Search results for: post-Wenchuan earthquake.
218 The Flashbulb Memory of the Positive and Negative Events: Wenchuan Earthquake and Acceptance to College
Authors: Aiping Liu, Xiaoping Ying, Jing Luo
Abstract:
53 college students answered questions regarding the circumstances in which they first heard about the news of Wenchuan earthquake or the news of their acceptance to college which took place approximately one year ago, and answered again two years later. The number of details recalled about their circumstances for both events was high and didn-t decline two years later. However, consistency in reported details over two years was low. Participants were more likely to construct central (e.g., Where were you?) than peripheral information (What were you wearing?), and the confidence of the central information was higher than peripheral information, which indicated that they constructed more when they were more confident.
Keywords: flashbulb memory, consistency, reconstructive error, confidence
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2438217 Seismic Time History Analysis for Cable-Stayed Bridge Considering Different Geometrical Configuration For Near Field Earthquakes
Authors: Atul K. Desai
Abstract:
To increase the maximum span of cable-stayed bridges, Uwe Starossek has developed a modified statical system. The basic idea of this new concept is the use of pairs of inclined pylon legs that spread out longitudinally from the foundation base or from the girder level. Spread-pylon cable-stayed bridge has distinct advantage like reduction of sag of cables and oscillation of cable during earthquake over traditional cable-stayed bridges. Spread-pylon also improves seismic performance of deck during strong ground motion.
Keywords: Different geometry of cable stayed bridge, seismic time history analysis, earthquake displacement ratio, response mode shape.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3306216 Influence of Strengthening with Perforated Steel Plates on the Behavior of Infill Walls and RC Frame
Authors: Eray Ozbek, Ilker Kalkan, S. Oguzhan Akbas, Sabahattin Aykac
Abstract:
The contribution of the infill walls to the overall earthquake response of a structure is limited and this contribution is generally ignored in the analyses. Strengthening of the infill walls through different techniques has been and is being studied extensively in the literature to increase this limited contribution and the ductilities and energy absorption capacities of the infill walls to create non-structural components where the earthquake-induced energy can be absorbed without damaging the bearing components of the structural frame. The present paper summarizes an extensive research project dedicated to investigate the effects of strengthening the brick infill walls of a reinforced concrete (RC) frame on its lateral earthquake response. Perforated steel plates were used in strengthening due to several reasons, including the ductility and high deformation capacity of these plates, the fire resistant, recyclable and non-cancerogenic nature of mild steel, and the ease of installation and removal of the plates to the wall with the help of anchor bolts only. Furthermore, epoxy, which increases the cost and amount of labor of the strengthening process, is not needed in this technique. The individual behavior of the strengthened walls under monotonic diagonal and lateral reversed cyclic loading was investigated within the scope of the study. Upon achieving brilliant results, RC frames with strengthened infill walls were tested and are being tested to examine the influence of this strengthening technique on the overall behavior of the RC frames. Tests on the wall and frame specimens indicated that the perforated steel plates contribute to the lateral strength, rigidity, ductility and energy absorption capacity of the wall and the infilled frame to a major extent.
Keywords: Infill wall, Strengthening, External plate, Earthquake Behavior.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2420215 Connotation Reform and Problem Response of Rural Social Relations under the Influence of the Earthquake: With a Review of Wenchuan Decade
Abstract:
The occurrence of Wenchuan earthquake in 2008 has led to severe damage to the rural areas of Chengdu city, such as the rupture of the social network, the stagnation of economic production and the rupture of living space. The post-disaster reconstruction has become a sustainable issue. As an important link to maintain the order of rural social development, social network should be an important content of post-disaster reconstruction. Therefore, this paper takes rural reconstruction communities in earthquake-stricken areas of Chengdu as the research object and adopts sociological research methods such as field survey, observation and interview to try to understand the transformation of rural social relations network under the influence of earthquake and its impact on rural space. It has found that rural societies under the earthquake generally experienced three phases: the break of stable social relations, the transition of temporary non-normal state, and the reorganization of social networks. The connotation of phased rural social relations also changed accordingly: turn to a new division of labor on the social orientation, turn to a capital flow and redistribution in new production mode on the capital orientation, and turn to relative decentralization after concentration on the spatial dimension. Along with such changes, rural areas have emerged some social issues such as the alienation of competition in the new industry division, the low social connection, the significant redistribution of capital, and the lack of public space. Based on a comprehensive review of these issues, this paper proposes the corresponding response mechanism. First of all, a reasonable division of labor should be established within the villages to realize diversified commodity supply. Secondly, the villages should adjust the industrial type to promote the equitable participation of capital allocation groups. Finally, external public spaces should be added to strengthen the field of social interaction within the communities.
Keywords: Social relations, social support networks, industrial division, capital allocation, public space.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 696214 Post Earthquake Volunteer Learning That Build Up Caring Learning Communities
Authors: Naoki Okamura
Abstract:
From a perspective of moral education, this study has examined the experiences of a group of college students who volunteered in disaster areas after the magnitude 9.0 Earthquake, which struck the Northeastern region of Japan in March, 2011. The research, utilizing the method of grounded theory, has uncovered that most of the students have gone through positive changes in their development of moral and social characters, such as attaining deeper sense of empathy and caring personalities. The study expresses, in identifying the nature of those transformations, that the importance of volunteer work should strongly be recognized by the colleges and universities in Japan, in fulfilling their public responsibility of creating and building learning communities that are responsible and caring.
Keywords: Moral development, moral education, service learning, volunteer learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1771213 Comparisons of Co-Seismic Gravity Changes between GRACE Observations and the Predictions from the Finite-Fault Models for the 2012 Mw = 8.6 Indian Ocean Earthquake Off-Sumatra
Authors: Armin Rahimi
Abstract:
The Gravity Recovery and Climate Experiment (GRACE) has been a very successful project in determining math redistribution within the Earth system. Large deformations caused by earthquakes are in the high frequency band. Unfortunately, GRACE is only capable to provide reliable estimate at the low-to-medium frequency band for the gravitational changes. In this study, we computed the gravity changes after the 2012 Mw8.6 Indian Ocean earthquake off-Sumatra using the GRACE Level-2 monthly spherical harmonic (SH) solutions released by the University of Texas Center for Space Research (UTCSR). Moreover, we calculated gravity changes using different fault models derived from teleseismic data. The model predictions showed non-negligible discrepancies in gravity changes. However, after removing high-frequency signals, using Gaussian filtering 350 km commensurable GRACE spatial resolution, the discrepancies vanished, and the spatial patterns of total gravity changes predicted from all slip models became similar at the spatial resolution attainable by GRACE observations, and predicted-gravity changes were consistent with the GRACE-detected gravity changes. Nevertheless, the fault models, in which give different slip amplitudes, proportionally lead to different amplitude in the predicted gravity changes.Keywords: Undersea earthquake, GRACE observation, gravity change, dislocation model, slip distribution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 991212 Static Analysis and Pseudostatic Slope Stability
Authors: Meftah Ali
Abstract:
This article aims to analyze the static stability and pseudostatic slope by using different methods such as: Bishop method, Junbu, Ordinary, Morgenstern-price and GLE. The two dimensional modeling of slope stability under various loading as: the earthquake effect, the water level and road mobile charges. The results show that the slope is stable in the static case without water, but in other cases, the slope lost its stability and give unstable. The calculation of safety factor is to evaluate the stability of the slope using the limit equilibrium method despite the difference between the results obtained by these methods that do not rely on the same assumptions. In the end, the results of this study illuminate well the influence of the action of water, moving loads and the earthquake on the stability of the slope.Keywords: Slope stability, pseudo static, safety factor, limit equilibrium.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3360211 Vibration Control of Building Using Multiple Tuned Mass Dampers Considering Real Earthquake Time History
Authors: Rama Debbarma, Debanjan Das
Abstract:
The performance of multiple tuned mass dampers to mitigate the seismic vibration of structures considering real time history data is investigated in this paper. Three different real earthquake time history data like Kobe, Imperial Valley and Mammoth Lake are taken in the present study. The multiple tuned mass dampers (MTMD) are distributed at each storey. For comparative study, single tuned mass damper (STMD) is installed at top of the similar structure. This study is conducted for a fixed mass ratio (5%) and fixed damping ratio (5%) of structures. Numerical study is performed to evaluate the effectiveness of MTMDs and overall system performance. The displacement, acceleration, base shear and storey drift are obtained for both combined system (structure with MTMD and structure with STMD) for all earthquakes. The same responses are also obtained for structure without damper system. From obtained results, it is investigated that the MTMD configuration is more effective for controlling the seismic response of the primary system with compare to STMD configuration.Keywords: Earthquake, multiple tuned mass dampers, single tuned mass damper, time history.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1994210 Prediction of Soil Liquefaction by Using UBC3D-PLM Model in PLAXIS
Authors: A. Daftari, W. Kudla
Abstract:
Liquefaction is a phenomenon in which the strength and stiffness of a soil is reduced by earthquake shaking or other rapid cyclic loading. Liquefaction and related phenomena have been responsible for huge amounts of damage in historical earthquakes around the world. Modeling of soil behavior is the main step in soil liquefaction prediction process. Nowadays, several constitutive models for sand have been presented. Nevertheless, only some of them can satisfy this mechanism. One of the most useful models in this term is UBCSAND model. In this research, the capability of this model is considered by using PLAXIS software. The real data of superstition hills earthquake 1987 in the Imperial Valley was used. The results of the simulation have shown resembling trend of the UBC3D-PLM model.
Keywords: Liquefaction, Plaxis, Pore-Water pressure, UBC3D-PLM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7103209 Application of Seismic Isolators in Kutahya City Hospital Project Utilizing Double Friction Pendulum Type Devices
Authors: Kaan Yamanturk, Cihan Dogruoz
Abstract:
Seismic isolators have been utilized around the world to protect the structures, nonstructural components and contents from the damaging effects of earthquakes. In Structural Engineering, seismic isolation is used for protecting buildings and its vibration-sensitive contents from earthquakes. Seismic isolation is a passive control system that lowers effective earthquake forces by utilizing flexible bearings. One of the most significant isolation systems is seismic isolators. In this paper, double pendulum type Teflon coated seismic isolators utilized in a city hospital project by Guris Construction and Engineering Co. Inc, located in Kutahya, Turkey, have been investigated. Totally, 498 seismic isolators were applied in the project. These isolators are double friction pendulum type seismic isolation devices. The review of current practices is also examined in this study. The focus of this study is related to the application of passive seismic isolation systems for buildings as practiced in Kutahya City Hospital Project. Based on the study, the acceleration at the top floor will be 0.18 g and it will decrease 0.01 g in every floor. Therefore, seismic isolators are very important for buildings located in earthquake zones.
Keywords: Maximum considered earthquake, moment resisting frame, seismic isolator, seismic design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 670208 Impact of Natural Period and Epicentral Distance on Storey Lateral Displacements
Authors: S. Dorbani, M. Badaoui, D. Benouar
Abstract:
The goal of the paper is to highlight the effect of the building design and epicentral distance on the storey lateral displacements, for several reinforced concrete buildings (6, 9 and 12 stories). These structures are subjected to seismic accelerations from the Boumerdes earthquake (Algeria, May 21st, Mw = 6.8). Using the response spectrum method (modal spectral approach), the analysis is performed in both longitudinal and transverse directions. The building design is expressed through the fundamental period and epicentral distance is used to represent the earthquake effect variation on storey lateral displacements and interstory drift for the considered buildings.Keywords: Epicentral distance, interstory drift, lateral displacement, natural period, reinforced concrete buildings.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1919207 A Damage Level Assessment Model for Extra High Voltage Transmission Towers
Authors: Huan-Chieh Chiu, Hung-Shuo Wu, Chien-Hao Wang, Yu-Cheng Yang, Ching-Ya Tseng, Joe-Air Jiang
Abstract:
Power failure resulting from tower collapse due to violent seismic events might bring enormous and inestimable losses. The Chi-Chi earthquake, for example, strongly struck Taiwan and caused huge damage to the power system on September 21, 1999. Nearly 10% of extra high voltage (EHV) transmission towers were damaged in the earthquake. Therefore, seismic hazards of EHV transmission towers should be monitored and evaluated. The ultimate goal of this study is to establish a damage level assessment model for EHV transmission towers. The data of earthquakes provided by Taiwan Central Weather Bureau serve as a reference and then lay the foundation for earthquake simulations and analyses afterward. Some parameters related to the damage level of each point of an EHV tower are simulated and analyzed by the data from monitoring stations once an earthquake occurs. Through the Fourier transform, the seismic wave is then analyzed and transformed into different wave frequencies, and the data would be shown through a response spectrum. With this method, the seismic frequency which damages EHV towers the most is clearly identified. An estimation model is built to determine the damage level caused by a future seismic event. Finally, instead of relying on visual observation done by inspectors, the proposed model can provide a power company with the damage information of a transmission tower. Using the model, manpower required by visual observation can be reduced, and the accuracy of the damage level estimation can be substantially improved. Such a model is greatly useful for health and construction monitoring because of the advantages of long-term evaluation of structural characteristics and long-term damage detection.Keywords: Smart grid, EHV transmission tower, response spectrum, damage level monitoring.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1066206 Artificial Neural Networks Technique for Seismic Hazard Prediction Using Seismic Bumps
Authors: Belkacem Selma, Boumediene Selma, Samira Chouraqui, Hanifi Missoum, Tourkia Guerzou
Abstract:
Natural disasters have occurred and will continue to cause human and material damage. Therefore, the idea of "preventing" natural disasters will never be possible. However, their prediction is possible with the advancement of technology. Even if natural disasters are effectively inevitable, their consequences may be partly controlled. The rapid growth and progress of artificial intelligence (AI) had a major impact on the prediction of natural disasters and risk assessment which are necessary for effective disaster reduction. Earthquake prediction to prevent the loss of human lives and even property damage is an important factor; that, is why it is crucial to develop techniques for predicting this natural disaster. This study aims to analyze the ability of artificial neural networks (ANNs) to predict earthquakes that occur in a given area. The used data describe the problem of high energy (higher than 104 J) seismic bumps forecasting in a coal mine using two long walls as an example. For this purpose, seismic bumps data obtained from mines have been analyzed. The results obtained show that the ANN is able to predict earthquake parameters with high accuracy; the classification accuracy through neural networks is more than 94%, and the models developed are efficient and robust and depend only weakly on the initial database.
Keywords: Earthquake prediction, artificial intelligence, AI, Artificial Neural Network, ANN, seismic bumps.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1186205 Designing a Rescue System for Earthquake-Stricken Area with the Aim of Facilitation and Accelerating Accessibilities (Case Study: City of Tehran)
Authors: Naeleh Motamedi, Masoud Mahmoudkhan Shirazi, Nima Nouraei
Abstract:
Natural disasters, including earthquake, kill many people around the world every year. Society rescue actions, which start after the earthquake and are called LAST in abbreviation, include locating, access, stabilization and transportation. In the present article, we have studied the process of local accessibility to the injured and transporting them to health care centers. With regard the heavy traffic load due to earthquake, the destruction of connecting roads and bridges and the heavy debris in alleys and street, which put the lives of the injured and the people buried under the debris in danger, accelerating the rescue actions and facilitating the accessibilities are of great importance, obviously. Tehran, the capital of Iran, is among the crowded cities in the world and is the center of extensive economic, political, cultural and social activities. Tehran has a population of about 9.5 millions and because of the immigration of people from the surrounding cities. Furthermore, considering the fact that Tehran is located on two important and large faults, a 6 Richter magnitude earthquake in this city could lead to the greatest catastrophe during the entire human history. The present study is a kind of review and a major part of the required information for it, has been obtained from libraries all of the rescue vehicles around the world, including rescue helicopters, ambulances, fire fighting vehicles and rescue boats, and their applied technology, and also the robots specifically designed for the rescue system and the advantages and disadvantages of them, have been investigated. The studies show that there is a significant relationship between the rescue team-s arrival time at the incident zone and the number of saved people; so that, if the duration of burial under debris 30 minutes, the probability of survival is %99.3, after a day is %81, after 2days is %19 and after 5days is %7.4. The exiting transport systems all have some defects. If these defects are removed, more people could be saved each hour and the preparedness against natural disasters is increased. In this study, transport system has been designed for the rescue team and the injured; which could carry the rescue team to the incident zone and the injured to the health care centers. In addition, this system is able to fly in the air and move on the earth as well; so that the destruction of roads and the heavy traffic load could not prevent the rescue team from arriving early at the incident zone. The system also has the equipment required firebird for debris removing, optimum transport of the injured and first aid.
Keywords: earthquake, accelerating, accessibilities transportation, rescue system
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1569204 Seismic Analysis of URM Buildings in S. Africa
Authors: Trevor N. Haas, Thomas van der Kolf
Abstract:
South Africa has some regions which are susceptible to moderate seismic activity. A peak ground acceleration of between 0.1g and 0.15g can be expected in the southern parts of the Western Cape. Unreinforced Masonry (URM) is commonly used as a construction material for 2 to 5 storey buildings in underprivileged areas in and around Cape Town. URM is typically regarded as the material most vulnerable to damage when subjected to earthquake excitation. In this study, a three-storey URM building was analysed by applying seven earthquake time-histories, which can be expected to occur in South Africa using a finite element approach. Experimental data was used to calibrate the in- and out-of-plane stiffness of the URM. The results indicated that tensile cracking of the in-plane piers was the dominant failure mode. It is concluded that URM buildings of this type are at risk of failure especially if sufficient ductility is not provided. The results also showed that connection failure must be investigated further.
Keywords: URM, Seismic Analysis, FEM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3002203 Ground Motion Modelling in Bangladesh Using Stochastic Method
Authors: Mizan Ahmed, Srikanth Venkatesan
Abstract:
Geological and tectonic framework indicates that Bangladesh is one of the most seismically active regions in the world. The Bengal Basin is at the junction of three major interacting plates: the Indian, Eurasian, and Burma Plates. Besides there are many active faults within the region, e.g. the large Dauki fault in the north. The country has experienced a number of destructive earthquakes due to the movement of these active faults. Current seismic provisions of Bangladesh are mostly based on earthquake data prior to the 1990. Given the record of earthquakes post 1990, there is a need to revisit the design provisions of the code. This paper compares the base shear demand of three major cities in Bangladesh: Dhaka (the capital city), Sylhet, and Chittagong for earthquake scenarios of magnitudes 7.0MW, 7.5MW, 8.0MW, and 8.5MW using a stochastic model. In particular, the stochastic model allows the flexibility to input region specific parameters such as shear wave velocity profile (that were developed from Global Crustal Model CRUST2.0) and include the effects of attenuation as individual components. Effects of soil amplification were analysed using the Extended Component Attenuation Model (ECAM). Results show that the estimated base shear demand is higher in comparison with code provisions leading to the suggestion of additional seismic design consideration in the study regions.Keywords: Attenuation, earthquake, ground motion, stochastic, seismic hazard.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2034202 The Nonlinear Dynamic Elasto-Plastic Analysis for Evaluating the Controlling Effectiveness and Failure Mechanism of the MSCSS
Authors: Toi Limazie, Xun'an Zhang, Xianjie Wang
Abstract:
This paper focuses on the Mega-Sub Controlled Structure Systems (MSCSS) performances and characteristics regarding the new control principle contained in MSCSS subjected to strong earthquake excitations. The adopted control scheme consists of modulated sub-structures where the control action is achieved by viscous dampers and sub-structure own configuration. The elastic-plastic time history analysis under severe earthquake excitation is analyzed base on the Finite Element Analysis Method (FEAM), and some comparison results are also given in this paper. The result shows that the MSCSS systems can remarkably reduce vibrations effects more than the mega-sub structure (MSS). The study illustrates that the improved MSCSS presents good seismic resistance ability even at 1.2g and can absorb seismic energy in the structure, thus imply that structural members cross section can be reduce and achieve to good economic characteristics. Furthermore, the elasto-plastic analysis demonstrates that the MSCSS is accurate enough regarding international building evaluation and design codes. This paper also shows that the elasto-plastic dynamic analysis method is a reasonable and reliable analysis method for structures subjected to strong earthquake excitations and that the computed results are more precise.Keywords: controlling effectiveness, Elasto-plastic dynamic analysis, Mega-Sub Controlled Structure, Plastic hinge pattern.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1836201 Managing, Sustaining, and Future Proofing the Business of Educational Provision Following Large-Scale Disaster and Disruption
Authors: Judy Yarwood, Lesley Seaton, Philippa Seaton
Abstract:
A catastrophic earthquake measuring 6.3 on the Richter scale struck the Christchurch, New Zealand Central Business District on February 22, 2012, abruptly disrupting the business of teaching and learning at Christchurch Polytechnic Institute of Technology. This paper presents the findings from a study undertaken about the complexity of delivering an educational programme in the face of this traumatic natural event. Nine interconnected themes emerged from this multiple method study: communication, decision making, leader- and follower-ship, balancing personal and professional responsibilities, taking action, preparedness and thinking ahead, all within a disruptive and uncertain context. Sustainable responses that maximise business continuity, and provide solutions to practical challenges, are among the study-s recommendations.Keywords: Business continuity, earthquake, education, sustainability
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1903200 Introduction of the Harmfulness of the Seismic Signal in the Assessment of the Performance of Reinforced Concrete Frame Structures
Authors: Kahil Amar, Boukais Said, Kezmane Ali, Hamizi Mohand, Hannachi Naceur Eddine
Abstract:
The principle of the seismic performance evaluation methods is to provide a measure of capability for a building or set of buildings to be damaged by an earthquake. The common objective of many of these methods is to supply classification criteria. The purpose of this study is to present a method for assessing the seismic performance of structures, based on Pushover method; we are particularly interested in reinforced concrete frame structures, which represent a significant percentage of damaged structures after a seismic event. The work is based on the characterization of seismic movement of the various earthquake zones in terms of PGA and PGD that is obtained by means of SIMQK_GR and PRISM software and the correlation between the points of performance and the scalar characterizing the earthquakes will developed.
Keywords: Seismic performance, Pushover method, characterization of seismic motion, harmfulness of the seismic signal
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2051199 Prediction of Seismic Damage Using Scalar Intensity Measures Based On Integration of Spectral Values
Authors: Konstantinos G. Kostinakis, Asimina M. Athanatopoulou
Abstract:
A key issue in seismic risk analysis within the context of Performance-Based Earthquake Engineering is the evaluation of the expected seismic damage of structures under a specific earthquake ground motion. The assessment of the seismic performance strongly depends on the choice of the seismic Intensity Measure (IM), which quantifies the characteristics of a ground motion that are important to the nonlinear structural response. Several conventional IMs of ground motion have been used to estimate their damage potential to structures. Yet, none of them has been proved to be able to predict adequately the seismic damage. Therefore, alternative, scalar intensity measures, which take into account not only ground motion characteristics but also structural information have been proposed. Some of these IMs are based on integration of spectral values over a range of periods, in an attempt to account for the information that the shape of the acceleration, velocity or displacement spectrum provides. The adequacy of a number of these IMs in predicting the structural damage of 3D R/C buildings is investigated in the present paper. The investigated IMs, some of which are structure specific and some are non structure-specific, are defined via integration of spectral values. To achieve this purpose three symmetric in plan R/C buildings are studied. The buildings are subjected to 59 bidirectional earthquake ground motions. The two horizontal accelerograms of each ground motion are applied along the structural axes. The response is determined by nonlinear time history analysis. The structural damage is expressed in terms of the maximum interstory drift as well as the overall structural damage index. The values of the aforementioned seismic damage measures are correlated with seven scalar ground motion IMs. The comparative assessment of the results revealed that the structure-specific IMs present higher correlation with the seismic damage of the three buildings. However, the adequacy of the IMs for estimation of the structural damage depends on the response parameter adopted. Furthermore, it was confirmed that the widely used spectral acceleration at the fundamental period of the structure is a good indicator of the expected earthquake damage level.
Keywords: Damage measures, Bidirectional excitation, Spectral based IMs, R/C buildings.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2380198 Asymmetric and Kind of Bracing Effects on Steel Frames Under Earthquake Loads
Authors: Mahmoud Miri, Soliman Maramaee
Abstract:
Because of architectural condition and structure application, sometimes mass source and stiffness source are not coincidence, and the structure is irregular. The structure is also might be asymmetric as an asymmetric bracing in plan which leads to unbalance distribution of stiffness or because of unbalance distribution of the mass. Both condition lead to eccentricity and torsion in the structure. The deficiency of ordinary code to evaluate the performance of steel structures against earthquake has been caused designing based on performance level or capacity spectrum be used. By using the mentioned methods it is possible to design a structure that its behavior against different earthquakes be predictive. In this article 5- story buildings with different percentage of asymmetric which is because of stiffness changes and kind of bracing (x and chevron bracing) have been designed. The static and dynamic nonlinear analysis under three acceleration recording has been done. Finally performance level of the structure has been evaluated.
Keywords: Asymmetric, irregular, seismic analysis, torsion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1638197 Fuel Reserve Tanks Dynamic Analysis Due to Earthquake Loading
Authors: F.Saadi, A.Aboudi Asl
Abstract:
In this paper, the dynamic analysis of fuel storage tanks has been studied and some equations are presented for the created fluid waves due to storage tank motions. Also, the equations for finite elements of fluid and structure interactions, and boundary conditions dominant on structure and fluid, were researched. In this paper, a numerical simulation is performed for the dynamic analysis of a storage tank contained a fluid. This simulation has carried out by ANSYS software, using FSI solver (Fluid and Structure Interaction solver), and by considering the simulated fluid dynamic motions due to earthquake loading, based on velocities and movements of structure and fluid according to all boundary conditions dominant on structure and fluid.Keywords: fluid and structure interactions, finite elementmethod, ANSYS – FSI
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2139196 Application of Soft Systems Methodology in Solving Disaster Emergency Logistics Problems
Authors: Alhasan Hakami, Arun Kumar, Sung J Shim, Yousef Abu Nahleh
Abstract:
In recent years, many high intensity earthquakes have occurred around the world, such as the 2011 earthquake in Tohoku, Japan. These large-scale disasters caused huge casualties and losses. In addition, inefficient disaster response operations also caused the second wave of casualties and losses, and expanded the damage. Effective disaster management can be used to respond to the chaotic situation, and reduce the damage; however, some inefficient disaster response operations are still used. Therefore, this case study chose the 921 earthquake for analyzing disaster emergency logistics problems and proposed the Soft Systems Methodology (SSM) to solve disaster emergency logistics problems. Moreover, it analyses the effect of human factors on system operation, and suggests a solution to improve the system.
Keywords: Soft systems methodology, emergency logistics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3012195 A Closed Form Solution for Hydrodynamic Pressure of Gravity Dams Reservoir with Effect of Viscosity under Dynamic Loading
Authors: B. Navayineya, J. Vaseghi Amiri, M. Alijani Ardeshir
Abstract:
Hydrodynamic pressures acting on upstream of concrete dams during an earthquake are an important factor in designing and assessing the safety of these structures in Earthquake regions. Due to inherent complexities, assessing exact hydrodynamic pressure is only feasible for problems with simple geometry. In this research, the governing equation of concrete gravity dam reservoirs with effect of fluid viscosity in frequency domain is solved and then compared with that in which viscosity is assumed zero. The results show that viscosity influences the reservoir-s natural frequency. In excitation frequencies near the reservoir's natural frequencies, hydrodynamic pressure has a considerable difference in compare to the results of non-viscose fluid.
Keywords: Closed form solution, concrete dams reservoir, viscosity, dynamic loads, hydrodynamic pressure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2249194 Natural Disaster Impact on Annual Visitors of Recreation Area: The Taiwan Case
Authors: Ya-Fen Lee, Yun-Yao Chi
Abstract:
This paper aims to quantify the impact of natural disaster on tourism by the change of annual visitors to scenic spots. The data of visitors to Alishan, Sun Moon Lake, Sitou and Palace Museum in Taiwan during 1986 to 2012 year is collected, and the trend analysis is used to predict the annual visitors to these scenic spots. The findings show that 1999 Taiwan earthquake had significant effect on the visitors to Alishan, Sun Moon Lake and Sitou with an average impact of 55.75% during 1999 to 2000 year except for Palace Museum. The impact was greater as closer epicenter of 1999 earthquake. And the discovery period of visitors is about 2 to 9 years. Further, the impact of heavy rainfall on Alishan, Taiwan is estimated. As the accumulative rainfall reaches to 500 mm, the impact on visitors can be predicted.
Keywords: Impact, Natural disaster, tourism, visitors.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2010193 A Prediction Model for Dynamic Responses of Building from Earthquake Based on Evolutionary Learning
Authors: Kyu Jin Kim, Byung Kwan Oh, Hyo Seon Park
Abstract:
The seismic responses-based structural health monitoring system has been performed to prevent seismic damage. Structural seismic damage of building is caused by the instantaneous stress concentration which is related with dynamic characteristic of earthquake. Meanwhile, seismic response analysis to estimate the dynamic responses of building demands significantly high computational cost. To prevent the failure of structural members from the characteristic of the earthquake and the significantly high computational cost for seismic response analysis, this paper presents an artificial neural network (ANN) based prediction model for dynamic responses of building considering specific time length. Through the measured dynamic responses, input and output node of the ANN are formed by the length of specific time, and adopted for the training. In the model, evolutionary radial basis function neural network (ERBFNN), that radial basis function network (RBFN) is integrated with evolutionary optimization algorithm to find variables in RBF, is implemented. The effectiveness of the proposed model is verified through an analytical study applying responses from dynamic analysis for multi-degree of freedom system to training data in ERBFNN.
Keywords: Structural health monitoring, dynamic response, artificial neural network, radial basis function network, genetic algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 417192 Parameters Affecting the Elasto-Plastic Behavior of Outrigger Braced Walls to Earthquakes
Authors: T. A. Sakr, Hanaa E. Abd-El- Mottaleb
Abstract:
Outrigger-braced wall systems are commonly used to provide high rise buildings with the required lateral stiffness for wind and earthquake resistance. The existence of outriggers adds to the stiffness and strength of walls as reported by several studies. The effects of different parameters on the elasto-plastic dynamic behavior of outrigger-braced wall systems to earthquakes are investigated in this study. Parameters investigated include outrigger stiffness, concrete strength, and reinforcement arrangement as the main design parameters in wall design. In addition to being significantly affect the wall behavior, such parameters may lead to the change of failure mode and the delay of crack propagation and consequently failure as the wall is excited by earthquakes. Bi-linear stress-strain relation for concrete with limited tensile strength and truss members with bi-linear stress-strain relation for reinforcement were used in the finite element analysis of the problem. The famous earthquake record, El-Centro, 1940 is used in the study. Emphasize was given to the lateral drift, normal stresses and crack pattern as behavior controlling determinants. Results indicated significant effect of the studied parameters such that stiffer outrigger, higher grade concrete and concentrating the reinforcement at wall edges enhance the behavior of the system. Concrete stresses and cracking behavior are too much enhanced while less drift improvements are observed.
Keywords: Structures, High rise, Outrigger, Shear Wall, Earthquake, Nonlinear.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2354191 Active Tendons for Seismic Control of Buildings
Authors: S. M. Nigdeli, M. H. Boduroglu
Abstract:
In this study, active tendons with Proportional Integral Derivation type controllers were applied to a SDOF and a MDOF building model. Physical models of buildings were constituted with virtual springs, dampers and rigid masses. After that, equations of motion of all degrees of freedoms were obtained. Matlab Simulink was utilized to obtain the block diagrams for these equations of motion. Parameters for controller actions were found by using a trial method. After earthquake acceleration data were applied to the systems, building characteristics such as displacements, velocities, accelerations and transfer functions were analyzed for all degrees of freedoms. Comparisons on displacement vs. time, velocity vs. time, acceleration vs. time and transfer function (Db) vs. frequency (Hz) were made for uncontrolled and controlled buildings. The results show that the method seems feasible.Keywords: Active Tendons, Proportional Integral DerivationType Controllers, SDOF, MDOF, Earthquake, Building.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3328190 Assessment of Vulnerability Curves Using Vulnerability Index Method for Reinforced Concrete Structures
Authors: F. I. Belheouane, M. Bensaibi
Abstract:
The seismic feedback experiences in Algeria have shown higher percentage of damages for non-code conforming reinforced concrete (RC) buildings. Furthermore, the vulnerability of these buildings was further aggravated due to presence of many factors (e.g. weak the seismic capacity of these buildings, shorts columns, Pounding effect, etc.). Consequently Seismic risk assessments were carried out on populations of buildings to identify the buildings most likely to undergo losses during an earthquake. The results of such studies are important in the mitigation of losses under future seismic events as they allow strengthening intervention and disaster management plans to be drawn up. Within this paper, the state of the existing structures is assessed using "the vulnerability index" method. This method allows the classification of RC constructions taking into account both, structural and non structural parameters, considered to be ones of the main parameters governing the vulnerability of the structure. Based on seismic feedback from past earthquakes DPM (damage probability matrices) were developed too.Keywords: Seismic vulnerability, Reinforced concrete buildings, Earthquake, DPM, Algeria.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2923189 Seismic Alert System based on Artificial Neural Networks
Authors: C. M. A. Robles G., R. A. Hernandez-Becerril
Abstract:
We board the problem of creating a seismic alert system, based upon artificial neural networks, trained by using the well-known back-propagation and genetic algorithms, in order to emit the alarm for the population located into a specific city, about an eminent earthquake greater than 4.5 Richter degrees, and avoiding disasters and human loses. In lieu of using the propagation wave, we employed the magnitude of the earthquake, to establish a correlation between the recorded magnitudes from a controlled area and the city, where we want to emit the alarm. To measure the accuracy of the posed method, we use a database provided by CIRES, which contains the records of 2500 quakes incoming from the State of Guerrero and Mexico City. Particularly, we performed the proposed method to generate an issue warning in Mexico City, employing the magnitudes recorded in the State of Guerrero.Keywords: Seismic Alert System, Artificial Neural Networks, Genetic Algorithms.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1725