Search results for: wear resistance
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 905

Search results for: wear resistance

845 Examining of Tool Wear in Cryogenic Machining of Cobalt-Based Haynes 25 Superalloy

Authors: Murat Sarıkaya, Abdulkadir Güllü

Abstract:

Haynes 25 alloy (also known as L-605 alloy) is cobalt based super alloy which has widely applications such as aerospace industry, turbine and furnace parts, power generators and heat exchangers and petroleum refining components due to its excellent characteristics. However, the workability of this alloy is more difficult compared to normal steels or even stainless. In present work, an experimental investigation was performed under cryogenic cooling to determine cutting tool wear patterns and obtain optimal cutting parameters in turning of cobalt based superalloy Haynes 25. In experiments, uncoated carbide tool was used and cutting speed (V) and feed rate (f) were considered as test parameters. Tool wear (VBmax) were measured for process performance indicators. Analysis of variance (ANOVA) was performed to determine the importance of machining parameters.

Keywords: Cryogenic machining, difficult-to-cut alloy, tool wear, turning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2761
844 Dynamic Simulation of IC Engine Bearings for Fault Detection and Wear Prediction

Authors: M. D. Haneef, R. B. Randall, Z. Peng

Abstract:

Journal bearings used in IC engines are prone to premature failures and are likely to fail earlier than the rated life due to highly impulsive and unstable operating conditions and frequent starts/stops. Vibration signature extraction and wear debris analysis techniques are prevalent in industry for condition monitoring of rotary machinery. However, both techniques involve a great deal of technical expertise, time, and cost. Limited literature is available on the application of these techniques for fault detection in reciprocating machinery, due to the complex nature of impact forces that confounds the extraction of fault signals for vibration-based analysis and wear prediction. In present study, a simulation model was developed to investigate the bearing wear behaviour, resulting because of different operating conditions, to complement the vibration analysis. In current simulation, the dynamics of the engine was established first, based on which the hydrodynamic journal bearing forces were evaluated by numerical solution of the Reynold’s equation. In addition, the essential outputs of interest in this study, critical to determine wear rates are the tangential velocity and oil film thickness between the journals and bearing sleeve, which if not maintained appropriately, have a detrimental effect on the bearing performance. Archard’s wear prediction model was used in the simulation to calculate the wear rate of bearings with specific location information as all determinative parameters were obtained with reference to crank rotation. Oil film thickness obtained from the model was used as a criterion to determine if the lubrication is sufficient to prevent contact between the journal and bearing thus causing accelerated wear. A limiting value of 1 μm was used as the minimum oil film thickness needed to prevent contact. The increased wear rate with growing severity of operating conditions is analogous and comparable to the rise in amplitude of the squared envelope of the referenced vibration signals. Thus on one hand, the developed model demonstrated its capability to explain wear behaviour and on the other hand it also helps to establish a co-relation between wear based and vibration based analysis. Therefore, the model provides a cost effective and quick approach to predict the impending wear in IC engine bearings under various operating conditions.

Keywords: Condition monitoring, IC engine, journal bearings, vibration analysis, wear prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2299
843 Contact Temperature of Sliding Surfaces in AISI 316 Austenitic Stainless Steel during Pin on Disk Dry Wear Testing

Authors: Dler Abdullah Ahmed, Zozan Ahmed Mohammed

Abstract:

This study looked into contact surface temperature during a pin-on-disk test. Friction and wear between sliding surfaces raised the temperature differential between contact surface and ambient temperatures Tdiff. Tdiff was significantly influenced by wear test variables. Tdiff rose with the increase of sliding speed and applied load, while dropped with the increase in ambient temperature. The highest Tdiff was 289 °C during the tests at room temperature and 2.5 m/s sliding speed, while the minimum was only 24 °C during the tests at 400 °C and 0.5 m/s. However, the maximum contact temperature Tmax was found during tests conducted at high ambient temperatures. The Tmax was estimated based on the theoretical equation. The comparison of experimental and theoretical Tmax data was revealed good agreement.

Keywords: Pin-on-disk test, contact temperature, wear, sliding surface, friction, ambient temperature.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 66
842 Effect of Polymer Molecular Structures on Properties of Dental Cement Restoratives

Authors: Dong Xie, Jun Zhao, Yiming Weng

Abstract:

The objective of this study was to synthesize and characterize the poly(alkenoic acid)s with different molecular structures, use these polymers to formulate a dental cement restorative, and study the effect of molecular structures on reaction kinetics, viscosity, and mechanical strengths of the formed polymers and cement restoratives. In this study, poly(alkenoic acid)s with different molecular structures were synthesized. The purified polymers were formulated with commercial Fuji II LC glass fillers to form the experimental cement restoratives. The reaction kinetics was studied via 1HNMR spectroscopy. The formed restoratives were evaluated using compressive strength, diametral tensile strength, flexural strength, hardness and wear-resistance tests. Specimens were conditioned in distilled water at 37oC for 24 h prior to testing. Fuji II LC restorative was used as control. The results show that the higher the arm number and initiator concentration, the faster the reaction was. It was also found that the higher the arm number and branching that the polymer had, the lower the viscosity of the polymer in water and the lower the mechanical strengths of the formed restorative. The experimental restoratives were 31-53% in compressive strength, 37- 55% in compressive modulus, 80-126% in diametral tensile strength, 76-94% in flexural strength, 4-21% in fracture toughness and 53-96% in hardness higher than Fuji II LC. For wear test, the experimental restoratives were only 5.4-13% of abrasive and 6.4-12% of attritional wear depths of Fuji II LC in each wear cycle. The aging study also showed that all the experimental restoratives increased their strength continuously during 30 days, unlike Fuji II LC. It is concluded that polymer molecular structures have significant and positive impact on mechanical properties of dental cement restoratives.

Keywords: Poly(alkenoic acid)s, molecular structures, dental cement, mechanical strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1488
841 Experimental Study on Machinability of Laser- Sintered Material in Ball End Milling

Authors: Abdullah Yassin, Takashi Ueda, Syed Tarmizi Syed Shazali

Abstract:

This paper presents an experimental investigation on the machinability of laser-sintered material using small ball end mill focusing on wear mechanisms. Laser-sintered material was produced by irradiating a laser beam on a layer of loose fine SCM-Ni-Cu powder. Bulk carbon steel JIS S55C was selected as a reference steel. The effects of powder consolidation mechanisms and unsintered powder on the tool life and wear mechanisms were carried out. Results indicated that tool life in cutting laser-sintered material is lower than that in cutting JIS S55C. Adhesion of the work material and chipping were the main wear mechanisms of the ball end mill in cutting laser-sintered material. Cutting with the unsintered powder surrounding the tool and laser-sintered material had caused major fracture on the cutting edge.

Keywords: Laser-sintered material, tool life, wear mechanism.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1888
840 Tool Wear of (Ti,W,Si)N-Coated WC-Ni-Based Cemented Carbide in Cutting Hardened Steel

Authors: Tadahiro Wada, Shinichi Enoki, Hiroyuki Hanyu

Abstract:

In this study, WC-Ni-based cemented carbides having different nickel contents were used as the substrate for cutting tool materials. Hardened steel was turned by a (Ti,W,Si)N-coated WC-Ni-based cemented carbide tool, and the tool wear was experimentally investigated. The following results were obtained: (1) In the (Ti,W,Si)N-coated WC-Ni-based cemented carbide, the hardness of the coating film was not much different from the content of the binding material, Ni, and the adhesion strength increased with a decrease in Ni content. (2) There is little difference between the wear progress of the (Ti,W,Si)N-coated WC-7%Ni-based cemented carbide tool and that of the (Ti,W,Si)N-coated WC-6%Co-based cemented carbide tool. (3) The wear progress of the (Ti,W,Si)N-coated WC-Ni-based cemented carbide became slower with a decrease in Ni content.

From the above, it is has become clear that WC-Ni-based cemented carbide can be used as a substrate for cutting tool materials.

Keywords: Rare metals, turning, WC-Ni-based cemented carbide, (Ti, W, Si)N coating film, hardened steel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2839
839 Influence of Tool Geometry on Surface Roughness and Tool Wear When Turning AISI 304L Using Taguchi Optimisation Methodology

Authors: Salah Gariani, Taher Dao, Ahmed Lajili

Abstract:

This paper presents an experimental optimisation of surface roughness (Ra) and tool wear in the precision turning of AISI 304L alloy using a wiper and conventional cutting tools under wet cutting conditions. The machining trials were conducted based on Taguchi methodology employing an L9 orthogonal array design with four process parameters: feed rate, spindle speed, depth of cut, and cutting tool type. The experimental results were utilised to characterise the main factors affecting Ra and tool wear using the analyses of means (AOM) and variance (ANOVA). The results show that the wiper tools outperformed conventional tools in terms of surface quality and tool wear at optimal cutting conditions. The ANOVA results indicate that the main factors contributing to lower Ra are cutting tool type and feed rate, with percentage contribution ratios (PCRs) of 58.69% and 25.18% respectively. This confirms that tool type is the most significant factor affecting surface quality when turning AISI 304L. Additionally, a substantial reduction in tool wear was observed when a wiper insert was used, whereas noticeable increases in tool wear occurred when higher cutting speeds were employed for both tool types. These trends confirm the ANOVA outcomes that cutting speed has a significant effect on tool wear, with a PCR value of 39.22%, followed by tool type with a PCR of 27.40%. All machining trials generated similar continuous spiral or curl-shaped chips. A noticeable difference was found in the radius of the produced curl-shaped chips at different cutting speeds when turning AISI 304L under wet cutting conditions.

Keywords: AISI 304L alloy, conventional and wiper carbide tools, wet turning, average surface roughness, tool wear.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 156
838 Tool Wear Analysis in 3D Manufactured Ti6Al4V

Authors: David Downey

Abstract:

With the introduction of additive manufacturing (3D printing) to produce titanium (Ti6Al4V) components in the medical, aerospace and automotive industries, intricate geometries can be produced with virtually complete design freedom. However, the consideration of microstructural anisotropy resulting from the additive manufacturing process becomes necessary due to this design flexibility and the need to print a geometric shape that can consist of numerous angles, radii, and swept surfaces. A femoral knee implant serves as an example of a 3D-printed near-net-shaped product. The mechanical properties of the printed components, and consequently, their machinability, are affected by microstructural anisotropy. Currently, finish-machining operations performed on titanium printed parts using selective laser melting (SLM) utilize the same cutting tools employed for processing wrought titanium components. Cutting forces for components manufactured through SLM can be up to 70% higher than those for their wrought counterparts made of Ti6Al4V. Moreover, temperatures at the cutting interface of 3D printed material can surpass those of wrought titanium, leading to significant tool wear. Although the criteria for tool wear may be similar for both 3D printed and wrought materials, the rate of wear during the machining process may differ. The impact of these issues on the choice of cutting tool material and tool lifetimes will be discussed.

Keywords: Additive manufacturing, build orientation, microstructural anisotropy, printed titanium Ti6Al4V, tool wear.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 150
837 Process Optimisation for Internal Cylindrical Rough Turning of Nickel Alloy 625 Weld Overlay

Authors: Lydia Chan, Islam Shyha, Dale Dreyer, John Hamilton, Phil Hackney

Abstract:

Nickel-based superalloys are generally known to be difficult to cut due to their strength, low thermal conductivity, and high work hardening tendency. Superalloy such as alloy 625 is often used in the oil and gas industry as a surfacing material to provide wear and corrosion resistance to components. The material is typically applied onto a metallic substrate through weld overlay cladding, an arc welding technique. Cladded surfaces are always rugged and carry a tough skin; this creates further difficulties to the machining process. The present work utilised design of experiment to optimise the internal cylindrical rough turning for weld overlay surfaces. An L27 orthogonal array was used to assess effects of the four selected key process variables: cutting insert, depth of cut, feed rate, and cutting speed. The optimal cutting conditions were determined based on productivity and the level of tool wear.

Keywords: Cylindrical turning, nickel superalloy, turning of overlay, weld overlay.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 926
836 Wear and Friction Analysis of Sintered Metal Powder Self Lubricating Bush Bearing

Authors: J. K. Khare, Abhay Kumar Sharma, Ajay Tiwari, Amol A. Talankar

Abstract:

Powder metallurgy (P/M) is the only economic way to produce porous parts/products. P/M can produce near net shape parts hence reduces wastage of raw material and energy, avoids various machining operations. The most vital use of P/M is in production of metallic filters and self lubricating bush bearings and siding surfaces. The porosity of the part can be controlled by varying compaction pressure, sintering temperature and composition of metal powder mix. The present work is aimed for experimental analysis of friction and wear properties of self lubricating copper and tin bush bearing. Experimental results confirm that wear rate of sintered component is lesser for components having 10% tin by weight percentage. Wear rate increases for high tin percentage (experimented for 20% tin and 30% tin) at same sintering temperature. Experimental results also confirms that wear rate of sintered component is also dependent on sintering temperature, soaking period, composition of the preform, compacting pressure, powder particle shape and size. Interfacial friction between die and punch, between inter powder particles, between die face and powder particle depends on compaction pressure, powder particle size and shape, size and shape of component which decides size & shape of die & punch, material of die & punch and material of powder particles.

Keywords: Interfacial friction, porous bronze bearing, sintering temperature, wear rate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3974
835 Friction Behavior of Wood-Plastic Composites against Uncoated Cemented Carbide

Authors: A. Vilutis, V. Jankauskas

Abstract:

The paper presents the results of the investigation of the dry sliding friction of wood-plastic composites (WPCs) against tungsten carbide-cobalt (WC-Co) hard alloy. The dependence of the dynamic coefficient of friction on the main influencing factors (vertical load, temperature, and sliding distance) was investigated by evaluating their mutual interaction. Multiple regression analysis showed a high polynomial dependence (adjusted R2 > 0.98). The resistance of the composite to thermo-mechanical effects determines how temperature and force factors affect the magnitude of the coefficient of friction. WPC-B composite has the lowest friction and highest resistance compared to WPC-A, while composite and cemented carbide materials wear the least. Energy Dispersive Spectroscopy (EDS), based on elemental composition, provided important insights into the friction process.

Keywords: Friction, composite, carbide, temperature.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 75
834 The Effect of Cyclic Speed on the Wear Properties of Molybdenum Disulfide Greases under Extreme Pressure Loading Using 4 Balls Wear Tests

Authors: Gabi Nehme

Abstract:

The relationship between different types of Molybdenum disulfide greases under extreme pressure loading and different speed situations have been studied using Design of Experiment (DOE) under 1200rpm steady state rotational speed and cyclic frequencies between 2400 and 1200rpm using a Plint machine software to set up the different rotational speed situations.  Research described here is aimed at providing good friction and wear performance while optimizing cyclic frequencies and MoS2 concentration due to the recent concern about grease behavior in extreme pressure applications. Extreme load of 785 Newton was used in conjunction with different cyclic frequencies (2400rpm -3.75min, 1200rpm -7.5min, 2400rpm -3.75min, 1200rpm -7.5min), to examine lithium based grease with and without MoS2 for equal number of revolutions, and a total run of 36000 revolutions; then compared to 1200rpm steady speed for the same total number of revolutions. 4 Ball wear tester was utilized to run large number of experiments randomly selected by the DOE software. The grease was combined with fine grade MoS2 or technical grade then heated to 750C and the wear scar width was collected at the end of each test. DOE model validation results verify that the data were very significant and can be applied to a wide range of extreme pressure applications. Based on simulation results and Scanning Electron images (SEM), it has been found that wear was largely dependent on the cyclic frequency condition. It is believed that technical grade MoS2 greases under faster cyclic speeds perform better and provides antiwear film that can resist extreme pressure loadings. Figures showed reduced wear scars width and improved frictional values.

 

Keywords: MoS2 grease, wear, friction, extreme load, cyclic frequencies, aircraft grade bearing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1898
833 Estimation of Exhaust and Non-Exhaust Particulate Matter Emissions’ Share from On-Road Vehicles in Addis Ababa City

Authors: Solomon Neway Jida, Jean-Francois Hetet, Pascal Chesse

Abstract:

Vehicular emission is the key source of air pollution in the urban environment. This includes both fine particles (PM2.5) and coarse particulate matters (PM10). However, particulate matter emissions from road traffic comprise emissions from exhaust tailpipe and emissions due to wear and tear of the vehicle part such as brake, tire and clutch and re-suspension of dust (non-exhaust emission). This study estimates the share of the two sources of pollutant particle emissions from on-roadside vehicles in the Addis Ababa municipality, Ethiopia. To calculate its share, two methods were applied; the exhaust-tailpipe emissions were calculated using the Europeans emission inventory Tier II method and Tier I for the non-exhaust emissions (like vehicle tire wear, brake, and road surface wear). The results show that of the total traffic-related particulate emissions in the city, 63% emitted from vehicle exhaust and the remaining 37% from non-exhaust sources. The annual roads transport exhaust emission shares around 2394 tons of particles from all vehicle categories. However, from the total yearly non-exhaust particulate matter emissions’ contribution, tire and brake wear shared around 65% and 35% emanated by road-surface wear. Furthermore, vehicle tire and brake wear were responsible for annual 584.8 tons of coarse particles (PM10) and 314.4 tons of fine particle matter (PM2.5) emissions in the city whereas surface wear emissions were responsible for around 313.7 tons of PM10 and 169.9 tons of PM2.5 pollutant emissions in the city. This suggests that non-exhaust sources might be as significant as exhaust sources and have a considerable contribution to the impact on air quality.

Keywords: Addis Ababa, automotive emission, emission estimation, particulate matters.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 765
832 Mechanism and Kinetic of Layers Growth: Application to Nitriding of 32CrMoV13 Steel

Authors: L. Torchane

Abstract:

In this work, our goal is to optimize the nitriding treatment at a low-temperature of the steel 32CrMoV13 using gas mixtures of ammonia, nitrogen and hydrogen to improve the mechanical properties of the surface (good wear resistance, friction and corrosion), and of the diffusion layer of the nitrogen (good resistance to fatigue and good tenacity with heart). By limiting our work to the pure iron and to the alloys iron-chromium and iron-chromium-carbon, we have studied the various parameters which manage the nitriding: flow rate and composition of the gaseous phase, the interaction chromium-nitrogen and chromium-carbon by the help of experiments of nitriding realized in the laboratory by thermogravimetry. The acquired knowledge has been applied by the mastery of the growth of the γ' combination layer on the α diffusion layer in the case of the industrial steel 32CrMoV13.

Keywords: Diffusion of nitrogen, Gaseous nitriding, Layer growth kinetic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1585
831 Evaluating the Tool Wear Rate in Ultrasonic Machining of Titanium using Design of Experiments Approach

Authors: Jatinder Kumar, Vinod Kumar

Abstract:

Ultrasonic machining (USM) is a non-traditional machining process being widely used for commercial machining of brittle and fragile materials such as glass, ceramics and semiconductor materials. However, USM could be a viable alternative for machining a tough material such as titanium; and this aspect needs to be explored through experimental research. This investigation is focused on exploring the use of ultrasonic machining for commercial machining of pure titanium (ASTM Grade-I) and evaluation of tool wear rate (TWR) under controlled experimental conditions. The optimal settings of parameters are determined through experiments planned, conducted and analyzed using Taguchi method. In all, the paper focuses on parametric optimization of ultrasonic machining of pure titanium metal with TWR as response, and validation of the optimized value of TWR by conducting confirmatory experiments.

Keywords: Ultrasonic machining, titanium, tool wear rate

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2505
830 Effects of Silicon Oxide Filler Material and Fibre Orientation on Erosive Wear of GF/EP Composites

Authors: M. Bagci, H. Imrek, Omari M. Khalfan

Abstract:

Materials added to the matrix help improving operating properties of a composite. This experimental study has targeted to investigate this aim where Silicon Oxide particles were added to glass fibre and epoxy resin at an amount of 15% to the main material to obtain a sort of new composite material. Erosive wear behavior of epoxy-resin dipped composite materials reinforced with glass fibre and Silicon Oxide under three different impingement angles (30°, 60° and 90°), three different impact velocities (23, 34 and 53 m/s), two different angular Aluminum abrasive particle sizes (approximately 200 and 400 μm) and the fibre orientation of 45° (45/-45) were investigated. In the test results, erosion rates were obtained as functions of impingement angles, impact velocities, particle sizes and fibre orientation. Moreover, materials with addition of Silicon Oxide filler material exhibited lower wear as compared to neat materials with no added filler material. In addition, SEM views showing worn out surfaces of the test specimens were scrutinized.

Keywords: Erosive wear, fibre orientation, GF/EP, silicon oxide.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2561
829 Chatter Suppression in Boring Process Using Passive Damper

Authors: V. Prasannavenkadesan, A. Elango, S. Chockalingam

Abstract:

During machining process, chatter is an unavoidable phenomenon. Boring bars possess the cantilever shape and due to this, it is subjected to chatter. The adverse effect of chatter includes the increase in temperature which will leads to excess tool wear. To overcome these problems, in this investigation, Cartridge brass (Cu – 70% and Zn – 30%) is passively fixed on the boring bar and also clearance is provided in order to reduce the displacement, tool wear and cutting temperature. A conventional all geared lathe is attached with vibrometer and pyrometer is used to measure the displacement and temperature. The influence of input parameters such as cutting speed, depth of cut and clearance on temperature, tool wear and displacement are investigated for various cutting conditions. From the result, the optimum conditions to obtain better damping in boring process for chatter reduction is identified.

Keywords: Boring, chatter, mass damping, passive damping.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2944
828 On the Variability of Tool Wear and Life at Disparate Operating Parameters

Authors: S. E. Oraby, A.M. Alaskari

Abstract:

The stochastic nature of tool life using conventional discrete-wear data from experimental tests usually exists due to many individual and interacting parameters. It is a common practice in batch production to continually use the same tool to machine different parts, using disparate machining parameters. In such an environment, the optimal points at which tools have to be changed, while achieving minimum production cost and maximum production rate within the surface roughness specifications, have not been adequately studied. In the current study, two relevant aspects are investigated using coated and uncoated inserts in turning operations: (i) the accuracy of using machinability information, from fixed parameters testing procedures, when variable parameters situations are emerged, and (ii) the credibility of tool life machinability data from prior discrete testing procedures in a non-stop machining. A novel technique is proposed and verified to normalize the conventional fixed parameters machinability data to suit the cases when parameters have to be changed for the same tool. Also, an experimental investigation has been established to evaluate the error in the tool life assessment when machinability from discrete testing procedures is employed in uninterrupted practical machining.

Keywords: Machinability, tool life, tool wear, wear variability

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1796
827 Influence of Ti, B, and Sr on Microstructure, Mechanical and Tribological Properties of as Cast, Cast Aged, and Forge Aged A356 Alloy – A Comparative Study

Authors: R. V. Kurahatti, D. G. Mallapur, K. Rajendra Udupa

Abstract:

In the present work, a comparative study on the microstructure and mechanical properties of as cast, cast aged and forged aged A356 alloy has been investigated. The study reveals that mechanical properties of A356 alloy are highly influenced by melt treatment and solid state processing. Cast aged alloys achieve highest strength and hardness compared to as cast and forge aged ones. Ones treated with combined addition of grain refiners and modifiers achieve maximum strength and hardness. Cast aged A356 alloy possesses higher wear resistance compared to as cast and forge aged ones. Forging improves both strength and ductility of alloys over as cast ones. However, the improvement in ductility is perceptible only for properly grain refined and modified alloys. Ones refined with 0.65% Al-3Ti shows highest improvement in ductility while ones treated with 0.20% Al-10Sr exhibits less improvement in ductility.

Keywords: Forged A356 alloy, Grain refinement, Modification, Wear

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2683
826 Inspection of Geometrical Integrity of Work Piece and Measurement of Tool Wear by the Use of Photo Digitizing Method

Authors: R. Alipour, F. Nadjarian, A. Alinaghizade

Abstract:

Considering complexity of products, new geometrical design and investment tolerances that are necessary, measuring and dimensional controlling involve modern and more precise methods. Photo digitizing method using two cameras to record pictures and utilization of conventional method named “cloud points" and data analysis by the use of ATOUS software, is known as modern and efficient in mentioned context. In this paper, benefits of photo digitizing method in evaluating sampling of machining processes have been put forward. For example, assessment of geometrical integrity surface in 5-axis milling process and measurement of carbide tool wear in turning process, can be can be brought forward. Advantages of this method comparing to conventional methods have been expressed.

Keywords: photo digitizing, tool wear, geometrical integrity, cloud points

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1356
825 Studies on the Characterization and Machinability of Duplex Stainless Steel 2205 during Dry Turning

Authors: Gaurav D. Sonawane, Vikas G. Sargade

Abstract:

The present investigation is a study of the effect of advanced Physical Vapor Deposition (PVD) coatings on cutting temperature residual stresses and surface roughness during Duplex Stainless Steel (DSS) 2205 turning. Austenite stabilizers like nickel, manganese, and molybdenum reduced the cost of DSS. Surface Integrity (SI) plays an important role in determining corrosion resistance and fatigue life. Resistance to various types of corrosion makes DSS suitable for applications with critical environments like Heat exchangers, Desalination plants, Seawater pipes and Marine components. However, lower thermal conductivity, poor chip control and non-uniform tool wear make DSS very difficult to machine. Cemented carbide tools (M grade) were used to turn DSS in a dry environment. AlTiN and AlTiCrN coatings were deposited using advanced PVD High Pulse Impulse Magnetron Sputtering (HiPIMS) technique. Experiments were conducted with cutting speed of 100 m/min, 140 m/min and 180 m/min. A constant feed and depth of cut of 0.18 mm/rev and 0.8 mm were used, respectively. AlTiCrN coated tools followed by AlTiN coated tools outperformed uncoated tools due to properties like lower thermal conductivity, higher adhesion strength and hardness. Residual stresses were found to be compressive for all the tools used for dry turning, increasing the fatigue life of the machined component. Higher cutting temperatures were observed for coated tools due to its lower thermal conductivity, which results in very less tool wear than uncoated tools. Surface roughness with uncoated tools was found to be three times higher than coated tools due to lower coefficient of friction of coating used.

Keywords: Cutting temperatures, DSS2205, dry turning, HiPIMS, surface integrity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 886
824 Detection of Tetracycline Resistance Genes in Lactococcus garvieae Strains Isolated from Rainbow Trout

Authors: M. Raissy, M. Shahrani

Abstract:

The present study was done to evaluate the presence of tetracycline resistance genes in Lactococcus garvieae isolated from cultured rainbow trout, West Iran. The isolates were examined for antimicrobial resistance using disc diffusion method. Of the 49 strains tested, 19 were resistant to tetracycline (38.7%), 32 to enrofloxacin (65.3%), 21 to erythromycin (42.8%), 20 to chloramphenicol and trimetoprim-sulfamethoxazole (40.8%). The strains were then characterized for their genotypic resistance profiles. The results revealed that all 49 isolates contained at least one of the tetracycline resistance genes. Tet (A) was found in 89.4% of tetracycline resistant isolates and the frequency of other gene were as follows: tet (E) 42.1%, tet (B) 47.3%, tet (D) 15.7%, tet (L) 26.3%, tet (K) 52.6%, tet (G) 36.8%, tet (34) 21%, tet (S) 63.1%, tet (C) 57.8%, tet (M) 73.6%, tet (O) 42.1%. The results revealed high levels of antibiotic resistance in L. garvieae strains which is a potential danger for trout culture as well as for public health.

Keywords: Lactococcus garvieae, rainbow trout, tetracycline resistance genes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2536
823 Antibiotic Resistance Profile of Bacterial Isolates from Animal Farming Aquatic Environments and Meats in a Peri-Urban Community in South Korea

Authors: Hyunjin Rho, Bongjin Shin, Okbok Lee, Yu-Hyun Choi, Jiyoung Lee, Jaerang Rho

Abstract:

The increasing usage of antibiotics in the animal farming industry is an emerging worldwide problem contributing to the development of antibiotic resistance. The purpose of this work was to investigate the prevalence and antibiotic resistance profile of bacterial isolates collected from aquatic environments and meats in a peri-urban community in Daejeon, Korea. In an antibacterial susceptibility test, the bacterial isolates showed a high incidence of resistance (~ 26.04 %) to cefazolin, tetracycline, gentamycin, norfloxacin, erythromycin and vancomycin. The results from a test for multiple antibiotic resistance indicated that the isolates were displaying an approximately 5-fold increase in the incidence of multiple antibiotic resistance to combinations of two different antibiotics compared to combinations of three or more antibiotics. Most of the isolates showed multi-antibiotic resistance, and the resistance patterns were similar among the sampling groups. Sequencing data analysis of 16S rRNA showed that most of the resistant isolates appeared to be dominated by the classes Betaproteobacteria and Gammaproteobacteria in the phylum Proteobacteria.

Keywords: Antibiotics, Antibiotic resistance, Antimicrobial resistance, Multi-resistance

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2229
822 The Performance of PVD Coated Grade in Milling of ADI 800

Authors: M. Ibrahim Sadik, Toril Myrtveit

Abstract:

The aim of this investigation is to study the performance of the new generation of the PVD coated grade and to map the influence of cutting conditions on the tool life in milling of ADI (Austempered Ductile Iron). The results show that chipping is the main wear mechanism which determines the tool life in dry condition and notch wear in wet condition for this application. This due to the different stress mechanisms and preexisting cracks in the coating. The wear development shows clearly that the new PVD coating (C20) has the best ability to delay the chipping growth. It was also found that a high content of Al in the new coating (C20) was especially favorable compared to a TiAlN multilayer with lower Al content (C30) or CVD coating. This is due to fine grains and low compressive stress level in the coating which increase the coating ability to withstand the mechanical and thermal impact. It was also found that the use of coolant decreases the tool life with 70-80% compare to dry milling.

Keywords: Austempered Ductile Iron (ADI), coating, chipping, milling, tool performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1933
821 Resistance Analysis for a Trimaran

Authors: C. M. De Marco Muscat-Fenech, A. M. Grech La Rosa

Abstract:

Although a lot of importance has been given to resistance analysis for various vessel types, explicit guidelines applied to multihull vessels have not been clearly defined.  The purpose of this investigation is to highlight the importance of the vessel’s layout in terms of three axes, the transverse (separation), the longitudinal (stagger) and the vertical (draught) with respect to resistance analysis. When a vessel has the potential to experience less resistance at a particular range of speeds a vast selection of opportunities are made available for both the commercial and leisure market.

Keywords: Multihull, Reistance, Trimaran.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3978
820 Moderation in Temperature Dependence on Counter Frictional Coefficient and Prevention of Wear of C/C Composites by Synthesizing SiC around Surface and Internal Vacancies

Authors: Noboru Wakamoto, Kiyotaka Obunai, Kazuya Okubo, Toru Fujii

Abstract:

The aim of this study is to moderate the dependence of counter frictional coefficient on temperature between counter surfaces and to reduce the wear of C/C composites at low temperature. To modify the C/C composites, Silica (SiO2) powders were added into phenolic resin for carbon precursor. The preform plate of the precursor of C/C composites was prepared by conventional filament winding method. The C/C composites plates were obtained by carbonizing preform plate at 2200 °C under an argon atmosphere. At that time, the silicon carbides (SiC) were synthesized around the surfaces and the internal vacancies of the C/C composites. The frictional coefficient on the counter surfaces and specific wear volumes of the C/C composites were measured by our developed frictional test machine like pin-on disk type. The XRD indicated that SiC was synthesized in the body of C/C composite fabricated by current method. The results of friction test showed that coefficient of friction of unmodified C/C composites have temperature dependence when the test condition was changed. In contrast, frictional coefficient of the C/C composite modified with SiO2 powders was almost constant at about 0.27 when the temperature condition was changed from Room Temperature (RT) to 300 °C. The specific wear rate decreased from 25×10-6 mm2/N to 0.1×10-6 mm2/N. The observations of the surfaces after friction tests showed that the frictional surface of the modified C/C composites was covered with a film produced by the friction. This study found that synthesizing SiC around surface and internal vacancies of C/C composites was effective to moderate the dependence on the frictional coefficient and reduce to the abrasion of C/C composites.

Keywords: C/C composites, frictional coefficient, SiC, wear.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 828
819 Verification of the Simultaneous Local Extraction Method of Base and Thermal Resistance of Bipolar Transistors

Authors: Robert Setekera, Luuk Tiemeijer, Ramses van der Toorn

Abstract:

In this paper an extensive verification of the extraction method (published earlier) that consistently accounts for self-heating and Early effect to accurately extract both base and thermal resistance of bipolar junction transistors is presented. The method verification is demonstrated on advanced RF SiGe HBTs were the extracted results for the thermal resistance are compared with those from another published method that ignores the effect of Early effect on internal base-emitter voltage and the extracted results of the base resistance are compared with those determined from noise measurements. A self-consistency of our method in the extracted base resistance and thermal resistance using compact model simulation results is also carried out in order to study the level of accuracy of the method.

Keywords: Avalanche, Base resistance, Bipolar transistor, Compact modeling, Early voltage, Thermal resistance, Self-heating, parameter extraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2050
818 Tribological Investigation and the Effect of Karanja Biodiesel on Engine Wear in Compression Ignition Engine

Authors: Ajay V. Kolhe, R. E. Shelke, S. S. Khandare

Abstract:

Various biomass based resources, which can be used as an extender, or a complete substitute of diesel fuel may have very significant role in the development of agriculture, industrial and transport sectors in the energy crisis. Use of Karanja oil methyl ester biodiesel in a CI DI engine was found highly compatible with engine performance along with lower exhaust emission as compared to diesel fuel but with slightly higher NOx emission and low wear characteristics. The combustion related properties of vegetable oils are somewhat similar to diesel oil. Neat vegetable oils or their blends with diesel, however, pose various long-term problems in compression ignition engines. These undesirable features of vegetable oils are because of their inherent properties like high viscosity, low volatility, and polyunsaturated character. Pongamia methyl ester (PME) was prepared by transesterification process using methanol for long term engine operations. The physical and combustion-related properties of the fuels thus developed were found to be closer to that of the diesel. A neat biodiesel (PME) was selected as a fuel for the tribological study of biofuels. Two similar new engines were completely disassembled and subjected to dimensioning of various vital moving parts and then subjected to long-term endurance tests on neat biodiesel and diesel respectively. After completion of the test, both the engines were again disassembled for physical inspection and wear measurement of various vital parts. The lubricating oil samples drawn from both engines were subjected to atomic absorption spectroscopy (AAS) for measurement of various wear metal traces present. The additional lubricating property of biodiesel fuel due to higher viscosity as compared to diesel fuel resulted in lower wear of moving parts and thus improved the engine durability with a bio-diesel fuel. Results reported from AAS tests confirmed substantially lower wear and thus improved life for biodiesel operated engines.

Keywords: Transesterification, PME, wear of engine parts, Metal traces and AAS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2447
817 Surface Topography Assessment Techniques based on an In-process Monitoring Approach of Tool Wear and Cutting Force Signature

Authors: A. M. Alaskari, S. E. Oraby

Abstract:

The quality of a machined surface is becoming more and more important to justify the increasing demands of sophisticated component performance, longevity, and reliability. Usually, any machining operation leaves its own characteristic evidence on the machined surface in the form of finely spaced micro irregularities (surface roughness) left by the associated indeterministic characteristics of the different elements of the system: tool-machineworkpart- cutting parameters. However, one of the most influential sources in machining affecting surface roughness is the instantaneous state of tool edge. The main objective of the current work is to relate the in-process immeasurable cutting edge deformation and surface roughness to a more reliable easy-to-measure force signals using a robust non-linear time-dependent modeling regression techniques. Time-dependent modeling is beneficial when modern machining systems, such as adaptive control techniques are considered, where the state of the machined surface and the health of the cutting edge are monitored, assessed and controlled online using realtime information provided by the variability encountered in the measured force signals. Correlation between wear propagation and roughness variation is developed throughout the different edge lifetimes. The surface roughness is further evaluated in the light of the variation in both the static and the dynamic force signals. Consistent correlation is found between surface roughness variation and tool wear progress within its initial and constant regions. At the first few seconds of cutting, expected and well known trend of the effect of the cutting parameters is observed. Surface roughness is positively influenced by the level of the feed rate and negatively by the cutting speed. As cutting continues, roughness is affected, to different extents, by the rather localized wear modes either on the tool nose or on its flank areas. Moreover, it seems that roughness varies as wear attitude transfers from one mode to another and, in general, it is shown that it is improved as wear increases but with possible corresponding workpart dimensional inaccuracy. The dynamic force signals are found reasonably sensitive to simulate either the progressive or the random modes of tool edge deformation. While the frictional force components, feeding and radial, are found informative regarding progressive wear modes, the vertical (power) components is found more representative carrier to system instability resulting from the edge-s random deformation.

Keywords: Dynamic force signals, surface roughness (finish), tool wear and deformation, tool wear modes (nose, flank)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1348
816 Performance Assessment of Carbon Nano Tube Based Cutting Fluid in Machining Process

Authors: Alluru Gopala Krishna, Thella Babu Rao

Abstract:

In machining, there is always a problem with heat generation and friction produced during the process as they consequently affect tool wear and surface finish. An instant heat transfer mechanism could protect the cutting tool edge and enhance the tool life by cooling the cutting edge of the tool. In the present work, carbon nanotube (CNT) based nano-cutting fluid is proposed for machining a hard-to-cut material. Tool wear and surface roughness are considered for the evaluation of the nano-cutting fluid in turning process. The performance of nanocoolant is assessed against the conventional coolant and dry machining conditions and it is observed that the proposed nanocoolant has produced better performance than the conventional coolant.

Keywords: CNT based nanocoolant, turning, tool wear, surface roughness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1728