Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30999
Two-step Iterative Process For Common Fixed Points of Two Asymptotically Quasi-nonexpansive Mappings

Authors: Safeer Hussain Khan


In this paper, we consider an iteration process for approximating common fixed points of two asymptotically quasinonexpansive mappings and we prove some strong and weak convergence theorems for such mappings in uniformly convex Banach spaces.

Keywords: Asypmtotically quasi-nonexpansive mappings, Commonfixed point, Strong and weak convergence, Iteration process

Digital Object Identifier (DOI):

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1157


[1] R.P.Agarwal, Donal O-Regan and D.R. Sahu, Iterative construction of fixed points of nearly asymptotically nonexpansive mappings, J. Nonliear Convex. Anal.8(1)(2007), 61-79.
[2] L.C. Deng, P. Cubiotti, J.C. Yao, Approximation of common fixed points of families of nonexpansive mappings, Taiwanese J. Math. 12 (2008) 487-500.
[3] L.C. Deng, P. Cubiotti, J.C. Yao, An implicit iteration scheme for monotone variational inequalities and fixed point problems, Nonlinear Anal. 69 (2008) 2445-2457.
[4] L.C. Deng, S. Schaible, J.C. Yao, Implicit iteration scheme with perturbed mapping for equilibrium problems and fixed point problems of finitely many nonexpansive mappings, J. Optim. Theory Appl. 139 (2008) 403-418.
[5] Y. J. , H. Y. Zhou and G. Guo, Weak and strong convergence theorems for three-step iterations with errors for asymptotically nonexpansive mappings, Comput. Math. Appl. 47(2004), 707-717.
[6] G. Das and J. P. Debata, Fixed points of Quasi-nonexpansive mappings, Indian J. Pure. Appl. Math., 17 (1986), 1263-1269.
[7] H. Fukhar-ud-din and S. H. Khan, Convergence of iterates with errors of asymptotically quasi-nonexpansive mappings and applications, J. Math. Anal. Appl. 328 (2007), 821-829.
[8] K.Goebel and W.A.Kirk, A fixed point theorem for asymptotically nonexpansive mappings, Proc. Amer. Math. Soc.35(1972), 171-174.
[9] S. H. Khan, Y.J. , M. Abbas, Convergence to common fixed points by a modified iteration process, Journal of Appl. Math. and Comput. doi: 10.1007/s12190-010-0381-z.
[10] S. H. Khan, J.K. Kim,Common fixed points of two nonexpansive mappings by a modified faster iteration scheme , Bull. Korean Math. Soc. 47 (2010), No. 5, pp. 973-985, DOI 10.4134/BKMS.2010.47.5.973
[11] S. H. Khan andW. Takahashi, Approximating common fixed points of two asymptotically nonexpansive mappings, Sci. Math. Jpn., 53(1) (2001), 143-148.
[12] K. Nammanee, M.A. Noor, S. Suantai, Convergence criteria of modifies Noor iterations with errors for asymptotically nonexpansive mappings, J. Math. Anal. Appl. 314 (2006) 320-334.
[13] W. Nilsrakoo, S. Saejung, A new three-step fixed point iteration scheme for asymptotically nonexpansive mappings, Comput. Math. Appl. 181 (2006) 1026-1034.
[14] Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc., 73 (1967), 591-597.
[15] J. Schu, Weak and strong convergence to fixed points of asymptotically nonexpansive mappings, Bull. Austral. Math. Soc. 43 (1991), 153-159.
[16] W. Takahashi and G.E.Kim, Approximatig fixed points of nonexpansive mappings in Banach spaces , Math.Japonoica 48 1(1998), 1-9.
[17] N. Shahzad, H. Zegeye, Strong convergence of an implicit iteration process for a finite family of generalized asymptotically quasi-nonexpansive maps, Appl. Math. Comput. 189 (2007) 1058-1065.
[18] W. Takahashi, Iterative methods for approximation of fixed points and their applications, J.Oper.Res.Soc. Jpn., 43(1) (2000), 87 -108.
[19] W. Takahashi and T. Tamura, Limit theorems of operators by convex combinations of nonexpansive retractions in Banach spaces, J.Approx.Theory , 91(3) (1997), 386 -397.
[20] K.K. Tan, H.K. Xu, Approximating fixed points of nonexpansive mappings by Ishikawa iteration process, J. Math. Anal. Appl. 178 (1993) 301-308.