Search results for: nonlinear statistical methods
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5857

Search results for: nonlinear statistical methods

5797 Nonlinear Solitary Structures of Electron Plasma Waves in a Finite Temperature Quantum Plasma

Authors: Swarniv Chandra, Basudev Ghosh

Abstract:

Nonlinear solitary structures of electron plasma waves have been investigated by using nonlinear quantum fluid equations for electrons with an arbitrary temperature. It is shown that the electron degeneracy parameter has significant effects on the linear and nonlinear properties of electron plasma waves. Depending on its value both compressive and rarefactive solitons can be excited in the model plasma under consideration.

Keywords: Electron Plasma Waves, Finite Temperature Model, Modulational Instability, Quantum Plasma, Solitary structure

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1727
5796 On the Strong Solutions of the Nonlinear Viscous Rotating Stratified Fluid

Authors: A. Giniatoulline

Abstract:

A nonlinear model of the mathematical fluid dynamics which describes the motion of an incompressible viscous rotating fluid in a homogeneous gravitational field is considered. The model is a generalization of the known Navier-Stokes system with the addition of the Coriolis parameter and the equations for changeable density. An explicit algorithm for the solution is constructed, and the proof of the existence and uniqueness theorems for the strong solution of the nonlinear problem is given. For the linear case, the localization and the structure of the spectrum of inner waves are also investigated.

Keywords: Galerkin method, Navier-Stokes equations, nonlinear partial differential equations, Sobolev spaces, stratified fluid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1431
5795 Comparative Finite Element Simulation of Nonlinear Vibrations and Sensor Output Voltage of Smart Piezolaminated Structures

Authors: Ruediger Schmidt, Thang Duy Vu

Abstract:

Two geometrically nonlinear plate theories, based either on first- or third-order transverse shear deformation theory are used for finite element modeling and simulation of the transient response of smart structures incorporating piezoelectric layers. In particular the time histories of nonlinear vibrations and sensor voltage output of a thin beam with a piezoelectric patch bonded to the surface due to an applied step force are studied.

Keywords: Nonlinear vibrations, piezoelectric patches, sensor voltage output, smart structures.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2002
5794 Quasilinearization–Barycentric Approach for Numerical Investigation of the Boundary Value Fin Problem

Authors: Alireza Rezaei, Fatemeh Baharifard, Kourosh Parand

Abstract:

In this paper we improve the quasilinearization method by barycentric Lagrange interpolation because of its numerical stability and computation speed to achieve a stable semi analytical solution. Then we applied the improved method for solving the Fin problem which is a nonlinear equation that occurs in the heat transferring. In the quasilinearization approach the nonlinear differential equation is treated by approximating the nonlinear terms by a sequence of linear expressions. The modified QLM is iterative but not perturbative and gives stable semi analytical solutions to nonlinear problems without depending on the existence of a smallness parameter. Comparison with some numerical solutions shows that the present solution is applicable.

Keywords: Quasilinearization method, Barycentric lagrange interpolation, nonlinear ODE, fin problem, heat transfer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1875
5793 Internal Surface Measurement of Nanoparticle with Polarization-interferometric Nonlinear Confocal Microscope

Authors: Chikara Egami, Kazuhiro Kuwahara

Abstract:

Polarization-interferometric nonlinear confocal microscopy is proposed for measuring a nano-sized particle with optical anisotropy. The anisotropy in the particle was spectroscopically imaged through a three-dimensional distribution of third-order nonlinear dielectric polarization photoinduced.

Keywords: nanoparticle, optical storage, microscope

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1364
5792 Parameter Estimation using Maximum Likelihood Method from Flight Data at High Angles of Attack

Authors: Rakesh Kumar, A. K. Ghosh

Abstract:

The paper presents the modeling of nonlinear longitudinal aerodynamics using flight data of Hansa-3 aircraft at high angles of attack near stall. The Kirchhoff-s quasi-steady stall model has been used to incorporate nonlinear aerodynamic effects in the aerodynamic model used to estimate the parameters, thereby, making the aerodynamic model nonlinear. The Maximum Likelihood method has been applied to the flight data (at high angles of attack) for the estimation of parameters (aerodynamic and stall characteristics) using the nonlinear aerodynamic model. To improve the accuracy level of the estimates, an approach of fixing the strong parameters has also been presented.

Keywords: Maximum Likelihood, nonlinear, parameters, stall.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2216
5791 Electromagnetic Wave Propagation Equations in 2D by Finite Difference Method

Authors: N. Fusun Oyman Serteller

Abstract:

In this paper, the techniques to solve time dependent electromagnetic wave propagation equations based on the Finite Difference Method (FDM) are proposed by comparing the results with Finite Element Method (FEM) in 2D while discussing some special simulation examples.  Here, 2D dynamical wave equations for lossy media, even with a constant source, are discussed for establishing symbolic manipulation of wave propagation problems. The main objective of this contribution is to introduce a comparative study of two suitable numerical methods and to show that both methods can be applied effectively and efficiently to all types of wave propagation problems, both linear and nonlinear cases, by using symbolic computation. However, the results show that the FDM is more appropriate for solving the nonlinear cases in the symbolic solution. Furthermore, some specific complex domain examples of the comparison of electromagnetic waves equations are considered. Calculations are performed through Mathematica software by making some useful contribution to the programme and leveraging symbolic evaluations of FEM and FDM.

Keywords: Finite difference method, finite element method, linear-nonlinear PDEs, symbolic computation, wave propagation equations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 715
5790 A New Iterative Method for Solving Nonlinear Equations

Authors: Ibrahim Abu-Alshaikh

Abstract:

In this study, a new root-finding method for solving nonlinear equations is proposed. This method requires two starting values that do not necessarily bracketing a root. However, when the starting values are selected to be close to a root, the proposed method converges to the root quicker than the secant method. Another advantage over all iterative methods is that; the proposed method usually converges to two distinct roots when the given function has more than one root, that is, the odd iterations of this new technique converge to a root and the even iterations converge to another root. Some numerical examples, including a sine-polynomial equation, are solved by using the proposed method and compared with results obtained by the secant method; perfect agreements are found.

Keywords: Iterative method, root-finding method, sine-polynomial equations, nonlinear equations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1694
5789 The Differential Transform Method for Advection-Diffusion Problems

Authors: M. F. Patricio, P. M. Rosa

Abstract:

In this paper a class of numerical methods to solve linear and nonlinear PDEs and also systems of PDEs is developed. The Differential Transform method associated with the Method of Lines (MoL) is used. The theory for linear problems is extended to the nonlinear case, and a recurrence relation is established. This method can achieve an arbitrary high-order accuracy in time. A variable stepsize algorithm and some numerical results are also presented.

Keywords: Method of Lines, Differential Transform Method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1745
5788 Scatterer Density in Nonlinear Diffusion for Speckle Reduction in Ultrasound Imaging: The Isotropic Case

Authors: Ahmed Badawi

Abstract:

This paper proposes a method for speckle reduction in medical ultrasound imaging while preserving the edges with the added advantages of adaptive noise filtering and speed. A nonlinear image diffusion method that incorporates local image parameter, namely, scatterer density in addition to gradient, to weight the nonlinear diffusion process, is proposed. The method was tested for the isotropic case with a contrast detail phantom and varieties of clinical ultrasound images, and then compared to linear and some other diffusion enhancement methods. Different diffusion parameters were tested and tuned to best reduce speckle noise and preserve edges. The method showed superior performance measured both quantitatively and qualitatively when incorporating scatterer density into the diffusivity function. The proposed filter can be used as a preprocessing step for ultrasound image enhancement before applying automatic segmentation, automatic volumetric calculations, or 3D ultrasound volume rendering.

Keywords: Ultrasound imaging, Nonlinear isotropic diffusion, Speckle noise, Scattering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1951
5787 Iterative Learning Control of Two Coupled Nonlinear Spherical Tanks

Authors: A. R. Tavakolpour-Saleh, A. R. Setoodeh, E. Ansari

Abstract:

This paper presents modeling and control of a highly nonlinear system including, non-interacting two spherical tanks using iterative learning control (ILC). Consequently, the objective of the paper is to control the liquid levels in the nonlinear tanks. First, a proportional-integral-derivative (PID) controller is applied to the plant model as a suitable benchmark for comparison. Then, dynamic responses of the control system corresponding to different step inputs are investigated. It is found that the conventional PID control is not able to fulfill the design criteria such as desired time constant. Consequently, an iterative learning controller is proposed to accurately control the coupled nonlinear tanks system. The simulation results clearly demonstrate the superiority of the presented ILC approach over the conventional PID controller to cope with the nonlinearities presented in the dynamic system.

Keywords: Iterative learning control, spherical tanks, nonlinear system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1250
5786 Nonlinear Acoustic Echo Cancellation Using Volterra Filtering with a Variable Step-Size GS-PAP Algorithm

Authors: J. B. Seo, K. J. Kim, S. W. Nam

Abstract:

In this paper, a nonlinear acoustic echo cancellation (AEC) system is proposed, whereby 3rd order Volterra filtering is utilized along with a variable step-size Gauss-Seidel pseudo affine projection (VSSGS-PAP) algorithm. In particular, the proposed nonlinear AEC system is developed by considering a double-talk situation with near-end signal variation. Simulation results demonstrate that the proposed approach yields better nonlinear AEC performance than conventional approaches.

Keywords: Acoustic echo cancellation (AEC), Volterra filtering, variable step-size, GS-PAP.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1815
5785 The Strengths and Limitations of the Statistical Modeling of Complex Social Phenomenon: Focusing on SEM, Path Analysis, or Multiple Regression Models

Authors: Jihye Jeon

Abstract:

This paper analyzes the conceptual framework of three statistical methods, multiple regression, path analysis, and structural equation models. When establishing research model of the statistical modeling of complex social phenomenon, it is important to know the strengths and limitations of three statistical models. This study explored the character, strength, and limitation of each modeling and suggested some strategies for accurate explaining or predicting the causal relationships among variables. Especially, on the studying of depression or mental health, the common mistakes of research modeling were discussed.

Keywords: Multiple regression, path analysis, structural equation models, statistical modeling, social and psychological phenomenon.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9253
5784 Geometric and Material Nonlinear Analysis of Reinforced Concrete Structure Considering Soil-Structure Interaction

Authors: Mohamed M. El-Gendy, Ibrahim A. El-Arabi, Rafik W. Abdel-Missih, Omar A. Kandil

Abstract:

In the present research, a finite element model is presented to study the geometrical and material nonlinear behavior of reinforced concrete plane frames considering soil-structure interaction. The nonlinear behaviors of concrete and reinforcing steel are considered both in compression and tension up to failure. The model takes account also for the number, diameter, and distribution of rebar along every cross section. Soil behavior is taken into consideration using four different models; namely: linear-, nonlinear Winkler's model, and linear-, nonlinear continuum model. A computer program (NARC) is specially developed in order to perform the analysis. The results achieved by the present model show good agreement with both theoretical and experimental published literature. The nonlinear behavior of a rectangular frame resting on soft soil up to failure using the proposed model is introduced for demonstration.

Keywords: Nonlinear analysis, Geometric nonlinearity, Material nonlinearity, Reinforced concrete, Finite element method, Soilstructure interaction, Winkler's soil model, Continuum soil model

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2667
5783 4D Flight Trajectory Optimization Based on Pseudospectral Methods

Authors: Kouamana Bousson, Paulo Machado

Abstract:

The optimization and control problem for 4D trajectories is a subject rarely addressed in literature. In the 4D navigation problem we define waypoints, for each mission, where the arrival time is specified in each of them. One way to design trajectories for achieving this kind of mission is to use the trajectory optimization concepts. To solve a trajectory optimization problem we can use the indirect or direct methods. The indirect methods are based on maximum principle of Pontryagin, on the other hand, in the direct methods it is necessary to transform into a nonlinear programming problem. We propose an approach based on direct methods with a pseudospectral integration scheme built on Chebyshev polynomials.

Keywords: Pseudospectral Methods, Trajectory Optimization, 4DTrajectories

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2411
5782 Nonlinear Analysis of Shear Wall Using Finite Element Model

Authors: M. A. Ghorbani, M. Pasbani Khiavi, F. Rezaie Moghaddam

Abstract:

In the analysis of structures, the nonlinear effects due to large displacement, large rotation and materially-nonlinear are very important and must be considered for the reliable analysis. The non-linear fmite element analysis has potential as usable and reliable means for analyzing of civil structures with the availability of computer technology. In this research the large displacements and materially nonlinear behavior of shear wall is presented with developing of fmite element code using the standard Galerkin weighted residual formulation. Two-dimensional plane stress model was carried out to present the shear wall response. Total Lagangian formulation, which is computationally more effective, is used in the formulation of stiffness matrices and the Newton-Raphson method is applied for the solution of nonlinear transient equations. The details of the program formulation are highlighted and the results of the analyses are presented, along with a comparison of the response of the structure with Ansys software results. The presented model in this paper can be developed for nonlinear analysis of civil engineering structures with different material behavior and complicated geometry.

Keywords: Finite element, large displacements, materially nonlinear, shear wall.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1755
5781 Speeding up Nonlinear Time History Analysis of Base-Isolated Structures Using a Nonlinear Exponential Model

Authors: Nicolò Vaiana, Giorgio Serino

Abstract:

The nonlinear time history analysis of seismically base-isolated structures can require a significant computational effort when the behavior of each seismic isolator is predicted by adopting the widely used differential equation Bouc-Wen model. In this paper, a nonlinear exponential model, able to simulate the response of seismic isolation bearings within a relatively large displacements range, is described and adopted in order to reduce the numerical computations and speed up the nonlinear dynamic analysis. Compared to the Bouc-Wen model, the proposed one does not require the numerical solution of a nonlinear differential equation for each time step of the analysis. The seismic response of a 3d base-isolated structure with a lead rubber bearing system subjected to harmonic earthquake excitation is simulated by modeling each isolator using the proposed analytical model. The comparison of the numerical results and computational time with those obtained by modeling the lead rubber bearings using the Bouc-Wen model demonstrates the good accuracy of the proposed model and its capability to reduce significantly the computational effort of the analysis.

Keywords: Base isolation, computational efficiency, nonlinear exponential model, nonlinear time history analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 983
5780 An Evolutionary Statistical Learning Theory

Authors: Sung-Hae Jun, Kyung-Whan Oh

Abstract:

Statistical learning theory was developed by Vapnik. It is a learning theory based on Vapnik-Chervonenkis dimension. It also has been used in learning models as good analytical tools. In general, a learning theory has had several problems. Some of them are local optima and over-fitting problems. As well, statistical learning theory has same problems because the kernel type, kernel parameters, and regularization constant C are determined subjectively by the art of researchers. So, we propose an evolutionary statistical learning theory to settle the problems of original statistical learning theory. Combining evolutionary computing into statistical learning theory, our theory is constructed. We verify improved performances of an evolutionary statistical learning theory using data sets from KDD cup.

Keywords: Evolutionary computing, Local optima, Over-fitting, Statistical learning theory

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1777
5779 Two Fourth-order Iterative Methods Based on Continued Fraction for Root-finding Problems

Authors: Shengfeng Li, Rujing Wang

Abstract:

In this paper, we present two new one-step iterative methods based on Thiele-s continued fraction for solving nonlinear equations. By applying the truncated Thiele-s continued fraction twice, the iterative methods are obtained respectively. Analysis of convergence shows that the new methods are fourth-order convergent. Numerical tests verifying the theory are given and based on the methods, two new one-step iterations are developed.

Keywords: Iterative method, Fixed-point iteration, Thiele's continued fraction, Order of convergence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1883
5778 Dynamics and Control of a Chaotic Electromagnetic System

Authors: Shun-Chang Chang

Abstract:

In this paper, different nonlinear dynamics analysis techniques are employed to unveil the rich nonlinear phenomena of the electromagnetic system. In particular, bifurcation diagrams, time responses, phase portraits, Poincare maps, power spectrum analysis, and the construction of basins of attraction are all powerful and effective tools for nonlinear dynamics problems. We also employ the method of Lyapunov exponents to show the occurrence of chaotic motion and to verify those numerical simulation results. Finally, two cases of a chaotic electromagnetic system being effectively controlled by a reference signal or being synchronized to another nonlinear electromagnetic system are presented.

Keywords: bifurcation, Poincare map, Lyapunov exponent, chaotic motion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1599
5777 Simulation of the Performance of Novel Nonlinear Optimal Control Technique on Two Cart-inverted Pendulum System

Authors: B. Baigzadeh, V.Nazarzehi, H.Khaloozadeh

Abstract:

The two cart inverted pendulum system is a good bench mark for testing the performance of system dynamics and control engineering principles. Devasia introduced this system to study the asymptotic tracking problem for nonlinear systems. In this paper the problem of asymptotic tracking of the two-cart with an inverted-pendulum system to a sinusoidal reference inputs via introducing a novel method for solving finite-horizon nonlinear optimal control problems is presented. In this method, an iterative method applied to state dependent Riccati equation (SDRE) to obtain a reliable algorithm. The superiority of this technique has been shown by simulation and comparison with the nonlinear approach.

Keywords: Nonlinear optimal control, State dependent Riccatiequation, Asymptotic tracking, inverted pendulum

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1590
5776 Research of Amplitude-Frequency Characteristics of Nonlinear Oscillations of the Interface of Two-Layered Liquid

Authors: Win Ko Ko, A. N. Temnov

Abstract:

The problem of nonlinear oscillations of a two-layer liquid completely filling a limited volume is considered. Using two basic asymmetric harmonics excited in two mutually perpendicular planes, ordinary differential equations of nonlinear oscillations of the interface of a two-layer liquid are investigated. In this paper, hydrodynamic coefficients of linear and nonlinear problems in integral relations were determined. As a result, the instability regions of forced oscillations of a two-layered liquid in a cylindrical tank occurring in the plane of action of the disturbing force are constructed, as well as the dynamic instability regions of the parametric resonance for different ratios of densities of the upper and lower liquids depending on the amplitudes of liquids from the excitations frequencies. Steady-state regimes of fluid motion were found in the regions of dynamic instability of the initial oscillation form. The Bubnov-Galerkin method is used to construct instability regions for approximate solution of nonlinear differential equations.

Keywords: Hydrodynamic coefficients, instability region, nonlinear oscillations, resonance frequency, two-layered liquid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 565
5775 Nonlinear Model Predictive Swing-Up and Stabilizing Sliding Mode Controllers

Authors: S. Kahvecioglu, A. Karamancioglu, A. Yazici

Abstract:

In this paper, a nonlinear model predictive swing-up and stabilizing sliding controller is proposed for an inverted pendulum-cart system. In the swing up phase, the nonlinear model predictive control is formulated as a nonlinear programming problem with energy based objective function. By solving this problem at each sampling instant, a sequence of control inputs that optimize the nonlinear objective function subject to various constraints over a finite horizon are obtained. Then, this control drives the pendulum to a predefined neighborhood of the upper equilibrium point, at where sliding mode based model predictive control is used to stabilize the systems with the specified constraints. It is shown by the simulations that, due to the way of formulating the problem, short horizon lengths are sufficient for attaining the swing up goal.

Keywords: Inverted pendulum, model predictive control, swingup, stabilization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2193
5774 Analysis of EEG Signals Using Wavelet Entropy and Approximate Entropy: A Case Study on Depression Patients

Authors: Subha D. Puthankattil, Paul K. Joseph

Abstract:

Analyzing brain signals of the patients suffering from the state of depression may lead to interesting observations in the signal parameters that is quite different from a normal control. The present study adopts two different methods: Time frequency domain and nonlinear method for the analysis of EEG signals acquired from depression patients and age and sex matched normal controls. The time frequency domain analysis is realized using wavelet entropy and approximate entropy is employed for the nonlinear method of analysis. The ability of the signal processing technique and the nonlinear method in differentiating the physiological aspects of the brain state are revealed using Wavelet entropy and Approximate entropy.

Keywords: EEG, Depression, Wavelet entropy, Approximate entropy, Relative Wavelet energy, Multiresolution decomposition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3640
5773 Nonlinear Modeling of the PEMFC Based On NNARX Approach

Authors: Shan-Jen Cheng, Te-Jen Chang, Kuang-Hsiung Tan, Shou-Ling Kuo

Abstract:

Polymer Electrolyte Membrane Fuel Cell (PEMFC) is such a time-vary nonlinear dynamic system. The traditional linear modeling approach is hard to estimate structure correctly of PEMFC system. From this reason, this paper presents a nonlinear modeling of the PEMFC using Neural Network Auto-regressive model with eXogenous inputs (NNARX) approach. The multilayer perception (MLP) network is applied to evaluate the structure of the NNARX model of PEMFC. The validity and accuracy of NNARX model are tested by one step ahead relating output voltage to input current from measured experimental of PEMFC. The results show that the obtained nonlinear NNARX model can efficiently approximate the dynamic mode of the PEMFC and model output and system measured output consistently.

Keywords: PEMFC, neural network, nonlinear identification, NNARX.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2200
5772 Hybrid Function Method for Solving Nonlinear Fredholm Integral Equations of the Second Kind

Authors: jianhua Hou, Changqing Yang, and Beibo Qin

Abstract:

A numerical method for solving nonlinear Fredholm integral equations of second kind is proposed. The Fredholm type equations which have many applications in mathematical physics are then considered. The method is based on hybrid function  approximations. The properties of hybrid of block-pulse functions and Chebyshev polynomials are presented and are utilized to reduce the computation of nonlinear Fredholm integral equations to a system of nonlinear. Some numerical examples are selected to illustrate the effectiveness and simplicity of the method.

Keywords: Hybrid functions, Fredholm integral equation, Blockpulse, Chebyshev polynomials, product operational matrix.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1402
5771 ML Detection with Symbol Estimation for Nonlinear Distortion of OFDM Signal

Authors: Somkiat Lerkvaranyu, Yoshikazu Miyanaga

Abstract:

In this paper, a new technique of signal detection has been proposed for detecting the orthogonal frequency-division multiplexing (OFDM) signal in the presence of nonlinear distortion.There are several advantages of OFDM communications system.However, one of the existing problems is remain considered as the nonlinear distortion generated by high-power-amplifier at the transmitter end due to the large dynamic range of an OFDM signal. The proposed method is the maximum likelihood detection with the symbol estimation. When the training data are available, the neural network has been used to learn the characteristic of received signal and to estimate the new positions of the transmitted symbol which are provided to the maximum likelihood detector. Resulting in the system performance, the nonlinear distortions of a traveling wave tube amplifier with OFDM signal are considered in this paper.Simulation results of the bit-error-rate performance are obtained with 16-QAM OFDM systems.

Keywords: OFDM, TWTA, nonlinear distortion, detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1679
5770 Periodic Solutions for Some Strongly Nonlinear Oscillators by He's Energy Balance Method

Authors: Meng Hu, Lili Wang

Abstract:

In this paper, applying He-s energy balance method to determine frequency formulation relations of nonlinear oscillators with discontinuous term or fractional potential. By calculation and computer simulations, compared with the exact solutions show that the results obtained are of high accuracy.

Keywords: He's energy balance method, periodic solution, nonlinear oscillator, discontinuous, fractional potential.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1374
5769 Scour Depth Prediction around Bridge Piers Using Neuro-Fuzzy and Neural Network Approaches

Authors: H. Bonakdari, I. Ebtehaj

Abstract:

The prediction of scour depth around bridge piers is frequently considered in river engineering. One of the key aspects in efficient and optimum bridge structure design is considered to be scour depth estimation around bridge piers. In this study, scour depth around bridge piers is estimated using two methods, namely the Adaptive Neuro-Fuzzy Inference System (ANFIS) and Artificial Neural Network (ANN). Therefore, the effective parameters in scour depth prediction are determined using the ANN and ANFIS methods via dimensional analysis, and subsequently, the parameters are predicted. In the current study, the methods’ performances are compared with the nonlinear regression (NLR) method. The results show that both methods presented in this study outperform existing methods. Moreover, using the ratio of pier length to flow depth, ratio of median diameter of particles to flow depth, ratio of pier width to flow depth, the Froude number and standard deviation of bed grain size parameters leads to optimal performance in scour depth estimation.

Keywords: Adaptive neuro-fuzzy inference system, ANFIS, artificial neural network, ANN, bridge pier, scour depth, nonlinear regression, NLR.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 931
5768 Resistance and Sub-Resistances of RC Beams Subjected to Multiple Failure Modes

Authors: F. Sangiorgio, J. Silfwerbrand, G. Mancini

Abstract:

Geometric and mechanical properties all influence the resistance of RC structures and may, in certain combination of property values, increase the risk of a brittle failure of the whole system. This paper presents a statistical and probabilistic investigation on the resistance of RC beams designed according to Eurocodes 2 and 8, and subjected to multiple failure modes, under both the natural variation of material properties and the uncertainty associated with cross-section and transverse reinforcement geometry. A full probabilistic model based on JCSS Probabilistic Model Code is derived. Different beams are studied through material nonlinear analysis via Monte Carlo simulations. The resistance model is consistent with Eurocode 2. Both a multivariate statistical evaluation and the data clustering analysis of outcomes are then performed. Results show that the ultimate load behaviour of RC beams subjected to flexural and shear failure modes seems to be mainly influenced by the combination of the mechanical properties of both longitudinal reinforcement and stirrups, and the tensile strength of concrete, of which the latter appears to affect the overall response of the system in a nonlinear way. The model uncertainty of the resistance model used in the analysis plays undoubtedly an important role in interpreting results.

Keywords: Modelling, Monte Carlo Simulations, Probabilistic Models, Data Clustering, Reinforced Concrete Members, Structural Design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2109