

Abstract—The aim of every software product is to achieve an

appropriate level of software quality. Developers and designers are
trying to produce readable, reliable, maintainable, reusable and
testable code. To help achieve these goals, several approaches have
been utilized. In this paper, refactoring technique was used to
evaluate software quality with a quality index. It is composed of
different metric sets which describes various quality aspects.

Keywords—Refactoring, Software Metrics, Software Quality,
Quality Index, Agile methodologies

I. INTRODUCTION
EFACTORING is a technique used for reconstructing
existing source code and changing its internal structure

without changing its external behavior[1]. The process
essentially deals with the cleaning of source code to improve
software design, raise the readability level, ease the
maintaining process, find bugs and help to understand
program faster. Refactoring is an integral part of the software
development cycle in agile methodologies [12] (e.g. extreme
programming). Developers first write tests, then write the
source code to make the tests pass, and finally refactor the
code to improve its internal consistency and clarity.

It has been proven that software metrics reflect software
quality [2][2]. They have been widely used in software quality
measurements. The results of these evaluations indicate which
pieces of software need to be reengineered. Furthermore,
developers and designers strive to achieve higher software
quality after making source code changes (refactoring).
However, several quality metrics have been proposed that
describe different software quality aspects. In this research, a
quality index metric has been applied to evaluate the
refactoring impact on software quality.

II. RELATED WORK
Researchers have often studied refactoring and described its

correlation to software systems. Mohammad Alshayeb[3] has
assessed the effect of refactoring in different external quality
attributes (adaptability, maintainability, understandability,
reusability and testability) in order to decide whether the cost
and time put into refactoring are worthwhile [3]. The effect
has been measured by applying software metrics. Wilking et

C. Gerlec is with the Institute of Informatics, Faculty of Electrical
Engineering and Computer Science at the University of Maribor, Smetanova
ul. 17, 2000 Maribor, Slovenia (e-mail: crt.gerlec@uni-mb.si).

M. Hericko is with the Institute of Informatics, Faculty of Electrical
Engineering and Computer Science at the University of Maribor, Smetanova
ul. 17, 2000 Maribor, Slovenia (e-mail: marjan.hericko@uni-mb.si).

al. [4] researched the effects of refactoring on maintainability
and modifiability [4]. Maintainability was tested by inserting
bugs into the code and measured the developers’ time to find
and solve them. Modifiability was tested by adding new
requirements and measuring the time needed to fulfill them.
Bois et al.[5] investigated program comprehension using
refactoring to understand and traditional reading to understand
patterns [5]. They concluded that refactoring can be used to
improve the understanding of a software system. Fowler also
defined a catalog containing information on how and when to
do refactoring[1]. Wake even identified smells within classes
and smells between classes [6]. Furthermore, he also
described how to recognize important smells and how to apply
refactoring techniques to remove these smells[6].

III. PRODUCT METRICS
Measurement and software data collecting is an essential

source of information in computer science. A correct
interpretation allows engineers to understand their software’s
behavior and recognize common patterns.

Fenton defined product metrics as measured facts or the

documented results of the software development process
[8][8]. He believes that measurement provides important
information about code quality, processes and changes in a
software product.

Commonly used product metrics are:

• Cyclomatic Complexity (CC) – this metric
represents the complexity of a method and
complexity of a class. The metric value should be
as low as possible. Higher values (more than 20)
indicate that the software is hard to maintain,
understand and that the degree of readability is
low.

• Maintainability index (MI) – This measures
software maintainability. The metric consists of
several elementary metrics. Two versions are
frequently in use. The first version uses 3
elementary metrics and the second uses 4 (the
additional metric comprises class comments).

• Coupling between objects (CBO) – A class is
coupled with another if its methods use the
attributes of the other class. If the class is coupled
with several different classes, its reusability and
understandability is low. Normally the classes
should have low coupling in order to achieve

Evaluating Refactoring with a Quality Index
Crt Gerlec, Marjan Hericko

R

World Academy of Science, Engineering and Technology
International Journal of Industrial and Manufacturing Engineering

 Vol:4, No:3, 2010

160International Scholarly and Scientific Research & Innovation 4(3) 2010 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 I
nd

us
tr

ia
l a

nd
 M

an
uf

ac
tu

ri
ng

 E
ng

in
ee

ri
ng

 V
ol

:4
, N

o:
3,

 2
01

0
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/4
71

6.
pd

f

modularity.
• Number of children (NOC) – indicates the number

of sub-classes in the hierarchy. The greater the
number, the better the reuse. However, a large
number of children could also indicate improper
abstraction.

• Depth of Inheritance Tree (DIT) – This measures
the depth of the inheritance of the class.
Inheritance increases the class efficiency by
reducing the redundancy. However, deep hierarchy
could also lead to lower understandability and
predictability.

• Weighted Methods per Class (WMC) – This is the
sum of the complexities of the methods of a class.
The metric indicates how much time and effort is
needed to develop and maintain a class. A large
number of methods increase overall complexity.

• Response for a Class (RFC) – This is the sum of the
class methods and the total number of other
methods that are invoked from origin class
methods. A higher value raises the maintenance
level.

• Lack of Cohesion in Methods (LCOM) – This is the
number of disjoint sets (intersection of the set of
the attributes) of local methods reduced by the
number of methods using at least one shared
attribute. A high LCOM value indicates that the
class should be split into two or more sub classes.

• Size related metrics – Size metrics play an important
role in software measurement. They can be divided
into two groups:

o The first group contains class level metrics:
the number of methods, properties,
constructors, nested classes, data fields,
events, attributes and the number of all
instructions.

o The second group (method level) consists of
the number of parameters, local variables,
exception blocks, maximum stack size,
number of instructions, number of all
operators in the method, number of
distinct operators and number of
operands.

IV. REFACTORING AND QUALITY INDEX

A. Refactoring

Developers use refactoring to improve the internal quality
of software systems. Before each refactoring phase, they have
to identify bad code design (called bad smells) [1]. This step is
usually done by experienced developers. When an
inappropriate code is identified, the correct refactoring method
is used to clean bad or dangerous code. Indicators for such
source code are:

• redundant source code,
• long classes,
• long methods,
• switch cases,
• long parameters lists,
• unreadable and unclear source code…

While the refactoring methods are:

Extract method: This method extracts selected source code

from the code block of an existing member. The new method
contains the selected source code and the source code in the
existing member is replaced with a call (new method).
Extracting the source code into the methods raise the
readability and reusability level.

Encapsulate field: Other objects can access public fields

and change them freely. In such a scenario, the owning object
does not have control over its fields. By encapsulating them
through the use of properties, direct access is disabled.

Extract interface: The refactorinq technique creates a new

interface with members that originate from an existing class,
structure or even interface.

Rename: Provides an easy way to rename identifiers for

code tokens (symbols) such as fields, properties, method
names, local variables, namespaces etc. Refactoring changes
the names in comments, declarations and identifier calls.

Promote local variable to parameter: Operations move a

local variable from the method’s body to a method, indexer or
constructor parameter and all method calls should be updated.

Add parameter: The operation adds a parameter to methods,

indexers or delegates. All declarations are changed at any
location where the member is called.

Remove parameter: The operation removes a parameter

from methods, indexers or delegates. All declarations are
changed at any location where the member is called.

Reorder parameter: The operation changes the order of the

parameters for methods, indexers or delegates. All
declarations are changed at any location where the member is
called.

Move method: The operation creates a new method with a

similar body in the class it uses most. Old method could be
turned into a simple delegation.

Move fields: The operation creates a new field in the target

class and changes all its users. Previous field is deleted from
the originate class.

World Academy of Science, Engineering and Technology
International Journal of Industrial and Manufacturing Engineering

 Vol:4, No:3, 2010

161International Scholarly and Scientific Research & Innovation 4(3) 2010 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 I
nd

us
tr

ia
l a

nd
 M

an
uf

ac
tu

ri
ng

 E
ng

in
ee

ri
ng

 V
ol

:4
, N

o:
3,

 2
01

0
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/4
71

6.
pd

f

B. Quality Index

Developers, software designers and project managers strive
to develop quality software with little to no bugs.
Furthermore, the source code should be maintainable and
adaptable. In order to achieve and evaluate these goals,
several approaches can be used. Hericko et al. proposed the
quality index metric [9][10][13], which expresses source code
quality, and is defined as:

n

PMQR
=QI

n

=i
i∑

1

{ }1..5∈PMQR

)(mvf=PMQR iii ,

where PMQR is the product metric quality rating, n is the
number of code metrics used in the calculation, mv is the code
metric value and f is the function that transforms the metric to
the product metric quality rating.

The proposed metric consists of n software product metrics.
Depending on project and environment characteristics, these
metrics should be defined. Each product metric has its
threshold values which are calibrated according to the project
needs. The project attributes are:

• development team (experience level),
• development environment,
• domain (insurance, banking, etc.),
• customer and
• development type (research projects, new

development…).

Fig 1 An example of the function f for the MI metric

Product metrics used in the calculation should be non-

complementary (e.g. a complementary pair consists of a depth
of inheritance tree (DIT) and the number of children (NOC))
and non-correlated (e.g. correlated metrics are weighted

methods per class (WMC), coupling between objects (CBO),
response for a class (RFC)). When the final metric set is
chosen, n transformation functions f need to be defined (Fig 1)
that transform metric values to the metric quality ratings
(PMQR). Their values are within one and five and metric
values are metrics specific.

V. MEASUREING QUALITY INDEX
In order to evaluate the quality index before and after the

refactoring, its metric sets have to be defined. 11 different
metric sets (Table 1) have been used in the research. These
sets consist of non-correlated and non-complementary
metrics[7].

The next step is to define the quality rating (PMQR
functions) for all product metrics. Ratings are project specific
and should be defined based on project needs and
characteristics. In our research, PMQR functions described in
[7][7] have been used and they are shown in Table 2.

Each metric included in the quality index has its own
specific quality intervals that have been recommended by
metric authors or researchers[7]. For instance, for the
maintainability index, it is known that a higher value indicates
better software quality and better software design. According
to this definition, quality intervals have been proposed [11].
Values higher than 90 indicate good software design, so that
adding new functionalities or changing the existing source
code is easier. On the other hand values lower than 40 mean a
low quality of software design and software renewal is
required.

The third step is to calculate the quality index (for all
variants) on the origin source code (with no refactoring
operations). Four different applications written in C# have
been used to evaluate quality. All applications are relatively
small. The first two applications are the largest while the
second two are smaller.

TABLE I
QUALITY INDEX METRIC SETS

Quality
metric

number

METRIC SETS USED FOR CALCULATING QUALITY
INDEX

1 DIT, CBO, LCOM, MI
2 WMC, DIT, CBO, LCOM
3 NOC, CBO, LCOM, WMC
4 DIT, NOC, LCOM, WMC
5 NOC, RFC, LCOM, MI
6 CBO, NOOM, NOC, WMC
7 DAC, NOC, WMC, NOOM
8 DAC, DIT, MPC, LCOM
9 RFC, DIT, LCOM, MPC
10 NOC, LCOM, CBO, MPC
11 NOC, LCOM, NOOM, MPC

NOOM (number of overridden methods), DAC (data abstraction
coupling), MPC (message passing coupling).

World Academy of Science, Engineering and Technology
International Journal of Industrial and Manufacturing Engineering

 Vol:4, No:3, 2010

162International Scholarly and Scientific Research & Innovation 4(3) 2010 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 I
nd

us
tr

ia
l a

nd
 M

an
uf

ac
tu

ri
ng

 E
ng

in
ee

ri
ng

 V
ol

:4
, N

o:
3,

 2
01

0
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/4
71

6.
pd

f

TABLE II

METRICS AND TRANSFORMATION FUNCTIONS (PMQR)

PMQR MPC value DAC value

5 30 - 35 1,2 - 1,4
4 0 - 30 0 - 1,2
3 35 - 50 1,4 - 1,7
2 60 - 70 1,7 - 2
1 >70 > 2

PMQR NOOM value RFC value

5 0 - 3,1 45 - 60
4 3,1- 4,5 30 - 45
3 4,5 - 5,5 60 - 80
2 5,5 - 6 20 - 30
1 > 6 0 - 20 & > 80

PMQR NOC value WMC value

5 2 - 2,5 7 - 9
4 1,75 - 2 5 - 7
3 1,25 - 1,75 9 - 12
2 1 - 1,25 3,5 - 5
1 0 - 1 0 - 3,5 & > 12

PMQR MI value LCOM value

5 > 90 0 - 10
4 70 - 90 10 - 25
3 60 - 70 25 - 40
2 40 - 60 40 - 60
1 20 - 40 > 60

PMQR CBO value DIT value

5 0 - 2,5 2,5 - 3,6
4 2,5 - 5 1,6 - 2,5
3 5 - 7,5 3,6 - 7,2
2 7,5 - 10 0 - 1,6
1 > 10 > 7,2

The next step is the “refactoring phase”. All four

applications have been modified with refactoring techniques.
In 3 cases, the lines of code have been increased and in one
case the number of lines has been decreased. First, the
application has had 21% more lines after refactoring, the
second 139% and the third 31%. The fourth application ended
with 25% less source code after refactoring.

Fig. 2 The quality index of the first application

Fig. 2 (first application) shows that the quality index

increased in 5 cases, quality index 6 and 7 were higher before
the refactoring and in 4 cases the values stay the same.
However, the metric sets for the quality index 6 and 7 are
composed by similar metrics. Three metrics are the same
(NOOM, NOC, WMC) and only one metric is different (CBO
and DAC). The impact of these tree metrics is bigger than the
rest metric and it is obvious that the final quality index will be
similar in both cases.

Fig. 3 Quality index of the second application

The quality index of the second application (Fig. 3) is

higher and lower after the refactoring in 4 cases. In 3 cases the
quality stays the same. There are four bigger jumps in quality.
In cases 2, 4 and 9 the quality was raised and in case 11 the
quality dropped. Different metrics are used in these cases and
there is no recognizable pattern within the metrics sets.

World Academy of Science, Engineering and Technology
International Journal of Industrial and Manufacturing Engineering

 Vol:4, No:3, 2010

163International Scholarly and Scientific Research & Innovation 4(3) 2010 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 I
nd

us
tr

ia
l a

nd
 M

an
uf

ac
tu

ri
ng

 E
ng

in
ee

ri
ng

 V
ol

:4
, N

o:
3,

 2
01

0
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/4
71

6.
pd

f

Fig. 4 Quality index of the third and fourth application

The quality of the third and fourth application (Fig. 4) is the

same before and after the refactoring for all cases. One of the
causes could be their length because the last two applications
have the lowest LOC (lines of code) value among all
researched programs.

FUTURE WORK
In this research, only the refactored applications have been

observed without knowing the refactoring techniques that
have been applied. The next task is to analyze refactored
source code in order to detect which refactoring approaches
have been applied. By knowing the approaches, their impact
on the quality index could be explored. Furthermore, the
impact of different metric sets (within the quality index) and
correlated ranking functions could also be observed.

The next idea is to compose the quality index that contains
metrics (and proper PMQR functions) that expresses the
readability or reusability degree of software. Intuitively, it is
expected that the quality index should be higher after the
refactoring phase.

CONCLUSION
Our research has shown that refactoring techniques do not

always improve software quality. Some metrics have a
negative score after refactoring and if such metrics compose
the quality index, its value will be lower after the source code
transformation. Intuitively, it is expected that software quality
will be higher and it also was in most cases.

 The aim of the research was also to check the difference
between the quality index sets and to get some useful
information about their correlation. However, this final idea is
beyond the scope of this paper.

REFERENCES
[1] M. Fowler, J. Brant, W. Opdyke, D. Roberts, “Refactoring: Improving

the Design of Existing Code”, Addison Wesley, 1999.
[2] B. W. Boehm, J. R. Brown, M. Lipow, “Quantitative Evaluation of

Software Quality”, Proceedings of the 2nd international conference on
Software engineering, pp. 592-605, 1976.

[3] M. Alshayeb , “Empirical investigation of refactoring effect on software
quality”, Information and Software Technology, vol. 9, no. 9, pp. 1319-
1326, 2009.

[4] D. Wilking, U.Kahn, S. Kowalewski , “An Empirical Evaluation of
Refactoring”, e-Informatica Software Engineering Journal, vol. 1, no. 1,
2007.

[5] B. Bois, S. Demeyer, J. Verelst, “Does the "Refactor to Understand"
reverse engineering pattern improve program comprehension?”,
Proceedings of the Ninth European Conference on Software
Maintenance and Reengineering, pp. 334-343, 2005.

[6] W.C. Wake, Refactoring Workbook, Addison Wesley, 2003.
[7] A. Zivkovic, U. Goljat, M. Hericko, “Improving the usability of the

source code quality index with interchangeable metrics sets”,
Information Processing Letters, vol. 110, no. 6, 2010.

[8] N. Fenton, S. L. Pfleeger, “Software Metrics: A Rigorous and Practical
Approach”, Thomson Computer Press. 1994.

[9] C. Gerlec, A. Zivkovic, “Software Metrics Repository Architecture”,
Collaboration, software and services in information society, 2009.

[10] M. Hericko, A. Živkovic, P. Porkoláb, “A method for calculating
acknowledged project effort using a quality index”, Informatica. Vol. 31.
No. 4. 2007.

[11] M. Andersson, P. Vestergren, “Object-Oriented Design Quality
Metrics”, Computing Science Department Uppsala University.

[12] R.C. Martin, “Agile Software Development, Principles, Patterns, and
Practices”, Prentice Hall, 2002.

[13] A. Krajnc, M. Hericko, U. Goljat, “Measuring the Advantages of the
Software Factories Approach”, 5th Central and Eastern European
Software Engineering Conference in Russia, 2009.

World Academy of Science, Engineering and Technology
International Journal of Industrial and Manufacturing Engineering

 Vol:4, No:3, 2010

164International Scholarly and Scientific Research & Innovation 4(3) 2010 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 I
nd

us
tr

ia
l a

nd
 M

an
uf

ac
tu

ri
ng

 E
ng

in
ee

ri
ng

 V
ol

:4
, N

o:
3,

 2
01

0
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/4
71

6.
pd

f

