multichannel multi radio wireless mesh networking architecture, where static and dynamic interfaces are built in the nodes. Dynamic Adaptive Channel Allocation protocol (DACA), it considers optimization for both throughput and delay in the channel allocation. The assignment of the channel has been allocated to be codependent with the routing problem in the wireless mesh network and that should be based on passage flow on every link. Temporal and spatial relationship rises to re compute the channel assignment every time when the pattern changes in mesh network, channel assignment algorithms assign channels in network. In this paper a computing path which captures the available path bandwidth is the proposed information and the proficient routing protocol based on the new path which provides both static and dynamic links. The consistency property guarantees that each node makes an appropriate packet forwarding decision and balancing the control usage of the network, so that a data packet will traverse through the right path.
Keywords: Wireless mesh network, spatial time division multiple access, hybrid topology, timeslot allocation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18402744 Theoretical and Analytical Approaches for Investigating the Relations between Sediment Transport and Channel Shape
Authors: Nidal Hadadin
Abstract:
This study investigated the effect of cross sectional geometry on sediment transport rate. The processes of sediment transport are generally associated to environmental management, such as pollution caused by the forming of suspended sediment in the channel network of a watershed and preserving physical habitats and native vegetations, and engineering applications, such as the influence of sediment transport on hydraulic structures and flood control design. Many equations have been proposed for computing the sediment transport, the influence of many variables on sediment transport has been understood; however, the effect of other variables still requires further research. For open channel flow, sediment transport capacity is recognized to be a function of friction slope, flow velocity, grain size, grain roughness and form roughness, the hydraulic radius of the bed section and the type and quantity of vegetation cover. The effect of cross sectional geometry of the channel on sediment transport is one of the variables that need additional investigation. The width-depth ratio (W/d) is a comparative indicator of the channel shape. The width is the total distance across the channel and the depth is the mean depth of the channel. The mean depth is best calculated as total cross-sectional area divided by the top width. Channels with high W/d ratios tend to be shallow and wide, while channels with low (W/d) ratios tend to be narrow and deep. In this study, the effects of the width-depth ratio on sediment transport was demonstrated theoretically by inserting the shape factor in sediment continuity equation and analytically by utilizing the field data sets for Yalobusha River. It was found by utilizing the two approaches as a width-depth ratio increases the sediment transport decreases.Keywords: Sediment transport, shape factor, hydraulicgeometry, flow discharge, width depth ratio.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13952743 Analytical Solution of the Boundary Value Problem of Delaminated Doubly-Curved Composite Shells
Authors: András Szekrényes
Abstract:
Delamination is one of the major failure modes in laminated composite structures. Delamination tips are mostly captured by spatial numerical models in order to predict crack growth. This paper presents some mechanical models of delaminated composite shells based on shallow shell theories. The mechanical fields are based on a third-order displacement field in terms of the through-thickness coordinate of the laminated shell. The undelaminated and delaminated parts are captured by separate models and the continuity and boundary conditions are also formulated in a general way providing a large size boundary value problem. The system of differential equations is solved by the state space method for an elliptic delaminated shell having simply supported edges. The comparison of the proposed and a numerical model indicates that the primary indicator of the model is the deflection, the secondary is the widthwise distribution of the energy release rate. The model is promising and suitable to determine accurately the J-integral distribution along the delamination front. Based on the proposed model it is also possible to develop finite elements which are able to replace the computationally expensive spatial models of delaminated structures.
Keywords: J-integral, Lévy method, third-order shell theory, state space solution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6012742 Evaluating Refactoring with a Quality Index
Authors: Crt Gerlec, Marjan Hericko
Abstract:
The aim of every software product is to achieve an appropriate level of software quality. Developers and designers are trying to produce readable, reliable, maintainable, reusable and testable code. To help achieve these goals, several approaches have been utilized. In this paper, refactoring technique was used to evaluate software quality with a quality index. It is composed of different metric sets which describes various quality aspects.Keywords: Refactoring, Software Metrics, Software Quality, Quality Index, Agile methodologies
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16242741 Strict Stability of Fuzzy Differential Equations by Lyapunov Functions
Authors: Mustafa Bayram Gücen, Coşkun Yakar
Abstract:
In this study, we have investigated the strict stability of fuzzy differential systems and we compare the classical notion of strict stability criteria of ordinary differential equations and the notion of strict stability of fuzzy differential systems. In addition that, we present definitions of stability and strict stability of fuzzy differential equations and also we have some theorems and comparison results. Strict Stability is a different stability definition and this stability type can give us an information about the rate of decay of the solutions. Lyapunov’s second method is a standard technique used in the study of the qualitative behavior of fuzzy differential systems along with a comparison result that allows the prediction of behavior of a fuzzy differential system when the behavior of the null solution of a fuzzy comparison system is known. This method is a usefull for investigating strict stability of fuzzy systems. First of all, we present definitions and necessary background material. Secondly, we discuss and compare the differences between the classical notion of stability and the recent notion of strict stability. And then, we have a comparison result in which the stability properties of the null solution of the comparison system imply the corresponding stability properties of the fuzzy differential system. Consequently, we give the strict stability results and a comparison theorem. We have used Lyapunov second method and we have proved a comparison result with scalar differential equations.Keywords: Fuzzy systems, fuzzy differential equations, fuzzy stability, strict stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1134