Search results for: fifth order convergence
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5511

Search results for: fifth order convergence

5451 Fixed Points of Contractive-Like Operators by a Faster Iterative Process

Authors: Safeer Hussain Khan

Abstract:

In this paper, we prove a strong convergence result using a recently introduced iterative process with contractive-like operators. This improves andgeneralizes corresponding results in the literature in two ways: iterativeprocess is faster, operators are more general. At the end, we indicatethat the results can also be proved with the iterative process witherror terms.

Keywords: Contractive-like operator, iterative process, fixed point, strong convergence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1712
5450 Fast Factored DCT-LMS Speech Enhancement for Performance Enhancement of Digital Hearing Aid

Authors: Sunitha. S.L., V. Udayashankara

Abstract:

Background noise is particularly damaging to speech intelligibility for people with hearing loss especially for sensorineural loss patients. Several investigations on speech intelligibility have demonstrated sensorineural loss patients need 5-15 dB higher SNR than the normal hearing subjects. This paper describes Discrete Cosine Transform Power Normalized Least Mean Square algorithm to improve the SNR and to reduce the convergence rate of the LMS for Sensory neural loss patients. Since it requires only real arithmetic, it establishes the faster convergence rate as compare to time domain LMS and also this transformation improves the eigenvalue distribution of the input autocorrelation matrix of the LMS filter. The DCT has good ortho-normal, separable, and energy compaction property. Although the DCT does not separate frequencies, it is a powerful signal decorrelator. It is a real valued function and thus can be effectively used in real-time operation. The advantages of DCT-LMS as compared to standard LMS algorithm are shown via SNR and eigenvalue ratio computations. . Exploiting the symmetry of the basis functions, the DCT transform matrix [AN] can be factored into a series of ±1 butterflies and rotation angles. This factorization results in one of the fastest DCT implementation. There are different ways to obtain factorizations. This work uses the fast factored DCT algorithm developed by Chen and company. The computer simulations results show superior convergence characteristics of the proposed algorithm by improving the SNR at least 10 dB for input SNR less than and equal to 0 dB, faster convergence speed and better time and frequency characteristics.

Keywords: Hearing Impairment, DCT Adaptive filter, Sensorineural loss patients, Convergence rate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2171
5449 Ordinary Differential Equations with Inverted Functions

Authors: Thomas Kampke

Abstract:

Equations with differentials relating to the inverse of an unknown function rather than to the unknown function itself are solved exactly for some special cases and numerically for the general case. Invertibility combined with differentiability over connected domains forces solutions always to be monotone. Numerical function inversion is key to all solution algorithms which either are of a forward type or a fixed point type considering whole approximate solution functions in each iteration. The given considerations are restricted to ordinary differential equations with inverted functions (ODEIs) of first order. Forward type computations, if applicable, admit consistency of order one and, under an additional accuracy condition, convergence of order one.

Keywords: Euler method, fixed points, golden section, multi-step procedures, Runge Kutta methods.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1449
5448 Two-step Iterative Process For Common Fixed Points of Two Asymptotically Quasi-nonexpansive Mappings

Authors: Safeer Hussain Khan

Abstract:

In this paper, we consider an iteration process for approximating common fixed points of two asymptotically quasinonexpansive mappings and we prove some strong and weak convergence theorems for such mappings in uniformly convex Banach spaces.

Keywords: Asypmtotically quasi-nonexpansive mappings, Commonfixed point, Strong and weak convergence, Iteration process.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1538
5447 Social Anthropology of Convergence and Nomadic Computing

Authors: Emilia Nercissians

Abstract:

The paper attempts to contribute to the largely neglected social and anthropological discussion of technology development on the one hand, and to redirecting the emphasis in anthropology from primitive and exotic societies to problems of high relevance in contemporary era and how technology is used in everyday life. It draws upon multidimensional models of intelligence and ideal type formation. It is argued that the predominance of computational and cognitive cosmovisions have led to technology alienation. Injection of communicative competence in artificially intelligent systems and identity technologies in the coming information society are analyzed

Keywords: convergence, nomadic computing, solidarity, status.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1500
5446 Design of a Non-linear Observer for VSI Fed Synchronous Motor

Authors: P. Ramana , K. Alice Mary, M. Surya Kalavathi, M. Phani Kumar

Abstract:

This paper discusses two observers, which are used for the estimation of parameters of PMSM. Former one, reduced order observer, which is used to estimate the inaccessible parameters of PMSM. Later one, full order observer, which is used to estimate all the parameters of PMSM even though some of the parameters are directly available for measurement, so as to meet with the insensitivity to the parameter variation. However, the state space model contains some nonlinear terms i.e. the product of different state variables. The asymptotic state observer, which approximately reconstructs the state vector for linear systems without uncertainties, was presented by Luenberger. In this work, a modified form of such an observer is used by including a non-linear term involving the speed. So, both the observers are designed in the framework of nonlinear control; their stability and rate of convergence is discussed.

Keywords: Permanent magnet synchronous motor, Mathematicalmodelling, Rotor reference frame, parameter estimation, Luenbergerobserver, reduced order observer, full order observer

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1868
5445 On Algebraic Structure of Improved Gauss-Seidel Iteration

Authors: O. M. Bamigbola, A. A. Ibrahim

Abstract:

Analysis of real life problems often results in linear systems of equations for which solutions are sought. The method to employ depends, to some extent, on the properties of the coefficient matrix. It is not always feasible to solve linear systems of equations by direct methods, as such the need to use an iterative method becomes imperative. Before an iterative method can be employed to solve a linear system of equations there must be a guaranty that the process of solution will converge. This guaranty, which must be determined apriori, involve the use of some criterion expressible in terms of the entries of the coefficient matrix. It is, therefore, logical that the convergence criterion should depend implicitly on the algebraic structure of such a method. However, in deference to this view is the practice of conducting convergence analysis for Gauss- Seidel iteration on a criterion formulated based on the algebraic structure of Jacobi iteration. To remedy this anomaly, the Gauss- Seidel iteration was studied for its algebraic structure and contrary to the usual assumption, it was discovered that some property of the iteration matrix of Gauss-Seidel method is only diagonally dominant in its first row while the other rows do not satisfy diagonal dominance. With the aid of this structure we herein fashion out an improved version of Gauss-Seidel iteration with the prospect of enhancing convergence and robustness of the method. A numerical section is included to demonstrate the validity of the theoretical results obtained for the improved Gauss-Seidel method.

Keywords: Linear system of equations, Gauss-Seidel iteration, algebraic structure, convergence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2931
5444 An Efficient Separation for Convolutive Mixtures

Authors: Salah Al-Din I. Badran, Samad Ahmadi, Dylan Menzies, Ismail Shahin

Abstract:

This paper describes a new efficient blind source separation method; in this method we uses a non-uniform filter bank and a new structure with different sub-bands. This method provides a reduced permutation and increased convergence speed comparing to the full-band algorithm. Recently, some structures have been suggested to deal with two problems: reducing permutation and increasing the speed of convergence of the adaptive algorithm for correlated input signals. The permutation problem is avoided with the use of adaptive filters of orders less than the full-band adaptive filter, which operate at a sampling rate lower than the sampling rate of the input signal. The decomposed signals by analysis bank filter are less correlated in each sub-band than the input signal at full-band, and can promote better rates of convergence.

Keywords: Blind source separation (BSS), estimates, full-band, mixtures, Sub-band.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1780
5443 Parallel Alternating Two-stage Methods for Solving Linear System

Authors: Guangbin Wang, Ning Zhang, Fuping Tan

Abstract:

In this paper, we present parallel alternating two-stage methods for solving linear system Ax = b, where A is a monotone matrix or an H-matrix. And we give some convergence results of these methods for nonsingular linear system.

Keywords: Parallel, alternating two-stage, convergence, linear system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1148
5442 Analysis of Blind Decision Feedback Equalizer Convergence: Interest of a Soft Decision

Authors: S. Cherif, S. Marcos, M. Jaidane

Abstract:

In this paper the behavior of the decision feedback equalizers (DFEs) adapted by the decision-directed or the constant modulus blind algorithms is presented. An analysis of the error surface of the corresponding criterion cost functions is first developed. With the intention of avoiding the ill-convergence of the algorithm, the paper proposes to modify the shape of the cost function error surface by using a soft decision instead of the hard one. This was shown to reduce the influence of false decisions and to smooth the undesirable minima. Modified algorithms using the soft decision during a pseudo-training phase with an automatic switch to the properly tracking phase are then derived. Computer simulations show that these modified algorithms present better ability to avoid local minima than conventional ones.

Keywords: Blind DFEs, decision-directed algorithm, constant modulus algorithm, cost function analysis, convergence analysis, soft decision.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1882
5441 Computational Fluid Dynamics Expert System using Artificial Neural Networks

Authors: Gonzalo Rubio, Eusebio Valero, Sven Lanzan

Abstract:

The design of a modern aircraft is based on three pillars: theoretical results, experimental test and computational simulations. As a results of this, Computational Fluid Dynamic (CFD) solvers are widely used in the aeronautical field. These solvers require the correct selection of many parameters in order to obtain successful results. Besides, the computational time spent in the simulation depends on the proper choice of these parameters. In this paper we create an expert system capable of making an accurate prediction of the number of iterations and time required for the convergence of a computational fluid dynamic (CFD) solver. Artificial neural network (ANN) has been used to design the expert system. It is shown that the developed expert system is capable of making an accurate prediction the number of iterations and time required for the convergence of a CFD solver.

Keywords: Artificial Neural Network, Computational Fluid Dynamics, Optimization

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2958
5440 Increasing The Speed of Convergence of an Artificial Neural Network based ARMA Coefficients Determination Technique

Authors: Abiodun M. Aibinu, Momoh J. E. Salami, Amir A. Shafie, Athaur Rahman Najeeb

Abstract:

In this paper, novel techniques in increasing the accuracy and speed of convergence of a Feed forward Back propagation Artificial Neural Network (FFBPNN) with polynomial activation function reported in literature is presented. These technique was subsequently used to determine the coefficients of Autoregressive Moving Average (ARMA) and Autoregressive (AR) system. The results obtained by introducing sequential and batch method of weight initialization, batch method of weight and coefficient update, adaptive momentum and learning rate technique gives more accurate result and significant reduction in convergence time when compared t the traditional method of back propagation algorithm, thereby making FFBPNN an appropriate technique for online ARMA coefficient determination.

Keywords: Adaptive Learning rate, Adaptive momentum, Autoregressive, Modeling, Neural Network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1498
5439 Preconditioned Jacobi Method for Fuzzy Linear Systems

Authors: Lina Yan, Shiheng Wang, Ke Wang

Abstract:

A preconditioned Jacobi (PJ) method is provided for solving fuzzy linear systems whose coefficient matrices are crisp Mmatrices and the right-hand side columns are arbitrary fuzzy number vectors. The iterative algorithm is given for the preconditioned Jacobi method. The convergence is analyzed with convergence theorems. Numerical examples are given to illustrate the procedure and show the effectiveness and efficiency of the method.

Keywords: preconditioning, M-matrix, Jacobi method, fuzzy linear system (FLS).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1904
5438 Effect of Implementation of Nonlinear Sequence Transformations on Power Series Expansion for a Class of Non-Linear Abel Equations

Authors: Javad Abdalkhani

Abstract:

Convergence of power series solutions for a class of non-linear Abel type equations, including an equation that arises in nonlinear cooling of semi-infinite rods, is very slow inside their small radius of convergence. Beyond that the corresponding power series are wildly divergent. Implementation of nonlinear sequence transformation allow effortless evaluation of these power series on very large intervals..

Keywords: Nonlinear transformation, Abel Volterra Equations, Mathematica

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1306
5437 Crank-Nicolson Difference Scheme for the Generalized Rosenau-Burgers Equation

Authors: Kelong Zheng, Jinsong Hu,

Abstract:

In this paper, numerical solution for the generalized Rosenau-Burgers equation is considered and Crank-Nicolson finite difference scheme is proposed. Existence of the solutions for the difference scheme has been shown. Stability, convergence and priori error estimate of the scheme are proved. Numerical results demonstrate that the scheme is efficient and reliable.

Keywords: Generalized Rosenau-Burgers equation, difference scheme, stability, convergence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1866
5436 A Modified Inexact Uzawa Algorithm for Generalized Saddle Point Problems

Authors: Shu-Xin Miao

Abstract:

In this note, we discuss the convergence behavior of a modified inexact Uzawa algorithm for solving generalized saddle point problems, which is an extension of the result obtained in a recent paper [Z.H. Cao, Fast Uzawa algorithm for generalized saddle point problems, Appl. Numer. Math., 46 (2003) 157-171].

Keywords: Saddle point problem, inexact Uzawa algorithm, convergence behavior.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1484
5435 A Transform Domain Function Controlled VSSLMS Algorithm for Sparse System Identification

Authors: Cemil Turan, Mohammad Shukri Salman

Abstract:

The convergence rate of the least-mean-square (LMS) algorithm deteriorates if the input signal to the filter is correlated. In a system identification problem, this convergence rate can be improved if the signal is white and/or if the system is sparse. We recently proposed a sparse transform domain LMS-type algorithm that uses a variable step-size for a sparse system identification. The proposed algorithm provided high performance even if the input signal is highly correlated. In this work, we investigate the performance of the proposed TD-LMS algorithm for a large number of filter tap which is also a critical issue for standard LMS algorithm. Additionally, the optimum value of the most important parameter is calculated for all experiments. Moreover, the convergence analysis of the proposed algorithm is provided. The performance of the proposed algorithm has been compared to different algorithms in a sparse system identification setting of different sparsity levels and different number of filter taps. Simulations have shown that the proposed algorithm has prominent performance compared to the other algorithms.

Keywords: Adaptive filtering, sparse system identification, VSSLMS algorithm, TD-LMS algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1000
5434 Efficiency of the Strain Based Approach Formulation for Plate Bending Analysis

Authors: Djamal Hamadi, Sifeddine Abderrahmani, Toufik Maalem, Oussama Temami

Abstract:

In recent years many finite elements have been developed for plate bending analysis. The formulated elements are based on the strain based approach. This approach leads to the representation of the displacements by higher order polynomial terms without the need for the introduction of additional internal and unnecessary degrees of freedom. Good convergence can also be obtained when the results are compared with those obtained from the corresponding displacement based elements, having the same total number of degrees of freedom. Furthermore, the plate bending elements are free from any shear locking since they converge to the Kirchhoff solution for thin plates contrarily for the corresponding displacement based elements. In this paper the efficiency of the strain based approach compared to well known displacement formulation is presented. The results obtained by a new formulated plate bending element based on the strain approach and Kirchhoff theory are compared with some others elements. The good convergence of the new formulated element is confirmed.

Keywords: Displacement fields, finite elements, plate bending, Kirchhoff theory, strain based approach.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2184
5433 Comparison of Newton Raphson and Gauss Seidel Methods for Power Flow Analysis

Authors: H. Abaali, T. Talbi, R.Skouri

Abstract:

This paper presents a comparative study of the Gauss Seidel and Newton-Raphson polar coordinates methods for power flow analysis. The effectiveness of these methods are evaluated and tested through a different IEEE bus test system on the basis of number of iteration, computational time, tolerance value and convergence.

Keywords: Convergence time, Gauss-Seidel Method, Newton-Raphson Method, number of iteration, power flow analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2546
5432 Turbulence Modeling of Source and Sink Flows

Authors: Israt Jahan Eshita

Abstract:

Flows developed between two parallel disks have many engineering applications. Two types of non-swirling flows can be generated in such a domain. One is purely source flow in disc type domain (outward flow). Other is purely sink flow in disc type domain (inward flow). This situation often appears in some turbo machinery components such as air bearings, heat exchanger, radial diffuser, vortex gyroscope, disc valves, and viscosity meters. The main goal of this paper is to show the mesh convergence, because mesh convergence saves time, and economical to run and increase the efficiency of modeling for both sink and source flow. Then flow field is resolved using a very fine mesh near-wall, using enhanced wall treatment. After that we are going to compare this flow using standard k-epsilon, RNG k-epsilon turbulence models. Lastly compare some experimental data with numerical solution for sink flow. The good agreement of numerical solution with the experimental works validates the current modeling.

Keywords: Hydraulic diameter, k-epsilon model, meshes convergence, Reynolds number, RNG model, sink flow, source flow and wall y+.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2535
5431 Proximal Parallel Alternating Direction Method for Monotone Structured Variational Inequalities

Authors: Min Sun, Jing Liu

Abstract:

In this paper, we focus on the alternating direction method, which is one of the most effective methods for solving structured variational inequalities(VI). In fact, we propose a proximal parallel alternating direction method which only needs to solve two strongly monotone sub-VI problems at each iteration. Convergence of the new method is proved under mild assumptions. We also present some preliminary numerical results, which indicate that the new method is quite efficient.

Keywords: structured variational inequalities, proximal point method, global convergence

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1319
5430 An Expectation of the Rate of Inflation According to Inflation-Unemployment Interaction in Croatia

Authors: Zdravka Aljinović, Snježana Pivac, Boško Šego

Abstract:

According to the interaction of inflation and unemployment, expectation of the rate of inflation in Croatia is estimated. The interaction between inflation and unemployment is shown by model based on three first-order differential i.e. difference equations: Phillips relation, adaptive expectations equation and monetary-policy equation. The resulting equation is second order differential i.e. difference equation which describes the time path of inflation. The data of the rate of inflation and the rate of unemployment are used for parameters estimation. On the basis of the estimated time paths, the stability and convergence analysis is done for the rate of inflation.

Keywords: Differencing, inflation, time path, unemployment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1614
5429 Fixed Point of Lipschitz Quasi Nonexpansive Mappings

Authors: M. Moosavi, H. Khatibzadeh

Abstract:

In this article, we study demiclosed and strongly quasi-nonexpansive of a sequence generated by the proximal point algorithm for a finite family of quasi-nonexpansive mappings in Hadamard spaces. Δ-convergence of iterations for the sequence of strongly quasi-nonexpansive mappings as well as the strong convergence of the Halpern type regularization of them to a common fixed point of sequence are also established. Our results generalize and improve several previously known results of the existing literature.

Keywords: Fixed point, Hadamard space, proximal point algorithm, quasi-nonexpansive sequence of mappings, resolvent.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 194
5428 Approximating Fixed Points by a Two-Step Iterative Algorithm

Authors: Safeer Hussain Khan

Abstract:

In this paper, we introduce a two-step iterative algorithm to prove a strong convergence result for approximating common fixed points of three contractive-like operators. Our algorithm basically generalizes an existing algorithm..Our iterative algorithm also contains two famous iterative algorithms: Mann iterative algorithm and Ishikawa iterative algorithm. Thus our result generalizes the corresponding results proved for the above three iterative algorithms to a class of more general operators. At the end, we remark that nothing prevents us to extend our result to the case of the iterative algorithm with error terms.

Keywords: Contractive-like operator, iterative algorithm, fixed point, strong convergence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2024
5427 An Efficient Backward Semi-Lagrangian Scheme for Nonlinear Advection-Diffusion Equation

Authors: Soyoon Bak, Sunyoung Bu, Philsu Kim

Abstract:

In this paper, a backward semi-Lagrangian scheme combined with the second-order backward difference formula is designed to calculate the numerical solutions of nonlinear advection-diffusion equations. The primary aims of this paper are to remove any iteration process and to get an efficient algorithm with the convergence order of accuracy 2 in time. In order to achieve these objects, we use the second-order central finite difference and the B-spline approximations of degree 2 and 3 in order to approximate the diffusion term and the spatial discretization, respectively. For the temporal discretization, the second order backward difference formula is applied. To calculate the numerical solution of the starting point of the characteristic curves, we use the error correction methodology developed by the authors recently. The proposed algorithm turns out to be completely iteration free, which resolves the main weakness of the conventional backward semi-Lagrangian method. Also, the adaptability of the proposed method is indicated by numerical simulations for Burgers’ equations. Throughout these numerical simulations, it is shown that the numerical results is in good agreement with the analytic solution and the present scheme offer better accuracy in comparison with other existing numerical schemes.

Keywords: Semi-Lagrangian method, Iteration free method, Nonlinear advection-diffusion equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2493
5426 Exploitation of Public Technology for Industrial Use

Authors: Seongykyoon Jeong, Sungki Lee, Jaeyun Kim, Seunghun Oh, Kiho Kwak

Abstract:

The purpose of study is to demonstrate how the characteristics of technology and the process required for development of technology affect technology transfer from public organisations to industry on the technology level. In addition, using the advantage of the analytic level and the novel means of measuring technology convergence, we examine the characteristics of converging technologies as compared to non-converging technologies in technology transfer process. In sum, our study finds that a technology from the public sector is likely to be transferred when its readiness level is closer to generation of profit, when its stage of life cycle is early and when its economic values is high. Our findings also show that converging technologies are less likely to be transferred.

Keywords: Interdisciplinary, Technology transfer, Technology convergence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1692
5425 Steepest Descent Method with New Step Sizes

Authors: Bib Paruhum Silalahi, Djihad Wungguli, Sugi Guritman

Abstract:

Steepest descent method is a simple gradient method for optimization. This method has a slow convergence in heading to the optimal solution, which occurs because of the zigzag form of the steps. Barzilai and Borwein modified this algorithm so that it performs well for problems with large dimensions. Barzilai and Borwein method results have sparked a lot of research on the method of steepest descent, including alternate minimization gradient method and Yuan method. Inspired by previous works, we modified the step size of the steepest descent method. We then compare the modification results against the Barzilai and Borwein method, alternate minimization gradient method and Yuan method for quadratic function cases in terms of the iterations number and the running time. The average results indicate that the steepest descent method with the new step sizes provide good results for small dimensions and able to compete with the results of Barzilai and Borwein method and the alternate minimization gradient method for large dimensions. The new step sizes have faster convergence compared to the other methods, especially for cases with large dimensions.

Keywords: Convergence, iteration, line search, running time, steepest descent, unconstrained optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3162
5424 A New IT-Convergence Service Design Framework

Authors: Hwa-Jong Kim

Abstract:

In many countries, digital city or ubiquitous city (u-City) projects have been initiated to provide digitalized economic environments to cities. Recently in Korea, Kangwon Province has started the u-Kangwon project to boost local economy with digitalized tourism services. We analyze the limitations of the ubiquitous IT approach through the u-Kangwon case. We have found that travelers are more interested in quality over speed in access of information. For improved service quality, we are looking to develop an IT-convergence service design framework (ISDF). The ISDF is based on the service engineering technique and composed of three parts: Service Design, Service Simulation, and the Service Platform.

Keywords: Service design, service simulation, service platform, service design framework.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1259
5423 Implicit Lyapunov Control of Multi-Control Hamiltonians Systems Based On the State Error

Authors: Fangfang Meng, Shuang Cong

Abstract:

In the closed quantum system, if the control system is strongly regular and all other eigenstates are directly coupled to the target state, the control system can be asymptotically stabilized at the target eigenstate by the Lyapunov control based on the state error. However, if the control system is not strongly regular or as long as there is one eigenstate not directly coupled to the target state, the situations will become complicated. In this paper, we propose an implicit Lyapunov control method based on the state error to solve the convergence problems for these two degenerate cases. And at the same time, we expand the target state from the eigenstate to the arbitrary pure state. Especially, the proposed method is also applicable in the control system with multi-control Hamiltonians. On this basis, the convergence of the control systems is analyzed using the LaSalle invariance principle. Furthermore, the relation between the implicit Lyapunov functions of the state distance and the state error is investigated. Finally, numerical simulations are carried out to verify the effectiveness of the proposed implicit Lyapunov control method. The comparisons of the control effect using the implicit Lyapunov control method based on the state distance with that of the state error are given.

Keywords: Implicit Lyapunov control, state error, degenerate cases, convergence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1502
5422 Multiobjective Optimal Power Flow Using Hybrid Evolutionary Algorithm

Authors: Alawode Kehinde O., Jubril Abimbola M. Komolafe Olusola A.

Abstract:

This paper solves the environmental/ economic dispatch power system problem using the Non-dominated Sorting Genetic Algorithm-II (NSGA-II) and its hybrid with a Convergence Accelerator Operator (CAO), called the NSGA-II/CAO. These multiobjective evolutionary algorithms were applied to the standard IEEE 30-bus six-generator test system. Several optimization runs were carried out on different cases of problem complexity. Different quality measure which compare the performance of the two solution techniques were considered. The results demonstrated that the inclusion of the CAO in the original NSGA-II improves its convergence while preserving the diversity properties of the solution set.

Keywords: optimal power flow, multiobjective power dispatch, evolutionary algorithm

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2269