Search results for: Power line carrier
2986 The Influence of the Commons Structure Modification on the Allocation
Authors: Oana Pop, Constantin Barbulescu, Mircea Nemes, Stefan Kilyeni
Abstract:
The tracing methods determine the contribution the power system sources have in their supplying. The methods can be used to assess the transmission prices, but also to recover the transmission fixed cost. In this paper is presented the influence of the modification of commons structure has on the specific price of transfer. The operator must make use of a few basic principles about allocation. Most tracing methods are based on the proportional sharing principle. In this paper Kirschen method is used. In order to illustrate this method, the 25- bus test system is used, elaborated within the Electrical Power Engineering Department, from Timisoara, Romania.Keywords: Power systems, P-U bus, P-Q bus, tracing methods.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13022985 A Modified Genetic Based Technique for Solving the Power System State Estimation Problem
Authors: A. A. Hossam-Eldin, E. N. Abdallah, M. S. El-Nozahy
Abstract:
Power system state estimation is the process of calculating a reliable estimate of the power system state vector composed of bus voltages' angles and magnitudes from telemetered measurements on the system. This estimate of the state vector provides the description of the system necessary for the operation and security monitoring. Many methods are described in the literature for solving the state estimation problem, the most important of which are the classical weighted least squares method and the nondeterministic genetic based method; however both showed drawbacks. In this paper a modified version of the genetic algorithm power system state estimation is introduced, Sensitivity of the proposed algorithm to genetic operators is discussed, the algorithm is applied to case studies and finally it is compared with the classical weighted least squares method formulation.Keywords: Genetic algorithms, ill-conditioning, state estimation, weighted least squares.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17132984 Dynamic Bus Binding for Low Power Using Multiple Binding Tables
Authors: Jihyung Kim, Taejin Kim, Sungho Park, Jun-Dong Cho
Abstract:
A conventional binding method for low power in a high-level synthesis mainly focuses on finding an optimal binding for an assumed input data, and obtains only one binding table. In this paper, we show that a binding method which uses multiple binding tables gets better solution compared with the conventional methods which use a single binding table, and propose a dynamic bus binding scheme for low power using multiple binding tables. The proposed method finds multiple binding tables for the proper partitions of an input data, and switches binding tables dynamically to produce the minimum total switching activity. Experimental result shows that the proposed method obtains a binding solution having 12.6-28.9% smaller total switching activity compared with the conventional methods.Keywords: low power, bus binding, switching activity, multiplebinding tables
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11842983 Assessment of Performance Measures of Large-Scale Power Systems
Authors: Mohamed A. El-Kady, Badr M. Alshammari
Abstract:
In a recent major industry-supported research and development study, a novel framework was developed and applied for assessment of reliability and quality performance levels in reallife power systems with practical large-scale sizes. The new assessment methodology is based on three metaphors (dimensions) representing the relationship between available generation capacities and required demand levels. The paper shares the results of the successfully completed stud and describes the implementation of the new methodology on practical zones in the Saudi electricity system.
Keywords: Power systems; large-scale analysis, reliability; performance assessment, linear programming.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18462982 Multifunctional Electrical Outlet based on Mobile Ad Hoc Network
Authors: Toshihiko Sasama, Takao Kawamura, Kazunori Sugahara
Abstract:
Nowadays, new home appliances and office appliances have been developed that communicate with users through the Internet, for remote monitor and remote control. However, developments and sales of these new appliances are just started, then, many products in our houses and offices do not have these useful functions. In few years, we add these new functions to the outlet, it means multifunctional electrical power socket plug adapter. The outlet measure power consumption of connecting appliances, and it can switch power supply to connecting appliances, too. Using this outlet, power supply of old appliances can be control and monitor. And we developed the interface system using web browser to operate it from users[1]. But, this system need to set up LAN cables between outlets and so on. It is not convenience that cables around rooms. In this paper, we develop the system that use wireless mobile ad hoc network instead of wired LAN to communicate with the outlets.Keywords: outlet, remote monitor, mobile ad hoc network, zigbee.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19462981 Application of IED to Condition Based Maintenance of Medium Voltage GCB/VCB
Authors: Ming-Ta Yang, Jyh-Cherng Gu, Chun-Wei Huang, Jin-Lung Guan
Abstract:
Time base maintenance (TBM) is conventionally applied by the power utilities to maintain circuit breakers (CBs), transformers, bus bars and cables, which may result in under maintenance or over maintenance. As information and communication technology (ICT) industry develops, the maintenance policies of many power utilities have gradually changed from TBM to condition base maintenance (CBM) to improve system operating efficiency, operation cost and power supply reliability. This paper discusses the feasibility of using intelligent electronic devices (IEDs) to construct a CB CBM management platform. CBs in power substations can be monitored using IEDs with additional logic configuration and wire connections. The CB monitoring data can be sent through intranet to a control center and be analyzed and integrated by the Elipse Power Studio software. Finally, a human-machine interface (HMI) of supervisory control and data acquisition (SCADA) system can be designed to construct a CBM management platform to provide maintenance decision information for the maintenance personnel, management personnel and CB manufacturers.
Keywords: Circuit breaker, Condition base maintenance, Intelligent electronic device, Time base maintenance, SCADA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22872980 Zigbee Based Wireless Energy Surveillance System for Energy Savings
Authors: Won-Ho Kim, Chang-Ho Hyun, Moon-Jung Kim
Abstract:
In this paper, zigbee communication based wireless energy surveillance system is presented. The proposed system consists of multiple energy surveillance devices and an energy surveillance monitor. Each different standby power-off value of electric device is set automatically by using learning function of energy surveillance device. Thus adaptive standby power-off function provides user convenience and it maximizes the energy savings. Also, power consumption monitoring function is helpful to reduce inefficient energy consumption in home. The zigbee throughput simulator is designed to evaluate minimum transmission power and maximum allowable information quantity in the proposed system. The test result of prototype has been satisfied all the requirements. The proposed system has confirmed that can be used as an intelligent energy surveillance system for energy savings in home or office.
Keywords: Energy monitoring system, Energy surveillance system, Energy sensor network, Energy savings.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16712979 Permanent Reduction of Arc Flash Energy to Safe Limit on Line Side of 480 Volt Switchgear Incomer Breaker
Authors: Md Abid Khan
Abstract:
A recognized engineering challenge is related to personnel protection from fatal arc flash incident energy in the line side of the 480-volt switchgears incomer breakers during maintenance activities. The incident energy is typically high due to slow fault clearance and it can be higher than the available personnel protective equipment (PPE) ratings. A fault on the line side of the 480 Volt breaker is cleared by breakers or fuses in the upstream higher voltage system (4160 Volt or higher). The current reflection in the higher voltage upstream system for a fault in the 480-volt switchgear is low, the clearance time is slower and the inversely proportional incident energy is hence higher. The installation of overcurrent protection at 480-volt system upstream of the incomer breaker will operate fast enough and trips the upstream higher voltage breaker when a fault develops at the incomer breaker. Therefore, fault current reduction as reflected in the upstream higher voltage system is eliminated. Since the fast overcurrent protection is permanently installed, it is always functional, do not require human interventions and eliminates exposure to human errors. It is installed at the maintenance activity location and its operations can be locally monitored by craftsmen during maintenance activities.
Keywords: Arc flash, mitigation, maintenance switch, energy level.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5072978 Observer Design for Chaos Synchronization of Time-delayed Power Systems
Authors: Jui-Sheng Lin, Yi-Sung Yang, Meei-Ling Hung, Teh-Lu Liao, Jun-Juh Yan
Abstract:
The global chaos synchronization for a class of time-delayed power systems is investigated via observer-based approach. By employing the concepts of quadratic stability theory and generalized system model, a new sufficient criterion for constructing an observer is deduced. In contrast to the previous works, this paper proposes a theoretical and systematic design procedure to realize chaos synchronization for master-slave power systems. Finally, an illustrative example is given to show the applicability of the obtained scheme.
Keywords: Chaos, Synchronization, Quadratic stability theory, Observer
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17212977 Two-dimensional Heat Conduction of Direct Cooling in the Rotor of an Electrical Generator(Numerical Analysis)
Authors: A. Kargar, A. Kianifar, H. Mohammadiun
Abstract:
Two-dimensional heat conduction within a composed solid material with a constant internal heat generation has been investigated numerically in a sector of the rotor a generator. The heat transfer between two adjacent materials is assumed to be purely conduction. Boundary conditions are assumed to be forced convection on the fluid side and adiabatic on symmetry lines. The control volume method is applied for the diffusion energy equation. Physical coordinates are transformed to the general curvilinear coordinates. Then by using a line-by-line method, the temperature distribution in a sector of the rotor has been determined. Finally, the results are normalized and the effect of cooling fluid on the maximum temperature of insulation is investigated.
Keywords: general curvilinear coordinates , jacobian, controlvolume.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18152976 Thermodynamic Cycle Analysis for Overall Efficiency Improvement and Temperature Reduction in Gas Turbines
Authors: Jeni A. Popescu, Ionut Porumbel, Valeriu A. Vilag, Cleopatra F. Cuciumita
Abstract:
The paper presents a thermodynamic cycle analysis for three turboshaft engines. The first cycle is a Brayton cycle, describing the evolution of a classical turboshaft, based on the Klimov TV2 engine. The other four cycles aim at approaching an Ericsson cycle, by replacing the Brayton cycle adiabatic expansion in the turbine by quasi-isothermal expansion. The maximum quasi- Ericsson cycles temperature is set to a lower value than the maximum Brayton cycle temperature, equal to the Brayton cycle power turbine inlet temperature, in order to decrease the engine NOx emissions. Also, the power/expansion ratio distribution over the stages of the gas generator turbine is maintained the same. In two of the considered quasi-Ericsson cycles, the efficiencies of the gas generator turbine, as well as the power/expansion ratio distribution over the stages of the gas generator turbine are maintained the same as for the reference case, while for the other two cases, the efficiencies are increased in order to obtain the same shaft power as in the reference case. For the two cases respecting the first condition, both the shaft power and the thermodynamic efficiency of the engine decrease, while for the other two, the power and efficiency are maintained, as a result of assuming new, more efficient gas generator turbines.
Keywords: Combustion, Ericsson, thermodynamic analysis, turbine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24632975 Efficient Compact Micro DBD Plasma Reactor for Ozone Generation for Industrial Application in Liquid and Gas Phase Systems
Authors: Kuvshinov, D., Siswanto, A., Lozano-Parada, J., Zimmerman, W. B.
Abstract:
Ozone is well known as a powerful, fast reacting oxidant. Ozone based processes produce no by-product residual as non-reacted ozone decomposes to molecular oxygen. Therefore an application of ozone is widely accepted as one of the main approaches for a Sustainable and Clean Technologies development.
There are number of technologies which require ozone to be delivered to specific points of a production network or reactors construction. Due to space constraints, high reactivity and short life time of ozone the use of ozone generators even of a bench top scale is practically limited. This requires development of mini/micro scale ozone generator which can be directly incorporated into production units.
Our report presents a feasibility study of a new micro scale rector for ozone generation (MROG). Data on MROG calibration and indigo decomposition at different operation conditions are presented.
At selected operation conditions with residence time of 0.25 s the process of ozone generation is not limited by reaction rate and the amount of ozone produced is a function of power applied. It was shown that the MROG is capable to produce ozone at voltage level starting from 3.5kV with ozone concentration of 5.28*10-6 (mol/L) at 5kV. This is in line with data presented on numerical investigation for a MROG. It was shown that in compare to a conventional ozone generator, MROG has lower power consumption at low voltages and atmospheric pressure.
The MROG construction makes it applicable for both submerged and dry systems. With a robust compact design MROG can be used as an integrated module for production lines of high complexity.
Keywords: DBD, micro reactor, ozone, plasma.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30042974 Three-Phase High Frequency AC Conversion Circuit with Dual Mode PWM/PDM Control Strategy for High Power IH Applications
Authors: Nabil A. Ahmed
Abstract:
This paper presents a novel three-phase utility frequency to high frequency soft switching power conversion circuit with dual mode pulse width modulation and pulse density modulation for high power induction heating applications as melting of steel and non ferrous metals, annealing of metals, surface hardening of steel and cast iron work pieces and hot water producers, steamers and super heated steamers. This high frequency power conversion circuit can operate from three-phase systems to produce high current for high power induction heating applications under the principles of ZVS and it can regulate its ac output power from the rated value to a low power level. A dual mode modulation control scheme based on high frequency PWM in synchronization with the utility frequency positive and negative half cycles for the proposed high frequency conversion circuit and utility frequency pulse density modulation is produced to extend its soft switching operating range for wide ac output power regulation. A dual packs heat exchanger assembly is designed to be used in consumer and industrial fluid pipeline systems and it is proved to be suitable for the hot water, steam and super heated steam producers. Experiment and simulation results are given in this paper to verify the operation principles of the proposed ac conversion circuit and to evaluate its power regulation and conversion efficiency. Also, the paper presents a mutual coupling model of the induction heating load instead of equivalent transformer circuit model.Keywords: Induction heating, three-phase, conversion circuit, pulse width modulation, pulse density modulation, high frequency, soft switching.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21782973 A Multi-layer Artificial Neural Network Architecture Design for Load Forecasting in Power Systems
Authors: Axay J Mehta, Hema A Mehta, T.C.Manjunath, C. Ardil
Abstract:
In this paper, the modelling and design of artificial neural network architecture for load forecasting purposes is investigated. The primary pre-requisite for power system planning is to arrive at realistic estimates of future demand of power, which is known as Load Forecasting. Short Term Load Forecasting (STLF) helps in determining the economic, reliable and secure operating strategies for power system. The dependence of load on several factors makes the load forecasting a very challenging job. An over estimation of the load may cause premature investment and unnecessary blocking of the capital where as under estimation of load may result in shortage of equipment and circuits. It is always better to plan the system for the load slightly higher than expected one so that no exigency may arise. In this paper, a load-forecasting model is proposed using a multilayer neural network with an appropriately modified back propagation learning algorithm. Once the neural network model is designed and trained, it can forecast the load of the power system 24 hours ahead on daily basis and can also forecast the cumulative load on daily basis. The real load data that is used for the Artificial Neural Network training was taken from LDC, Gujarat Electricity Board, Jambuva, Gujarat, India. The results show that the load forecasting of the ANN model follows the actual load pattern more accurately throughout the forecasted period.
Keywords: Power system, Load forecasting, Neural Network, Neuron, Stabilization, Network structure, Load.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34232972 Power Series Form for Solving Linear Fredholm Integral Equations of Second Order via Banach Fixed Point Theorem
Authors: Adil AL-Rammahi
Abstract:
In this paper, a new method for solution of second order linear Fredholm integral equation in power series form was studied. The result is obtained by using Banach fixed point theorem.
Keywords: Fredholm integral equation, power series, Banach fixed point theorem, Linear Systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24892971 Aggregation Scheduling Algorithms in Wireless Sensor Networks
Authors: Min Kyung An
Abstract:
In Wireless Sensor Networks which consist of tiny wireless sensor nodes with limited battery power, one of the most fundamental applications is data aggregation which collects nearby environmental conditions and aggregates the data to a designated destination, called a sink node. Important issues concerning the data aggregation are time efficiency and energy consumption due to its limited energy, and therefore, the related problem, named Minimum Latency Aggregation Scheduling (MLAS), has been the focus of many researchers. Its objective is to compute the minimum latency schedule, that is, to compute a schedule with the minimum number of timeslots, such that the sink node can receive the aggregated data from all the other nodes without any collision or interference. For the problem, the two interference models, the graph model and the more realistic physical interference model known as Signal-to-Interference-Noise-Ratio (SINR), have been adopted with different power models, uniform-power and non-uniform power (with power control or without power control), and different antenna models, omni-directional antenna and directional antenna models. In this survey article, as the problem has proven to be NP-hard, we present and compare several state-of-the-art approximation algorithms in various models on the basis of latency as its performance measure.Keywords: Data aggregation, convergecast, gathering, approximation, interference, omni-directional, directional.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7992970 Fuzzy Logic Controlled Shunt Active Power Filter for Three-phase Four-wire Systems with Balanced and Unbalanced Loads
Authors: Ahmed A. Helal, Nahla E. Zakzouk, Yasser G. Desouky
Abstract:
This paper presents a fuzzy logic controlled shunt active power filter used to compensate for harmonic distortion in three-phase four-wire systems. The shunt active filter employs a simple method for the calculation of the reference compensation current based of Fast Fourier Transform. This presented filter is able to operate in both balanced and unbalanced load conditions. A fuzzy logic based current controller strategy is used to regulate the filter current and hence ensure harmonic free supply current. The validity of the presented approach in harmonic mitigation is verified via simulation results of the proposed test system under different loading conditions.Keywords: Active power filters, Fuzzy logic controller, Power quality
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19922969 Starting Characteristic Analysis of LSPM for Pumping System Considering Demagnetization
Authors: Subrato Saha, Yun-Hyun Cho
Abstract:
This paper presents the design process of a high performance 3-phase 3.7 kW 2-pole line start permanent magnet synchronous motor for pumping system. A method was proposed to study the starting torque characteristics considering line start with high inertia load. A d-q model including cage was built to study the synchronization capability. Time-stepping finite element method analysis was utilized to accurately predict the dynamic and transient performance, efficiency, starting current, speed curve and etc. Considering the load torque of pumps during starting stage, the rotor bar was designed with minimum demagnetization of permanent magnet caused by huge starting current.Keywords: LSPM, starting analysis, demagnetization, FEA, pumping system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22552968 A Comparative Study on Available IPv6 Platforms for Wireless Sensor Network
Authors: Usman Sarwar, Gopinath Sinniah Rao, Zeldi Suryady, Reza Khoshdelniat
Abstract:
The low power wireless sensor devices which usually uses the low power wireless private area network (IEEE 802.15.4) standard are being widely deployed for various purposes and in different scenarios. IPv6 low power wireless private area network (6LoWPAN) was adopted as part of the IETF standard for the wireless sensor devices so that it will become an open standard compares to other dominated proprietary standards available in the market. 6LoWPAN also allows the integration and communication of sensor nodes with the Internet more viable. This paper presents a comparative study on different available IPv6 platforms for wireless sensor networks including open and close sources. It also discusses about the platforms used by these stacks. Finally it evaluates and provides appropriate suggestions which can be use for selection of required IPv6 stack for low power devices.Keywords: 6LoWPAN Stacks, 6LoWPAN Platforms, m-Stack, NanoStack, uIPv6, PhyNet 6LoWPAN, Jennic 6LoWPAN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22202967 Transient Stability Improvement in Multi-Machine System Using Power System Stabilizer (PSS) and Static Var Compensator (SVC)
Authors: Khoshnaw Khalid Hama Saleh, Ergun Ercelebi
Abstract:
Increasingly complex modern power systems require stability, especially for transient and small disturbances. Transient stability plays a major role in stability during fault and large disturbance. This paper compares a power system stabilizer (PSS) and static Var compensator (SVC) to improve damping oscillation and enhance transient stability. The effectiveness of a PSS connected to the exciter and/or governor in damping electromechanical oscillations of isolated synchronous generator was tested. The SVC device is a member of the shunt FACTS (flexible alternating current transmission system) family, utilized in power transmission systems. The designed model was tested with a multi-machine system consisting of four machines six bus, using MATLAB/SIMULINK software. The results obtained indicate that SVC solutions are better than PSS.Keywords: FACTS, MATLAB/SIMULINK, multi-machine system, PSS, SVC, transient stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33812966 Fuzzy Power Controller Design for Purdue University Research Reactor-1
Authors: Oktavian Muhammad Rizki, Appiah Rita, Lastres Oscar, Miller True, Chapman Alec, Tsoukalas Lefteri H.
Abstract:
The Purdue University Research Reactor-1 (PUR-1) is a 10 kWth pool-type research reactor located at Purdue University’s West Lafayette campus. The reactor was recently upgraded to use entirely digital instrumentation and control systems. However, currently, there is no automated control system to regulate the power in the reactor. We propose a fuzzy logic controller as a form of digital twin to complement the existing digital instrumentation system to monitor and stabilize power control using existing experimental data. This work assesses the feasibility of a power controller based on a Fuzzy Rule-Based System (FRBS) by modelling and simulation with a MATLAB algorithm. The controller uses power error and reactor period as inputs and generates reactivity insertion as output. The reactivity insertion is then converted to control rod height using a logistic function based on information from the recorded experimental reactor control rod data. To test the capability of the proposed fuzzy controller, a point-kinetic reactor model is utilized based on the actual PUR-1 operation conditions and a Monte Carlo N-Particle simulation result of the core to numerically compute the neutronics parameters of reactor behavior. The Point Kinetic Equation (PKE) was employed to model dynamic characteristics of the research reactor since it explains the interactions between the spatial and time varying input and output variables efficiently. The controller is demonstrated computationally using various cases: startup, power maneuver, and shutdown. From the test results, it can be proved that the implemented fuzzy controller can satisfactorily regulate the reactor power to follow demand power without compromising nuclear safety measures.
Keywords: Fuzzy logic controller, power controller, reactivity, research reactor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4212965 A Novel Nano-Scaled SRAM Cell
Authors: Arash Azizi Mazreah, Mohammad Reza Sahebi, Mohammad T. Manzuri Shalmani
Abstract:
To help overcome limits to the density of conventional SRAMs and leakage current of SRAM cell in nanoscaled CMOS technology, we have developed a four-transistor SRAM cell. The newly developed CMOS four-transistor SRAM cell uses one word-line and one bit-line during read/write operation. This cell retains its data with leakage current and positive feedback without refresh cycle. The new cell size is 19% smaller than a conventional six-transistor cell using same design rules. Also the leakage current of new cell is 60% smaller than a conventional sixtransistor SRAM cell. Simulation result in 65nm CMOS technology shows new cell has correct operation during read/write operation and idle mode.
Keywords: SRAM Cell, leakage current, cell area.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17652964 Electrical Characteristics of SCR - based ESD Device for I/O and Power Rail Clamp in 0.35um Process
Authors: Yong Seo Koo, Dong Su Kim, Byung Seok Lee, Won Suk Park, Bo Bea Song
Abstract:
This paper presents a SCR-based ESD protection devices for I/O clamp and power rail clamp, respectably. These devices have a low trigger voltage and high holding voltage characteristics than conventional SCR device. These devices are fabricated by using 0.35um BCD (Bipolar-CMOS-DMOS) processes. These devices were validated using a TLP system. From the experimental results, the device for I/O ESD clamp has a trigger voltage of 5.8V. Also, the device for power rail ESD clamp has a holding voltage of 7.7V.
Keywords: ESD (Electro-Static Discharge), ESD protection device, SCR (Silicon Controlled Rectifier), Latch-up
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27742963 Evaluation on the Viability of Combined Heat and Power with Different Distributed Generation Technologies for Various Bindings in Japan
Authors: Yingjun Ruan, Qingrong Liu, Weiguo Zhou, Toshiyuki Watanabe
Abstract:
This paper has examined the energy consumption characteristics in six different buildings including apartments, offices, commercial buildings, hospitals, hotels and educational facilities. Then 5-hectare (50000m2) development site for respective building-s type has been assumed as case study to evaluate the introduction effect of Combined Heat and Power (CHP). All kinds of CHP systems with different distributed generation technologies including Gas Turbine (GT), Gas Engine (GE), Diesel Engine (DE), Solid Oxide Fuel Cell (SOFC) and Polymer Electrolyte Fuel Cell (PEFC), have been simulated by using HEATMAP, CHP system analysis software. And their primary energy utilization efficiency, energy saving ratio and CO2 reduction ratio have evaluated and compared respectively. The results can be summarized as follows: Various buildings have their special heat to power ratio characteristics. Matching the heat to power ratio demanded from an individual building with that supplied from a CHP system is very important. It is necessary to select a reasonable distributed generation technologies according to the load characteristics of various buildings. Distributed generation technologies with high energy generating efficiency and low heat to power ratio, like SOFC and PEFC is more reasonable selection for Building Combined Heat and Power (BCHP). CHP system is an attractive option for hotels, hospitals and apartments in Japan. The users can achieve high energy saving and environmental benefit by introducing a CHP systems. In others buildings, especially like commercial buildings and offices, the introduction of CHP system is unreasonable.
Keywords: Combined heat and power, distributed generation technologies, heat-tao-power ratio, energy saving ratio, CO2 reduction ratio
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16512962 Empirical Evaluation of Performance Optimization Techniques Used in Mobile Applications
Authors: Nathar Shah, Bu Kiat Seng
Abstract:
Mobile application development is different from regular application development due to the hardware resource limitations existed in the mobile platforms. In the mobile environment, the application needs to be optimized by the developer to produce optimal software with least overhead. This study discussed about performance optimization techniques that are employed in general application development, and how such techniques are performing on mobile platforms through some empirical evaluations on a mobile emulator, Nokia X3-02 and Nokia C5-03devices. The scope of the work is only confined to mobile platform based on Java Mobile edition architecture. The empirical results showed that techniques such as loop unrolling, dependency chain, and linearized getter and setter performed better by a factor of 3 to 7. Whereas declaration and initialization on the same line or separate line did not improve the performance.
Keywords: Optimization Techniques, Mobile Applications, Performance Evaluation, J2ME, Empirical Experiments
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16042961 Performance Assessment of Wet-Compression Gas Turbine Cycle with Turbine Blade Cooling
Authors: Kyoung Hoon Kim
Abstract:
Turbine blade cooling is considered as the most effective way of maintaining high operating temperature making use of the available materials, and turbine systems with wet compression have a potential for future power generation because of high efficiency and high specific power with a relatively low cost. In this paper performance analysis of wet-compression gas turbine cycle with turbine blade cooling is carried out. The wet compression process is analytically modeled based on non-equilibrium droplet evaporation. Special attention is paid for the effects of pressure ratio and water injection ratio on the important system variables such as ratio of coolant fluid flow, fuel consumption, thermal efficiency and specific power. Parametric studies show that wet compression leads to insignificant improvement in thermal efficiency but significant enhancement of specific power in gas turbine systems with turbine blade cooling.Keywords: Water injection, wet compression, gas turbine, turbine blade cooling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34092960 Dynamic Power Reduction in Sequential Circuits Using Look Ahead Clock Gating Technique
Authors: R. Manjith, C. Muthukumari
Abstract:
In this paper, a novel Linear Feedback Shift Register (LFSR) with Look Ahead Clock Gating (LACG) technique is presented to reduce the power consumption in modern processors and System-on-Chip. Clock gating is a predominant technique used to reduce unwanted switching of clock signals. Several clock gating techniques to reduce the dynamic power have been developed, of which LACG is predominant. LACG computes the clock enabling signals of each flip-flop (FF) one cycle ahead of time, based on the present cycle data of the flip-flops on which it depends. It overcomes the timing problems in the existing clock gating methods like datadriven clock gating and Auto-Gated flip-flops (AGFF) by allotting a full clock cycle for the determination of the clock enabling signals. Further to reduce the power consumption in LACG technique, FFs can be grouped so that they share a common clock enabling signal. Simulation results show that the novel grouped LFSR with LACG achieves 15.03% power savings than conventional LFSR with LACG and 44.87% than data-driven clock gating.Keywords: AGFF, data-driven, LACG, LFSR.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17442959 A Supervisory Scheme for Step-Wise Safe Switching Controllers
Authors: Fotis N. Koumboulis, Maria P. Tzamtzi
Abstract:
A supervisory scheme is proposed that implements Stepwise Safe Switching Logic. The functionality of the supervisory scheme is organized in the following eight functional units: Step- Wise Safe Switching unit, Common controllers design unit, Experimentation unit, Simulation unit, Identification unit, Trajectory cruise unit, Operating points unit and Expert system unit. The supervisory scheme orchestrates both the off-line preparative actions, as well as the on-line actions that implement the Stepwise Safe Switching Logic. The proposed scheme is a generic tool, that may be easily applied for a variety of industrial control processes and may be implemented as an automation software system, with the use of a high level programming environment, like Matlab.
Keywords: Supervisory systems, safe switching, nonlinear systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14532958 A 3Y/3Y Pole-Changing Winding of High-Power Asynchronous Motors
Authors: Gábor Kovács
Abstract:
Requirement for pole-changing motors emerged at the very early times of asynchronous motor design. Different solutions have been elaborated and some of them are generally used. An alternative is the so called 3 Y/3 Y pole-changing winding. This paper deals with high power application of this solution. A complete and comprehensive study is introduced, including features and design guidelines. The method presented in this paper is especially suitable for pole numbers being close to each other. The study also reveals that the method is more advantageous then the existing solutions for high power motors with 1:3 pole ratio. Using this motor, a new and complete drive supply system has been proposed as most appropriate arrangement of high power main naval propulsion drive. Further, the method makes possible to extend the pole ratio to 1:6, 1:9, 1:12, etc. At the end, the proposal is further extended to the here so far missing 1:4, 1:5, 1:7 etc. pole ratios. A complete proposal for the theoretically infinite range has been given in this way.
Keywords: Induction motor, pole changing 3Y/3Y, pole phase modulation, pole changing 1:3, 1:4, 1:5, 1:6.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9562957 Ohmic Quality Factor and Efficiency Estimation for a Gyrotron Cavity
Authors: R. K. Singh, P.K.Jain
Abstract:
Operating a device at high power and high frequency is a major problem because wall losses greatly reduce the efficiency of the device. In the present communication, authors analytically analyzed the dependence of ohmic/RF efficiency, the fraction of output power with respect to the total power generated, of gyrotron cavity structure on the conductivity of copper for the second harmonic TE0,6 mode. This study shows a rapid fall in the RF efficiency as the quality (conductivity) of copper degrades. Starting with an RF efficiency near 40% at the conductivity of ideal copper (5.8 x 107 S/m), the RF efficiency decreases (upto 8%) as the copper quality degrades. Assuming conductivity half that of ideal copper the RF efficiency as a function of diffractive quality factor, Qdiff, has been studied. Here the RF efficiency decreases rapidly with increasing diffractive Q. Ohmic wall losses as a function of frequency for 460 GHz gyrotron cavity excited in TE0,6 mode has also been analyzed. For 460 GHz cavity, the extracted power is reduced to 32% of the generated power due to ohmic losses in the walls of the cavity.Keywords: Diffractive quality factor, Gyrotron, Ohmic wall losses, Open cavity resonator, RF Efficiency.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2244