Search results for: inertial navigation
154 The Effects of Visual Elements and Cognitive Styles on Students Learning in Hypermedia Environment
Authors: Rishi Ruttun
Abstract:
One of the major features of hypermedia learning is its non-linear structure, allowing learners, the opportunity of flexible navigation to accommodate their own needs. Nevertheless, such flexibility can also cause problems such as insufficient navigation and disorientation for some learners, especially those with Field Dependent cognitive styles. As a result students learning performance can be deteriorated and in turn, they can have negative attitudes with hypermedia learning systems. It was suggested that visual elements can be used to compensate dilemmas. However, it is unclear whether these visual elements improve their learning or whether problems still exist. The aim of this study is to investigate the effect of students cognitive styles and visual elements on students learning performance and attitudes in hypermedia learning environment. Cognitive Style Analysis (CSA), Learning outcome in terms of pre and post-test, practical task, and Attitude Questionnaire (AQ) were administered to a sample of 60 university students. The findings revealed that FD students preformed equally to those of FI. Also, FD students experienced more disorientation in the hypermedia learning system where they depend a lot on the visual elements for navigation and orientation purposes. Furthermore, they had more positive attitudes towards the visual elements which escape them from experiencing navigation and disorientation dilemmas. In contrast, FI students were more comfortable, did not get disturbed or did not need some of the visual elements in the hypermedia learning system.
Keywords: Hypermedia learning, cognitive styles, visual elements, support, learning performance, attitudes and perceptions
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1680153 Automatic Landmark Selection Based on Feature Clustering for Visual Autonomous Unmanned Aerial Vehicle Navigation
Authors: Paulo Fernando Silva Filho, Elcio Hideiti Shiguemori
Abstract:
The selection of specific landmarks for an Unmanned Aerial Vehicles’ Visual Navigation systems based on Automatic Landmark Recognition has significant influence on the precision of the system’s estimated position. At the same time, manual selection of the landmarks does not guarantee a high recognition rate, which would also result on a poor precision. This work aims to develop an automatic landmark selection that will take the image of the flight area and identify the best landmarks to be recognized by the Visual Navigation Landmark Recognition System. The criterion to select a landmark is based on features detected by ORB or AKAZE and edges information on each possible landmark. Results have shown that disposition of possible landmarks is quite different from the human perception.Keywords: Clustering, edges, feature points, landmark selection, X-Means.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 819152 User Requirements Analysis for the Development of Assistive Navigation Mobile Apps for Blind and Visually Impaired People
Authors: Paraskevi Theodorou, Apostolos Meliones
Abstract:
In the context of the development process of two assistive navigation mobile apps for blind and visually impaired people (BVI) an extensive qualitative analysis of the requirements of potential users has been conducted. The analysis was based on interviews with BVIs and aimed to elicit not only their needs with respect to autonomous navigation but also their preferences on specific features of the apps under development. The elicited requirements were structured into four main categories, namely, requirements concerning the capabilities, functionality and usability of the apps, as well as compatibility requirements with respect to other apps and services. The main categories were then further divided into nine sub-categories. This classification, along with its content, aims to become a useful tool for the researcher or the developer who is involved in the development of digital services for BVI.
Keywords: Accessibility, assistive mobile apps, blind and visually impaired people, user requirements analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 948151 Sensor Network Based Emergency Response and Navigation Support Architecture
Authors: Dilusha Weeraddana, Ashanie Gunathillake, Samiru Gayan
Abstract:
In an emergency, combining Wireless Sensor Network's data with the knowledge gathered from various other information sources and navigation algorithms, could help safely guide people to a building exit while avoiding the risky areas. This paper presents an emergency response and navigation support architecture for data gathering, knowledge manipulation, and navigational support in an emergency situation. At normal state, the system monitors the environment. When an emergency event detects, the system sends messages to first responders and immediately identifies the risky areas from safe areas to establishing escape paths. The main functionalities of the system include, gathering data from a wireless sensor network which is deployed in a multi-story indoor environment, processing it with information available in a knowledge base, and sharing the decisions made, with first responders and people in the building. The proposed architecture will act to reduce risk of losing human lives by evacuating people much faster with least congestion in an emergency environment.
Keywords: Emergency response, Firefighters, Navigation, Wireless sensor network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2005150 Walking Hexapod Robot in Disaster Recovery: Developing Algorithm for Terrain Negotiation and Navigation
Authors: Md. Masum Billah, Mohiuddin Ahmed, Soheli Farhana
Abstract:
In modern day disaster recovery mission has become one of the top priorities in any natural disaster management regime. Smart autonomous robots may play a significant role in such missions, including search for life under earth quake hit rubbles, Tsunami hit islands, de-mining in war affected areas and many other such situations. In this paper current state of many walking robots are compared and advantages of hexapod systems against wheeled robots are described. In our research we have selected a hexapod spider robot; we are developing focusing mainly on efficient navigation method in different terrain using apposite gait of locomotion, which will make it faster and at the same time energy efficient to navigate and negotiate difficult terrain. This paper describes the method of terrain negotiation navigation in a hazardous field.Keywords: Walking robots, locomotion, hexapod robot, gait, hazardous field.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4433149 Navigation of Multiple Mobile Robots using Rule-based-Neuro-Fuzzy Technique
Authors: Saroj Kumar Pradhan, Dayal Ramakrushna Parhi, Anup Kumar Panda
Abstract:
This paper deals with motion planning of multiple mobile robots. Mobile robots working together to achieve several objectives have many advantages over single robot system. However, the planning and coordination between the mobile robots is extremely difficult. In the present investigation rule-based and rulebased- neuro-fuzzy techniques are analyzed for multiple mobile robots navigation in an unknown or partially known environment. The final aims of the robots are to reach some pre-defined goals. Based upon a reference motion, direction; distances between the robots and obstacles; and distances between the robots and targets; different types of rules are taken heuristically and refined later to find the steering angle. The control system combines a repelling influence related to the distance between robots and nearby obstacles and with an attracting influence between the robots and targets. Then a hybrid rule-based-neuro-fuzzy technique is analysed to find the steering angle of the robots. Simulation results show that the proposed rulebased- neuro-fuzzy technique can improve navigation performance in complex and unknown environments compared to this simple rulebased technique.Keywords: Mobile robots, Navigation, Neuro-fuzzy, Obstacle avoidance, Rule-based, Target seeking
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1793148 Augmenting Navigational Aids: The Development of an Assistive Maritime Navigation Application
Abstract:
On the bridge of a ship the officers are looking for visual aids to guide navigation in order to reconcile the outside world with the position communicated by the digital navigation system. Aids to navigation include: Lighthouses, lightships, sector lights, beacons, buoys, and others. They are designed to help navigators calculate their position, establish their course or avoid dangers. In poor visibility and dense traffic areas, it can be very difficult to identify these critical aids to guide navigation. The paper presents the usage of Augmented Reality (AR) as a means to present digital information about these aids to support navigation. To date, nautical navigation related mobile AR applications have been limited to the leisure industry. If proved viable, this prototype can facilitate the creation of other similar applications that could help commercial officers with navigation. While adopting a user centered design approach, the team has developed the prototype based on insights from initial research carried on board of several ships. The prototype, built on Nexus 9 tablet and Wikitude, features a head-up display of the navigational aids (lights) in the area, presented in AR and a bird’s eye view mode presented on a simplified map. The application employs the aids to navigation data managed by Hydrographic Offices and the tablet’s sensors: GPS, gyroscope, accelerometer, compass and camera. Sea trials on board of a Navy and a commercial ship revealed the end-users’ interest in using the application and further possibility of other data to be presented in AR. The application calculates the GPS position of the ship, the bearing and distance to the navigational aids; all within a high level of accuracy. However, during testing several issues were highlighted which need to be resolved as the prototype is developed further. The prototype stretched the capabilities of Wikitude, loading over 500 objects during tests in a major port. This overloaded the display and required over 45 seconds to load the data. Therefore, extra filters for the navigational aids are being considered in order to declutter the screen. At night, the camera is not powerful enough to distinguish all the lights in the area. Also, magnetic interference with the bridge of the ship generated a continuous compass error of the AR display that varied between 5 and 12 degrees. The deviation of the compass was consistent over the whole testing durations so the team is now looking at the possibility of allowing users to manually calibrate the compass. It is expected that for the usage of AR in professional maritime contexts, further development of existing AR tools and hardware is needed. Designers will also need to implement a user-centered design approach in order to create better interfaces and display technologies for enhanced solutions to aid navigation.
Keywords: Compass error, GPS, maritime navigation, mobile augmented reality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 790147 Automation of the Maritime UAV Command, Control, Navigation Operations, Simulated in Real-Time Using Kinect Sensor: A Feasibility Study
Authors: Regius Asiimwe, Amir Anvar
Abstract:
This paper describes the process used in the automation of the Maritime UAV commands using the Kinect sensor. The AR Drone is a Quadrocopter manufactured by Parrot [1] to be controlled using the Apple operating systems such as iPhones and Ipads. However, this project uses the Microsoft Kinect SDK and Microsoft Visual Studio C# (C sharp) software, which are compatible with Windows Operating System for the automation of the navigation and control of the AR drone. The navigation and control software for the Quadrocopter runs on a windows 7 computer. The project is divided into two sections; the Quadrocopter control system and the Kinect sensor control system. The Kinect sensor is connected to the computer using a USB cable from which commands can be sent to and from the Kinect sensors. The AR drone has Wi-Fi capabilities from which it can be connected to the computer to enable transfer of commands to and from the Quadrocopter. The project was implemented in C#, a programming language that is commonly used in the automation systems. The language was chosen because there are more libraries already established in C# for both the AR drone and the Kinect sensor. The study will contribute toward research in automation of systems using the Quadrocopter and the Kinect sensor for navigation involving a human operator in the loop. The prototype created has numerous applications among which include the inspection of vessels such as ship, airplanes and areas that are not accessible by human operators.Keywords: UAV, AR drone, Kinect Sensors, Automation, Real time, C sharp, Microsoft Kinect SDK.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2932146 Ultrasound Therapy: Amplitude Modulation Technique for Tissue Ablation by Acoustic Cavitation
Authors: Fares A. Mayia, Mahmoud A. Yamany, Mushabbab A. Asiri
Abstract:
In recent years, non-invasive Focused Ultrasound (FU) has been utilized for generating bubbles (cavities) to ablate target tissue by mechanical fractionation. Intensities >10 kW/cm2 are required to generate the inertial cavities. The generation, rapid growth, and collapse of these inertial cavities cause tissue fractionation and the process is called Histotripsy. The ability to fractionate tissue from outside the body has many clinical applications including the destruction of the tumor mass. The process of tissue fractionation leaves a void at the treated site, where all the affected tissue is liquefied to particles at sub-micron size. The liquefied tissue will eventually be absorbed by the body. Histotripsy is a promising non-invasive treatment modality. This paper presents a technique for generating inertial cavities at lower intensities (< 1 kW/cm2). The technique (patent pending) is based on amplitude modulation (AM), whereby a low frequency signal modulates the amplitude of a higher frequency FU wave. Cavitation threshold is lower at low frequencies; the intensity required to generate cavitation in water at 10 kHz is two orders of magnitude lower than the intensity at 1 MHz. The Amplitude Modulation technique can operate in both continuous wave (CW) and pulse wave (PW) modes, and the percentage modulation (modulation index) can be varied from 0 % (thermal effect) to 100 % (cavitation effect), thus allowing a range of ablating effects from Hyperthermia to Histotripsy. Furthermore, changing the frequency of the modulating signal allows controlling the size of the generated cavities. Results from in vitro work demonstrate the efficacy of the new technique in fractionating soft tissue and solid calcium carbonate (Chalk) material. The technique, when combined with MR or Ultrasound imaging, will present a precise treatment modality for ablating diseased tissue without affecting the surrounding healthy tissue.Keywords: Focused ultrasound therapy, Histotripsy, generation of inertial cavitation, mechanical tissue ablation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1973145 A New Proportional - Pursuit Coupled Guidance Law with Actuator Delay Compensation
Authors: Chien-Chun Kung, Feng-Lung Chiang, Kuei-Yi Chen, Hsien-Wen Wei, Ming-Yi Huang, Cai-Ming Huang, Sheng-Kai Wang
Abstract:
The aim of this paper is to present a new three-dimensional proportional-pursuit coupled (PP) guidance law to track highly maneuverable aircraft. Utilizing a 3-D polar coordinate frame, the PP guidance law is formed by collecting proportional navigation guidance in Z-R plane and pursuit guidance in X-Y plane. Feedback linearization control method to solve the guidance accelerations is used to implement PP guidance. In order to compensate the actuator time delay, the time delay compensated version of PP guidance law (CPP) was derived and proved the effectiveness of modifying the problem of high acceleration in the final phase of pursuit guidance and improving the weak robustness of proportional navigation. The simulation results for intercepting Max G turn situation show that the proposed proportional-pursuit coupled guidance law guidance law with actuator delay compensation (CPP) possesses satisfactory robustness and performance.Keywords: Feedback linearization control, time delay, guidance law, robustness, proportional navigation guidance, pursuit guidance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2877144 Storytelling for Business Blogging: Position and Navigation
Authors: Han-yuh Liu, Chia-yen Wu
Abstract:
Truly successful bloggers, navigating the public to know them, often use their blogs as a way to better communicate with customers. Integrating with marketing tools, storytelling can be regarded as one of the most effective ways that businesses can follow to gain competitive edge. Even though the literature on marketing contains much discussion of traditional vehicles, the issue of business blogs applying storytelling has, as yet, received little attention. In the exploration stage, this paper identifies four storytelling disciplines and then presents a road map to business blogging. This paper also provides a two-path framework for blog storytelling and initiates an issue for further study.
Keywords: Storytelling, business blog, blog content, blog position, blog navigation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1989143 A Stereo Image Processing System for Visually Impaired
Authors: G. Balakrishnan, G. Sainarayanan, R. Nagarajan, Sazali Yaacob
Abstract:
This paper presents a review on vision aided systems and proposes an approach for visual rehabilitation using stereo vision technology. The proposed system utilizes stereo vision, image processing methodology and a sonification procedure to support blind navigation. The developed system includes a wearable computer, stereo cameras as vision sensor and stereo earphones, all moulded in a helmet. The image of the scene infront of visually handicapped is captured by the vision sensors. The captured images are processed to enhance the important features in the scene in front, for navigation assistance. The image processing is designed as model of human vision by identifying the obstacles and their depth information. The processed image is mapped on to musical stereo sound for the blind-s understanding of the scene infront. The developed method has been tested in the indoor and outdoor environments and the proposed image processing methodology is found to be effective for object identification.Keywords: Blind navigation, stereo vision, image processing, object preference, music tones.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4115142 Analysis of Hollow Rollers Implementation in Flexible Manufacturing of Large Bearings
Authors: S. Barabas, A.Fota.
Abstract:
In this paper is study the possibility of successfully implementing of hollow roller concept in order to minimize inertial mass of the large bearings, with major results in diminution of the material consumption, increasing of power efficiency (in wind power station area), increasing of the durability and life duration of the large bearings systems, noise reduction in working, resistance to vibrations, an important diminution of losses by abrasion and reduction of the working temperature. In this purpose was developed an original solution through which are reduced mass, inertial forces and moments of large bearings by using of hollow rollers. The research was made by using the method of finite element analysis applied on software type Solidworks - Nastran. Also, is study the possibility of rapidly changing the manufacturing system of solid and hollow cylindrical rollers.Keywords: Large bearings, Von Mises stress, hollow rollers, flexible manufacturing system
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2249141 Application of Wireless Visual Sensor for Semi- Autonomous Mine Navigation System
Authors: Vinay Kumar Pilania, Debashish Chakravarty
Abstract:
The present paper represent the efforts undertaken for the development of an semi-automatic robot that may be used for various post-disaster rescue operation planning and their subsequent execution using one-way communication of video and data from the robot to the controller and controller to the robot respectively. Wireless communication has been used for the purpose so that the robot may access the unapproachable places easily without any difficulties. It is expected that the information obtained from the robot would be of definite help to the rescue team for better planning and execution of their operations.Keywords: Mine environment, mine navigation, mine rescue robot, video data transmission.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1733140 Alive Cemeteries with Augmented Reality and Semantic Web Technologies
Authors: TamásMatuszka, Attila Kiss
Abstract:
Due the proliferation of smartphones in everyday use, several different outdoor navigation systems have become available. Since these smartphones are able to connect to the Internet, the users can obtain location-based information during the navigation as well. The users could interactively get to know the specifics of a particular area (for instance, ancient cultural area, Statue Park, cemetery) with the help of thus obtained information. In this paper, we present an Augmented Reality system which uses Semantic Web technologies and is based on the interaction between the user and the smartphone. The system allows navigating through a specific area and provides information and details about the sight an interactive manner.
Keywords: Augmented Reality, Semantic Web, Human Computer Interaction, Mobile Application.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2713139 Solving Definition and Relation Problems in English Navigation Terminology
Authors: Ayşe Yurdakul, Eckehard Schnieder
Abstract:
Because of the increasing multidisciplinarity and multilinguality, communication problems in different technical fields grow more and more. Therefore, each technical field has its own specific language, terminology which is characterized by the different definition of terms. In addition to definition problems, there are also relation problems between terms. Among these problems of relation, there are the synonymy, antonymy, hypernymy/hyponymy, ambiguity, risk of confusion and translation problems etc.
Thus, the terminology management system iglos of the Institute for Traffic Safety and Automation Engineering of the Technische Universität Braunschweig has the target to solve these problems by a methodological standardisation of term definitions with the aid of the iglos sign model and iglos relation types. The focus of this paper should be on solving definition and relation problems between terms in English navigation terminology.
Keywords: Iglos, iglos sign model, methodological resolutions, navigation terminology, common language, technical language, positioning, definition problems, relation problems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1661138 Studies on Affecting Factors of Wheel Slip and Odometry Error on Real-Time of Wheeled Mobile Robots: A Review
Authors: D. Vidhyaprakash, A. Elango
Abstract:
In real-time applications, wheeled mobile robots are increasingly used and operated in extreme and diverse conditions traversing challenging surfaces such as a pitted, uneven terrain, natural flat, smooth terrain, as well as wet and dry surfaces. In order to accomplish such tasks, it is critical that the motion control functions without wheel slip and odometry error during the navigation of the two-wheeled mobile robot (WMR). Wheel slip and odometry error are disrupting factors on overall WMR performance in the form of deviation from desired trajectory, navigation, travel time and budgeted energy consumption. The wheeled mobile robot’s ability to operate at peak performance on various work surfaces without wheel slippage and odometry error is directly connected to four main parameters, which are the range of payload distribution, speed, wheel diameter, and wheel width. This paper analyses the effects of those parameters on overall performance and is concerned with determining the ideal range of parameters for optimum performance.
Keywords: Wheeled mobile robot (WMR), terrain, wheel slippage, odometry error, navigation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1251137 Real-Time Recognition of the Terrain Configuration to Improve Driving Stability for Unmanned Robots
Authors: Bongsoo Jeon, Jayoung Kim, Jihong Lee
Abstract:
Methods for measuring or estimating ground shape by a laser range finder and a vision sensor (Exteroceptive sensors) have critical weaknesses in terms that these methods need a prior database built to distinguish acquired data as unique surface conditions for driving. Also, ground information by Exteroceptive sensors does not reflect the deflection of ground surface caused by the movement of UGVs. Therefore, this paper proposes a method of recognizing exact and precise ground shape using an Inertial Measurement Unit (IMU) as a proprioceptive sensor. In this paper, firstly this method recognizes the attitude of a robot in real-time using IMU and compensates attitude data of a robot with angle errors through analysis of vehicle dynamics. This method is verified by outdoor driving experiments of a real mobile robot.
Keywords: Inertial Measurement Unit, Laser Range Finder, Real-time recognition of the ground shape.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1695136 Support Vector Machines For Understanding Lane Color and Sidewalks
Authors: Hoon Lee, Soonyoung Park, Kyoungho Choi
Abstract:
Understanding road features such as lanes, the color of lanes, and sidewalks in a live video captured from a moving vehicle is essential to build video-based navigation systems. In this paper, we present a novel idea to understand the road features using support vector machines. Various feature vectors including color components of road markings and the difference between two regions, i.e., chosen AOIs, and so on are fed into SVM, deciding colors of lanes and sidewalks robustly. Experimental results are provided to show the robustness of the proposed idea.Keywords: video-based navigation system, lane detection, SVMs, autonomous vehicles
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1835135 Acceleration Analysis of a Rotating Body
Authors: R. Usubamatov
Abstract:
The velocity of a moving point in a general path is the vector quantity, which has both magnitude and direction. The magnitude or the direction of the velocity vector can change over time as a result of acceleration that the time rate of velocity changes. Acceleration analysis is important because inertial forces and inertial torques are proportional to rectilinear and angular accelerations accordingly. The loads must be determined in advance to ensure that a machine is adequately designed to handle these dynamic loads. For planar motion, the vector direction of acceleration is commonly separated into two elements: tangential and centripetal or radial components of a point on a rotating body. All textbooks in physics, kinematics and dynamics of machinery consider the magnitude of a radial acceleration at condition when a point rotates with a constant angular velocity and it means without acceleration. The magnitude of the tangential acceleration considered on a basis of acceleration for a rotating point. Such condition of presentation of magnitudes for two components of acceleration logically and mathematically is not correct and may cause further confusion in calculation. This paper presents new analytical expressions of the radial and absolute accelerations of a rotating point with acceleration and covers the gap in theoretical study of acceleration analysis.
Keywords: acceleration analysis, kinematics of mechanisms.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2695134 First Aid Application on Mobile Device
Authors: Komwit Surachat, Supasit Kajkamhaeng, Kasikrit Damkliang, Watanyoo Tiprat, Taninnuch Wacharanimit
Abstract:
An accident is an unexpected and unplanned situation that happens and affects human in a negative outcome. The accident can cause an injury to a human biological organism. Thus, the provision of initial care for an illness or injury is very important move to prepare the patients/victims before sending to the doctor. In this paper, a First Aid Application is developed to give some directions for preliminary taking care of patient/victim via Android mobile device. Also, the navigation function using Google Maps API is implemented in this paper for searching a suitable path to the nearest hospital. Therefore, in the emergency case, this function can be activated and navigate patients/victims to the hospital with the shortest path.Keywords: First Aid Application, Android, Google Maps API, Navigation System.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6003133 Meteorological Risk Assessment for Ships with Fuzzy Logic Designer
Authors: Ismail Karaca, Ridvan Saracoglu, Omer Soner
Abstract:
Fuzzy Logic, an advanced method to support decision-making, is used by various scientists in many disciplines. Fuzzy programming is a product of fuzzy logic, fuzzy rules, and implication. In marine science, fuzzy programming for ships is dramatically increasing together with autonomous ship studies. In this paper, a program to support the decision-making process for ship navigation has been designed. The program is produced in fuzzy logic and rules, by taking the marine accidents and expert opinions into account. After the program was designed, the program was tested by 46 ship accidents reported by the Transportation Safety Investigation Center of Turkey. Wind speed, sea condition, visibility, day/night ratio have been used as input data. They have been converted into a risk factor within the Fuzzy Logic Designer application and fuzzy rules set by marine experts. Finally, the expert's meteorological risk factor for each accident is compared with the program's risk factor, and the error rate was calculated. The main objective of this study is to improve the navigational safety of ships, by using the advance decision support model. According to the study result, fuzzy programming is a robust model that supports safe navigation.
Keywords: Calculation of risk factor, fuzzy logic, fuzzy programming for ship, safe navigation of ships.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 827132 Robust Integrated Navigation of a Low Cost System
Authors: Saman M. Siddiqui, Fang Jiancheng
Abstract:
Robust nonlinear integrated navigation of GPS and low cost MEMS is a hot topic of research these days. A robust filter is required to cope up with the problem of unpredictable discontinuities and colored noises associated with low cost sensors. H∞ filter is previously used in Extended Kalman filter and Unscented Kalman filter frame. Unscented Kalman filter has a problem of Cholesky matrix factorization at each step which is a very unstable operation. To avoid this problem in this research H∞ filter is designed in Square root Unscented filter framework and found 50% more robust towards increased level of colored noises.Keywords: H∞ filter, MEMS, GPS, Nonlinear system, robust system, Square root unscented filter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1741131 Variable vs. Fixed Window Width Code Correlation Reference Waveform Receivers for Multipath Mitigation in Global Navigation Satellite Systems with Binary Offset Carrier and Multiplexed Binary Offset Carrier Signals
Authors: Fahad Alhussein, Huaping Liu
Abstract:
This paper compares the multipath mitigation performance of code correlation reference waveform receivers with variable and fixed window width, for binary offset carrier and multiplexed binary offset carrier signals typically used in global navigation satellite systems. In the variable window width method, such width is iteratively reduced until the distortion on the discriminator with multipath is eliminated. This distortion is measured as the Euclidean distance between the actual discriminator (obtained with the incoming signal), and the local discriminator (generated with a local copy of the signal). The variable window width have shown better performance compared to the fixed window width. In particular, the former yields zero error for all delays for the BOC and MBOC signals considered, while the latter gives rather large nonzero errors for small delays in all cases. Due to its computational simplicity, the variable window width method is perfectly suitable for implementation in low-cost receivers.Keywords: Correlation reference waveform receivers, binary offset carrier, multiplexed binary offset carrier, global navigation satellite systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 483130 Accurate Positioning Method of Indoor Plastering Robot Based on Line Laser
Authors: Guanqiao Wang, Hongyang Yu
Abstract:
There is a lot of repetitive work in the traditional construction industry. These repetitive tasks can significantly improve production efficiency by replacing manual tasks with robots. Therefore, robots appear more and more frequently in the construction industry. Navigation and positioning is a very important task for construction robots, and the requirements for accuracy of positioning are very high. Traditional indoor robots mainly use radio frequency or vision methods for positioning. Compared with ordinary robots, the indoor plastering robot needs to be positioned closer to the wall for wall plastering, so the requirements for construction positioning accuracy are higher, and the traditional navigation positioning method has a large error, which will cause the robot to move. Without the exact position, the wall cannot be plastered or the error of plastering the wall is large. A positioning method is proposed, which is assisted by line lasers and uses image processing-based positioning to perform more accurate positioning on the traditional positioning work. In actual work, filter, edge detection, Hough transform and other operations are performed on the images captured by the camera. Each time the position of the laser line is found, it is compared with the standard value, and the position of the robot is moved or rotated to complete the positioning work. The experimental results show that the actual positioning error is reduced to less than 0.5 mm by this accurate positioning method.
Keywords: Indoor plastering robot, navigation, precise positioning, line laser, image processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 540129 Memorabilia of Suan Sunandha through Interactive User Interface
Authors: Nalinee Sophatsathit
Abstract:
The objectives of memorabilia of Suan Sunandha are to develop a general knowledge presentation about the historical royal garden through interactive graphic simulation technique and to employ high-functionality context in enhancing interactive user navigation. The approach infers non-intrusive display of relevant history in response to situational context. User’s navigation runs through the virtual reality campus, consisting of new and restored buildings. A flash back presentation of information pertaining to the history in the form of photos, paintings, and textual descriptions are displayed along each passing-by building. To keep the presentation lively, graphical simulation is created in a serendipity game play so that the user can both learn and enjoy the educational tour. The benefits of this human-computer interaction development are two folds. First, lively presentation technique and situational context modeling are developed that entail a usable paradigm of knowledge and information presentation combinations. Second, cost effective training and promotion for both internal personnel and public visitors to learn and keep informed of this historical royal garden can be furnished without the need for a dedicated public relations service. Future improvement on graphic simulation and ability based display can extend this work to be more realistic, user-friendly, and informative for all.
Keywords: Interactive user navigation, high-functionality context, situational context, human-computer interaction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1599128 A Route Guidance System for Car Finding in Indoor Parking Garages
Authors: Pei-Chun Lee, Sheng-Shih Wang
Abstract:
This paper presents a route guidance system for car owners to find their cars in parking garages. The presents system comprises a positioning-assisting subsystem and a car-finding mobile app. The positioning-assisting subsystem mainly uses the iBeacon technology for indoor positioning. The car-finding mobile app guides car owners to their cars based on a non-map navigation strategy. This study also designs a virtual coordinate system to support identifying the locations of parking spaces and iBeacon devices. We use Arduino and Android as the platforms to implement the proposed positioning-assisting subsystem and car-finding mobile app, respectively. We have also deployed the system in a parking garage in our campus for testing. Experimental results verify that our system can efficiently and correctly guide car owners to the parking spaces of their cars.Keywords: Guidance, iBeacon, mobile app, navigation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1557127 A Study of RSCMAC Enhanced GPS Dynamic Positioning
Authors: Ching-Tsan Chiang, Sheng-Jie Yang, Jing-Kai Huang
Abstract:
The purpose of this research is to develop and apply the RSCMAC to enhance the dynamic accuracy of Global Positioning System (GPS). GPS devices provide services of accurate positioning, speed detection and highly precise time standard for over 98% area on the earth. The overall operation of Global Positioning System includes 24 GPS satellites in space; signal transmission that includes 2 frequency carrier waves (Link 1 and Link 2) and 2 sets random telegraphic codes (C/A code and P code), on-earth monitoring stations or client GPS receivers. Only 4 satellites utilization, the client position and its elevation can be detected rapidly. The more receivable satellites, the more accurate position can be decoded. Currently, the standard positioning accuracy of the simplified GPS receiver is greatly increased, but due to affected by the error of satellite clock, the troposphere delay and the ionosphere delay, current measurement accuracy is in the level of 5~15m. In increasing the dynamic GPS positioning accuracy, most researchers mainly use inertial navigation system (INS) and installation of other sensors or maps for the assistance. This research utilizes the RSCMAC advantages of fast learning, learning convergence assurance, solving capability of time-related dynamic system problems with the static positioning calibration structure to improve and increase the GPS dynamic accuracy. The increasing of GPS dynamic positioning accuracy can be achieved by using RSCMAC system with GPS receivers collecting dynamic error data for the error prediction and follows by using the predicted error to correct the GPS dynamic positioning data. The ultimate purpose of this research is to improve the dynamic positioning error of cheap GPS receivers and the economic benefits will be enhanced while the accuracy is increased.Keywords: Dynamic Error, GPS, Prediction, RSCMAC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1685126 Skyline Extraction using a Multistage Edge Filtering
Authors: Byung-Ju Kim, Jong-Jin Shin, Hwa-Jin Nam, Jin-Soo Kim
Abstract:
Skyline extraction in mountainous images can be used for navigation of vehicles or UAV(unmanned air vehicles), but it is very hard to extract skyline shape because of clutters like clouds, sea lines and field borders in images. We developed the edge-based skyline extraction algorithm using a proposed multistage edge filtering (MEF) technique. In this method, characteristics of clutters in the image are first defined and then the lines classified as clutters are eliminated by stages using the proposed MEF technique. After this processing, we select the last line using skyline measures among the remained lines. This proposed algorithm is robust under severe environments with clutters and has even good performance for infrared sensor images with a low resolution. We tested this proposed algorithm for images obtained in the field by an infrared camera and confirmed that the proposed algorithm produced a better performance and faster processing time than conventional algorithms.Keywords: MEF, mountainous image, navigation, skyline
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1872125 Visualisation and Navigation in Large Scale P2P Service Networks
Authors: H. Unger, H. Coltzau
Abstract:
In Peer-to-Peer service networks, where peers offer any kind of publicly available services or applications, intuitive navigation through all services in the network becomes more difficult as the number of services increases. In this article, a concept is discussed that enables users to intuitively browse and use large scale P2P service networks. The concept extends the idea of creating virtual 3D-environments solely based on Peer-to-Peer technologies. Aside from browsing, users shall have the possibility to emphasize services of interest using their own semantic criteria. The appearance of the virtual world shall intuitively reflect network properties that may be of interest for the user. Additionally, the concept comprises options for load- and traffic-balancing. In this article, the requirements concerning the underlying infrastructure and the graphical user interface are defined. First impressions of the appearance of future systems are presented and the next steps towards a prototypical implementation are discussed.
Keywords: Internet Operating System, Peer-To-Peer, Service Exploration
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1283