Search results for: cracked concrete.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 796

Search results for: cracked concrete.

736 Evaluations of 3D Concrete Printing Produced in the Environment of United Arab Emirates

Authors: Adil K. Tamimi, Tarig Ali, Rawan Anoohi, Ahmed Rajput, Kaltham Alkamali

Abstract:

3D concrete printing is one of the most innovative and modern techniques in the field of construction that achieved several milestones in that field for the following advantages: saving project’s time, ability to execute complicated shapes, reduce waste and low cost. However, the concept of 3D printing in UAE is relatively new where construction teams, including clients, consultants, and contractors, do not have the required knowledge and experience in the field. This is the most significant obstacle for the construction parties, which make them refrained from using 3D concrete printing compared to conventional concreting methods. This study shows the historical development of the 3D concrete printing, its advantages, and the challenges facing this innovation. Concrete mixes and materials have been proposed and evaluated to select the best combination for successful 3D concrete printing. The main characteristics of the 3D concrete printing in the fresh and hardened states are considered, such as slump test, flow table, compressive strength, tensile, and flexural strengths. There is need to assess the structural stability of the 3D concrete by testing the bond between interlayers of the concrete.  

Keywords: 3D printing, concrete mixes, workability, compressive strength, slump test, tensile strength, flexural strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 674
735 Mechanical-Physical Characteristics Affecting the Durability of Fibre Reinforced Concrete with Recycled Aggregate

Authors: Vladimira Vytlacilova

Abstract:

The article presents findings from the study and analysis of the results of an experimental programme focused on the production of concrete and fibre reinforced concrete in which natural aggregate has been substituted with brick or concrete recyclate. The research results are analyzed to monitor the effect of mechanicalphysical characteristics on the durability properties of tested cementitious composites. The key parts of the fibre reinforced concrete mix are the basic components: aggregates – recyclate, cement, fly ash, water and fibres. Their specific ratios and the properties of individual components principally affect the resulting behaviour of fresh fibre reinforced concrete and the characteristics of the final product. The article builds on the sources dealing with the use of recycled aggregates from construction and demolition waste in the production of fibre reinforced concrete. The implemented procedure of testing the composite contributes to the building sustainability in environmental engineering.

Keywords: Recycled aggregate, Polypropylene fibres, Fibre Reinforced Concrete, Fly ash.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1862
734 Pervious Concrete for Road Intersection Drainage

Authors: Ivana Barišić, Ivanka Netinger Grubeša, Ines Barjaktarić

Abstract:

Road performance and traffic safety are highly influenced by improper water drainage system performance, particularly within intersection areas. So, the aim of the presented paper is the evaluation of pervious concrete made with two types and two aggregate fractions for potential utilization in intersection drainage areas. Although the studied pervious concrete mixtures achieved proper drainage but lower strength characteristics, this pervious concrete has a good potential for enhancing pavement drainage systems if it is embedded on limited intersection areas.

Keywords: Pervious concrete, drainage, road, intersection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1140
733 Monotonic and Cyclic J-integral Estimation for Through-Wall Cracked Straight Pipes

Authors: Rohit, S. Vishnuvardhan, P. Gandhi, Nagesh R. Iyer

Abstract:

The evaluation of energy release rate and centre Crack Opening Displacement (COD) for circumferential Through-Wall Cracked (TWC) pipes is an important issue in the assessment of critical crack length for unstable fracture. The ability to predict crack growth continues to be an important component of research for several structural materials. Crack growth predictions can aid the understanding of the useful life of a structural component and the determination of inspection intervals and criteria. In this context, studies were carried out at CSIR-SERC on Nuclear Power Plant (NPP) piping components subjected to monotonic as well as cyclic loading to assess the damage for crack growth due to low-cycle fatigue in circumferentially TWC pipes.

Keywords: 304LN stainless steel, cyclic J-integral, Elastic- Plastic Fracture Mechanics, J-integral, Through-wall crack

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2588
732 Soil Resistivity Cut off Value and Concrete Pole Deployments in HV Transmission Mains

Authors: M. Nassereddine, J. Rizk, A. Hellany, M. Nagrial

Abstract:

The prologue of new High Voltage (HV) transmission mains into the community necessitates earthing design to ensure safety compliance of the system. Concrete poles are widely used within HV transmission mains; many retired transmission mains with timber poles are being replaced with concrete ones, green transmission mains are deploying concrete poles. The earthing arrangement of the concrete poles could have an impact on the earth grid impedance also on the input impedance of the system from the fault point of view. This paper endeavors to provide information on the soil resistivity of the area and the deployments of concrete poles. It introduce the cut off soil resistivity value ρSC, this value aid in determine the impact of deploying the concrete poles on the earthing system. Multiple cases were discussed in this paper.

Keywords: Soil Resistivity, HV Transmission Mains, Earthing, Safety.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2529
731 Experimental Investigation on Cold-Formed Steel Foamed Concrete Composite Wall under Compression

Authors: Zhifeng Xu, Zhongfan Chen

Abstract:

A series of tests on cold-formed steel foamed concrete (CSFC) composite walls subjected to axial load were proposed. The primary purpose of the experiments was to study the mechanical behavior and identify the failure modes of CSFC composite walls. Two main factors were considered in this study: 1) specimen with pouring foamed concrete or without and 2) different foamed concrete density ranks (corresponding to different foamed concrete strength). The interior space between two pieces of straw board of the specimen W-2 and W-3 were poured foamed concrete, and the specimen W-1 does not have foamed concrete core. The foamed concrete density rank of the specimen W-2 was A05 grade, and that of the specimen W-3 was A07 grade. Results showed that the failure mode of CSFC composite wall without foamed concrete was distortional buckling of cold-formed steel (CFS) column, and that poured foamed concrete includes the local crushing of foamed concrete and local buckling of CFS column, but the former prior to the later. Compared with CSFC composite wall without foamed concrete, the ultimate bearing capacity of spec imens poured A05 grade and A07 grade foamed concrete increased 1.6 times and 2.2 times respectively, and specimen poured foamed concrete had a low vertical deformation. According to these results, the simplified calculation formula for the CSFC wall subjected to axial load was proposed, and the calculated results from this formula are in very good agreement with the test results.

Keywords: Cold-formed steel, composite wall, foamed concrete, axial behavior test.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1344
730 Structural Monitoring and Control During Support System Replacement of a Historical Gate

Authors: Ahmet Turer

Abstract:

Middle-gate is located in Hasankeyf, Batman dating back to 1800 BC and is one of the important historical structures in Turkey. The ancient structure has suffered major structural cracks due to aging as well as lateral pressure of a cracked rock which is predicted to be about 100 tons. The existing support system was found to be inadequate to support the load especially after a recent rock fall in the close vicinity. Concerns were increased since the existing support system that is integral with a damaged and cracked gate wall needed to be replaced by a new support system. The replacement process must be carefully monitored by crackmeters and control mechanisms should be integrated to prevent cracks to expand while the same crack width needs to be maintained after the operation. The control system and actions taken during the intervention are explained in this paper.

Keywords: structural control, crack width, replacement, support

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1274
729 Durability Properties of Foamed Concrete with Fiber Inclusion

Authors: Hanizam Awang, Muhammad Hafiz Ahmad

Abstract:

An experimental study was conducted on foamed concrete with synthetic and natural fibres consisting of AR-glas, polypropylene, steel, kenaf and oil palm fibre. The foamed concrete mixtures produced had a target density of 1000kg/m3 and a mix ratio of (1:1.5:0.45). The fibres were used as additives. The inclusion of fibre was maintained at a volumetric fraction of 0.25 and 0.4%. The water absorption, thermal and shrinkage were determined to study the effect of the fibre on the durability properties of foamed concrete. The results showed that AR-glass fibre has the lowest percentage value of drying shrinkage compared to others.

Keywords: Foamed concrete, Fibres, Durability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4739
728 Predictive Models for Compressive Strength of High Performance Fly Ash Cement Concrete for Pavements

Authors: S. M. Gupta, Vanita Aggarwal, Som Nath Sachdeva

Abstract:

The work reported through this paper is an experimental work conducted on High Performance Concrete (HPC) with super plasticizer with the aim to develop some models suitable for prediction of compressive strength of HPC mixes. In this study, the effect of varying proportions of fly ash (0% to 50% @ 10% increment) on compressive strength of high performance concrete has been evaluated. The mix designs studied were M30, M40 and M50 to compare the effect of fly ash addition on the properties of these concrete mixes. In all eighteen concrete mixes that have been designed, three were conventional concretes for three grades under discussion and fifteen were HPC with fly ash with varying percentages of fly ash. The concrete mix designing has been done in accordance with Indian standard recommended guidelines. All the concrete mixes have been studied in terms of compressive strength at 7 days, 28 days, 90 days, and 365 days. All the materials used have been kept same throughout the study to get a perfect comparison of values of results. The models for compressive strength prediction have been developed using Linear Regression method (LR), Artificial Neural Network (ANN) and Leave-One-Out Validation (LOOV) methods.

Keywords: ANN, concrete mixes, compressive strength, fly ash, high performance concrete, linear regression, strength prediction models.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2078
727 Flexural Strength Design of RC Beams with Consideration of Strain Gradient Effect

Authors: Mantai Chen, Johnny Ching Ming Ho

Abstract:

The stress-strain relationship of concrete under flexure is one of the essential parameters in assessing ultimate flexural strength capacity of RC beams. Currently, the concrete stress-strain curve in flexure is obtained by incorporating a constant scale-down factor of 0.85 in the uniaxial stress-strain curve. However, it was revealed that strain gradient would improve the maximum concrete stress under flexure and concrete stress-strain curve is strain gradient dependent. Based on the strain-gradient-dependent concrete stress-strain curve, the investigation of the combined effects of strain gradient and concrete strength on flexural strength of RC beams was extended to high strength concrete up to 100 MPa by theoretical analysis. As an extension and application of the authors’ previous study, a new flexural strength design method incorporating the combined effects of strain gradient and concrete strength is developed. A set of equivalent rectangular concrete stress block parameters is proposed and applied to produce a series of design charts showing that the flexural strength of RC beams are improved with strain gradient effect considered.

Keywords: Beams, Equivalent concrete stress block, Flexural strength, Strain gradient.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4107
726 Modified Plastic-Damage Model for Fiber Reinforced Polymer-Confined Repaired Concrete Columns

Authors: I. A Tijani, Y. F Wu, C.W. Lim

Abstract:

Concrete Damaged Plasticity Model (CDPM) is capable of modeling the stress-strain behavior of confined concrete. Nevertheless, the accuracy of the model largely depends on its parameters. To date, most research works mainly focus on the identification and modification of the parameters for fiber reinforced polymer (FRP) confined concrete prior to damage. And, it has been established that the FRP-strengthened concrete behaves differently to FRP-repaired concrete. This paper presents a modified plastic damage model within the context of the CDPM in ABAQUS for modelling of a uniformly FRP-confined repaired concrete under monotonic loading. The proposed model includes infliction damage, elastic stiffness, yield criterion and strain hardening rule. The distinct feature of damaged concrete is elastic stiffness reduction; this is included in the model. Meanwhile, the test results were obtained from a physical testing of repaired concrete. The dilation model is expressed as a function of the lateral stiffness of the FRP-jacket. The finite element predictions are shown to be in close agreement with the obtained test results of the repaired concrete. It was observed from the study that with necessary modifications, finite element method is capable of modeling FRP-repaired concrete structures.

Keywords: Concrete, FRP, damage, repairing, plasticity, and finite element method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 927
725 Approach to Design of Composition of Current Concrete with Respect to Strength and Static Elasticity Modulus

Authors: Klara Krizova, Rudolf Hela

Abstract:

The paper reflects current state of popularization of static elasticity modulus of concrete. This parameter is undoubtedly very important for designing of concrete structures, and very often neglected and rarely determined before designing concrete technology itself. The paper describes assessment and comparison of four mix designs with almost constant dosage of individual components. The only difference is area of origin of small size fraction of aggregate 0/4. Development of compressive strength and static elasticity modulus at the age of 7, 28 and 180 days were observed. As the experiment showed, designing of individual components and their quality are the basic factor influencing elasticity modulus of current concrete.

Keywords: Concrete, Aggregate, Strength, Elasticity Modulus, Quality

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1455
724 Evaluation of Corrosion Caused by Biogenic Sulfuric Acid (BSA) on the Concrete Structures of Sewerage Systems (Chemical Tests)

Authors: M. Cortés, E. Vera, O. Rojas

Abstract:

The research studies of the kinetics of the corrosion process that attacks concrete and occurs within sewerage systems agree on the amount of variables that interfere in the process. This study aims to check the impact of the pH levels of the corrosive environment and the concrete surface, the concentrations of chemical sulfuric acid, and in turn, measure the resistance of concrete to this attack under controlled laboratory conditions; it also aims to contribute to the development of further research related to the topic, in order to compare the impact of biogenic sulfuric acid and chemical sulfuric acid involvement on concrete structures, especially in scenarios such as sewerage systems.

Keywords: Acid Sulfuric, concrete, corrosion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1569
723 FRP Bars Spacing Effect on Numerical Thermal Deformations in Concrete Beams under High Temperatures

Authors: A. Zaidi, F. Khelifi, R. Masmoudi, M. Bouhicha

Abstract:

5

In order to eradicate the degradation of reinforced concrete structures due to the steel corrosion, professionals in constructions suggest using fiber reinforced polymers (FRP) for their excellent properties. Nevertheless, high temperatures may affect the bond between FRP bar and concrete, and consequently the serviceability of FRP-reinforced concrete structures. This paper presents a nonlinear numerical investigation using ADINA software to investigate the effect of the spacing between glass FRP (GFRP) bars embedded in concrete on circumferential thermal deformations and the distribution of radial thermal cracks in reinforced concrete beams submitted to high temperature variations up to 60 °C for asymmetrical problems. The thermal deformations predicted from nonlinear finite elements model, at the FRP bar/concrete interface and at the external surface of concrete cover, were established as a function of the ratio of concrete cover thickness to FRP bar diameter (c/db) and the ratio of spacing between FRP bars in concrete to FRP bar diameter (e/db). Numerical results show that the circumferential thermal deformations at the external surface of concrete cover are linear until cracking thermal load varied from 32 to 55 °C corresponding to the ratio of e/db varied from 1.3 to 2.3, respectively. However, for ratios e/db >2.3 and c/db >1.6, the thermal deformations at the external surface of concrete cover exhibit linear behavior without any cracks observed on the specified surface. The numerical results are compared to those obtained from analytical models validated by experimental tests.

Keywords: Concrete beam, FRP bars, spacing effect, thermal deformation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 633
722 Flexural Strength of Alkali Resistant Glass Textile Reinforced Concrete Beam with Prestressing

Authors: Jongho Park, Taekyun Kim, Jungbhin You, Sungnam Hong, Sun-Kyu Park

Abstract:

Due to the aging of bridges, increasing of maintenance costs and decreasing of structural safety is occurred. The steel corrosion of reinforced concrete bridge is the most common problem and this phenomenon is accelerating due to abnormal weather and increasing CO2 concentration due to climate change. To solve these problems, composite members using textile have been studied. A textile reinforced concrete can reduce carbon emissions by reduced concrete and without steel bars, so a lot of structural behavior studies are needed. Therefore, in this study, textile reinforced concrete beam was made and flexural test was performed. Also, the change of flexural strength according to the prestressing was conducted. As a result, flexural strength of TRC with prestressing was increased compared and flexural behavior was shown as reinforced concrete.

Keywords: AR-glass, flexural strength, prestressing, textile reinforced concrete.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1184
721 Effects of Aggressive Ammonium Nitrate on Durability Properties of Concrete Using Sandstone and Granite Aggregates

Authors: L. Wong, H. Asrah, M.E. Rahman, M.A. Mannan

Abstract:

The storage of chemical fertilizers in concrete building often leads to durability problems due to chemical attack. The damage of concrete is mostly caused by certain ammonium salts. The main purpose of the research is to investigate the durability properties of concrete being exposed to ammonium nitrate solution. In this investigation, experiments are conducted on concrete type G50 and G60. The leaching process is achieved by the use of 20% concentration solution of ammonium nitrate. The durability properties investigated are water absorption, volume of permeable voids, and sorptivity. Compressive strength, pH value, and degradation depth are measured after a certain period of leaching. A decrease in compressive strength and an increase in porosity are found through the conducted experiments. Apart from that, the experimental data shows that pH value decreases with increased leaching time while the degradation depth of concrete increases with leaching time. By comparing concrete type G50 and G60, concrete type G60 is more resistant to ammonium nitrate attack.

Keywords: Normal weight concrete durability, Aggressive Ammonium Nitrate Solution, G50 & G60 concretes, Chemical attack.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6682
720 Structural Performance of a Timber-Concrete Bridge Prototype

Authors: Pedro Gutemberg de Alcântara Segundinho, José Antonio Matthiesen, Marcelo Rodrigo Carreira

Abstract:

Timber-concrete structures were recently introduced in Brazil as a viable option for bridge construction on side roads. Binding between timber and concrete is fundamentally important to assure the rigidity and performance of this structural system. The objective of this study was to assess the structural performance of a timber-concrete bridge prototype with width of 170cm and span of 400cm, whose binding among timber beams and concrete slabs was made with metal pins, obtained from CA 50 construction steel bars of 12.5mm diameter. It was possible to conclude, from the results obtained experimentally in laboratory, that the timber-concrete bridge prototype showed a good structural performance. This structural system provides an economical, rapid implementation solution, which may be used on side roads, favoring regional integration and agricultural production flow.

Keywords: Binding, bridge prototype, timber and concrete

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2143
719 Treatment of Recycled Concrete Aggregates by Si-Based Polymers

Authors: V. Spaeth, A. Djerbi-Tegguer

Abstract:

The recycling of concrete, bricks and masonry rubble as concrete aggregates is an important way to contribute to a sustainable material flow. However, there are still various uncertainties limiting the widespread use of Recycled Concrete Aggregates (RCA). The fluctuations in the composition of grade recycled aggregates and their influence on the properties of fresh and hardened concrete are of particular concern regarding the use of RCA. Most of problems occurring while using recycled concrete aggregates as aggregates are due to higher porosity and hence higher water absorption, lower mechanical strengths, residual impurities on the surface of the RCA forming weaker bond between cement paste and aggregate. So, the reuse of RCA is still limited. Efficient polymer based treatment is proposed in order to reuse RCA easier. The silicon-based polymer treatments of RCA were carried out and were compared. This kind of treatment can improve the properties of RCA such as the rate of water absorption on treated RCA is significantly reduced.

Keywords: Recycled concrete aggregates, water absorption, silicon-based agent and polymer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2809
718 Replacing Fibre Reinforced Concrete with Bitumen Asphalt in Airports

Authors: Y. Mohammadi, H. M. Ghasemzadeh, T. B. Talari, M. A. Ghorbani

Abstract:

Concrete pavement has superior durability and longer structural life than asphalt pavement. Concrete pavement requires less maintenance compared to asphalt pavement which requires maintenance and major rehabilitation. Use of the concrete pavement has been grown over the past decade in developing countries. Fibre reinforced concrete (FRC) has been successfully used in design of concrete pavement in past decade. In this research, the effect of fibre volume fraction in modulus of rupture, load-deflection, equivalent flexural strength (fe,3) and the equivalent flexural strength ratio (Re,3) has been used in different fibre volume fraction. Crimped-type flat steel fibre of size 50 x 2.0 x 0.6 mm was used with 1.0%, 1.5% and 2.0% volume fraction. Beam specimens of size 500 x 100 x 100 mm were used for flexural as well as with JCI method for analysis flexural toughness, equivalent flexural strength. It was obtained as the 2% fibre volume fractions; reduce 45% of the concrete pavement thickness.

Keywords: Concrete pavement, Equivalent flexural strength, Fibre, Load-deflection curves.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2456
717 Numerical Investigation on Load Bearing Capacity of Pervious Concrete Piles as an Alternative to Granular Columns

Authors: Ashkan Shafee, Masoud Ghodrati, Ahmad Fahimifar

Abstract:

Pervious concrete combines considerable permeability with adequate strength, which makes it very beneficial in pavement construction and also in ground improvement projects. In this paper, a single pervious concrete pile subjected to vertical and lateral loading is analysed using a verified three dimensional finite element code. A parametric study was carried out in order to investigate load bearing capacity of a single unreinforced pervious concrete pile in saturated soft soil and also gain insight into the failure mechanism of this rather new soil improvement technique. The results show that concrete damaged plasticity constitutive model can perfectly simulate the highly brittle nature of the pervious concrete material and considering the computed vertical and horizontal load bearing capacities, some suggestions have been made for ground improvement projects.

Keywords: Concrete damaged plasticity, ground improvement, load bearing capacity, pervious concrete pile.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1047
716 Analysis of Resistance Characteristics of Conductive Concrete Using Press-Electrode Method

Authors: Chun-Yao Lee, Siang-Ren Wang

Abstract:

This paper aims to discuss the influence of resistance characteristic on the high conductive concrete considering the changes of voltage and environment. The high conductive concrete with appropriate proportion is produced to the press-electrode method. The curve of resistivity with the changes of voltage and environment is plotted and the changes of resistivity are explored.

Keywords: conductive concrete, resistivity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1577
715 Mix Design Curves for High Volume Fly Ash Concrete

Authors: S. S. Awanti, Aravindakumar B. Harwalkar

Abstract:

Concrete construction in future has to be environmental friendly apart from being safe so that society at large is benefited by the huge investments made in the infrastructure projects. To achieve this, component materials of the concrete system have to be optimized with reference to sustainability. This paper presents a study on development of mix proportions of high volume fly ash concrete (HFC). A series of HFC mixtures with cement replacement levels varying between 50% and 65% were prepared with water/binder ratios of 0.3 and 0.35. Compressive strength values were obtained at different ages. From the experimental results, pozzolanic efficiency ratios and mix design curves for HFC were established.

Keywords: Age factor, compressive strength, high volume fly ash concrete, pozzolanic efficiency ratio.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1640
714 Effect of Water- Cement Ratio (w/c) on Mechanical Properties of Self-Compacting Concrete (Case Study)

Authors: Hamed Ahmadi Moghadam, Omolbanin Arasteh Khoshbin

Abstract:

Nowadays, the performance required for concrete structures is more complicated and diversified. Self-compacting concrete is a fluid mixture suitable for placing in structures with congested reinforcement without vibration. Self-compacting concrete development must ensure a good balance between deformability and stability. Also, compatibility is affected by the characteristics of materials and the mix proportions; it becomes necessary to evolve a procedure for mix design of SCC. This paper presents an experimental procedure for the design of self-compacting concrete mixes with different water-cement ratios (w/c) and other constant ratios by local materials. The test results for acceptance characteristics of self-compacting concrete such as slump flow, V-funnel and L-Box are presented. Further, compressive strength, tensile strength and modulus of elasticity of specimens were also determined and results are included here

Keywords: Self-Compacting Concrete, Mix Design, Compressive Strength, Tensile Strength, Modulus of Elasticity

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5588
713 Sustainability of Carbon Nanotube-Reinforced Concrete

Authors: Rashad Al Araj, Adil K. Tamimi

Abstract:

Concrete, despite being one of the most produced materials in the world, still has weaknesses and drawbacks. Significant concern of the cementitious materials in structural applications is their quasi-brittle behavior, which causes the material to crack and lose its durability. One of the very recently proposed mitigations for this problem is the implementation of nanotechnology in the concrete mix by adding carbon nanotubes (CNTs) to it. CNTs can enhance the critical mechanical properties of concrete as a structural material. Thus, this paper demonstrates a state-of-the-art review of reinforcing concrete with CNTs, emphasizing on the structural performance. It also goes over the properties of CNTs alone, the present methods and costs associated with producing them, the possible special applications of concretes reinforced with CNTs, the key challenges and drawbacks that this new technology still encounters, and the most reliable practices and methodologies to produce CNT-reinforced concrete in the lab. This work has shown that the addition of CNTs to the concrete mix in percentages as low as 0.25% weight of cement could increase the flexural strength and toughness of concrete by more than 45% and 25%, respectively, and enhance other durability-related properties, given that an effective dispersion of CNTs in the cementitious mix is achieved. Since nano reinforcement for cementitious materials is a new technology, many challenges have to be tackled before it becomes practiced at the mass level.

Keywords: Sustainability, carbon nanotube, microsilica, concrete.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1477
712 High Volume Fly Ash Concrete for Paver Blocks

Authors: Som Nath Sachdeva, Vanita Aggarwal, S. M. Gupta

Abstract:

Use of concrete paver blocks is becoming increasingly popular. They are used for paving of approaches, paths and parking areas including their application in pre-engineered buildings and pavements. This paper discusses the results of an experimental study conducted on Fly Ash Concrete with the aim to report its suitability for concrete paver blocks. In this study, the effect of varying proportions of fly ash, 20% to 40%, on compressive strength and flexural strength of concrete has been evaluated. The mix designs studied are M-30, M-35, M-40 and M-50. It is observed that all the fly ash based mixes are able to achieve the required compressive and flexural strengths. In comparison to control mixes, the compressive and flexural strengths of the fly ash based mixes are found to be slightly less at 7-days and 28 days and a little more at 90 days.

Keywords: Compressive strength, flexural strength, high volume fly ash concrete, paver blocks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4871
711 Re-Use of Waste Marble in Producing Green Concrete

Authors: Hasan Şahan Arel

Abstract:

In this study, literature related to the replacement of cement with waste marble and the use of waste marble as an aggregate in concrete production was examined. Workability of the concrete decreased when marble powder was used as a substitute for fine aggregate. Marble powder contributed to the compressive strength of concrete because of the CaCO3 and SiO2 present in the chemical structure of the marble. Additionally, the use of marble pieces in place of coarse aggregate revealed that this contributed to the workability and mechanical properties of the concrete. When natural standard sand was replaced with marble dust at a ratio of 15% and 75%, the compressive strength and splitting tensile strength of the concrete increased by 20%-26% and 10%-15%, respectively. However, coarse marble aggregates exhibited the best performance at a 100% replacement ratio. Additionally, there was a greater improvement in the mechanical properties of concrete when waste marble was used in a coarse aggregate form when compared to that of when marble was used in a dust form. If the cement was replaced with marble powder in proportions of 20% or more, then adverse effects were observed on the compressive strength and workability of the concrete. This study indicated that marble dust at a cement-replacement ratio of 5%-10% affected the mechanical properties of concrete by decreasing the global annual CO2 emissions by 12% and also lowering the costs from US$40/m3 to US$33/m3.

Keywords: Cement production, concrete, CO2 emission, marble, mechanical properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2228
710 Nonlinear Dynamics of Cracked RC Beams under Harmonic Excitation

Authors: Atul Krishna Banik

Abstract:

Nonlinear response behaviour of a cracked RC beam under harmonic excitation is analysed to investigate various instability phenomena like, bifurcation, jump phenomena etc. The nonlinearity of the system arises due to opening and closing of the cracks in the RC beam and is modelled as a cubic polynomial. In order to trace different branches at the bifurcation point on the response curve (amplitude versus frequency of excitation plot), an arc length continuation technique along with the incremental harmonic balance (IHBC) method is employed. The stability of the solution is investigated by the Floquet theory using Hsu-s scheme. The periodic solutions obtained by the IHBC method are compared with these obtained by the numerical integration of the equation of motion. Characteristics of solutions fold bifurcation, jump phenomena and from stable to unstable zones are identified.

Keywords: Incremental harmonic balance, arc-length continuation, bifurcation, jump phenomena.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1522
709 An Investigation on Fresh and Hardened Properties of Concrete while Using Polyethylene Terephthalate (PET) as Aggregate

Authors: Md. Jahidul Islam, A. K. M. Rakinul Islam, Md. Salamah Meherier

Abstract:

This study investigates the suitability of using plastic, such as polyethylene terephthalate (PET), as a partial replacement of natural coarse and fine aggregates (for example, brick chips and natural sand) to produce lightweight concrete for load bearing structural members. The plastic coarse aggregate (PCA) and plastic fine aggregate (PFA) were produced from melted polyethylene terephthalate (PET) bottles. Tests were conducted using three different water–cement (w/c) ratios, such as 0.42, 0.48, and 0.57, where PCA and PFA were used as 50% replacement of coarse and fine aggregate respectively. Fresh and hardened properties of concrete have been compared for natural aggregate concrete (NAC), PCA concrete (PCC) and PFA concrete (PFC). The compressive strength of concrete at 28 days varied with the water–cement ratio for both the PCC and PFC. Between PCC and PFC, PFA concrete showed the highest compressive strength (23.7 MPa) at 0.42 w/c ratio and also the lowest compressive strength (13.7 MPa) at 0.57 w/c ratio. Significant reduction in concrete density was mostly observed for PCC samples, ranging between 1977–1924 kg/m³. With the increase in water–cement ratio PCC achieved higher workability compare to both NAC and PFC. It was found that both the PCA and PFA contained concrete achieved the required compressive strength to be used for structural purpose as partial replacement of the natural aggregate; but to obtain the desired lower density as lightweight concrete the PCA is most suited.

Keywords: Polyethylene terephthalate, plastic aggregate, concrete, fresh and hardened properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3277
708 Mechanical Properties and Released Gas Analysis of High Strength Concrete with Polypropylene and Raw Rice Husk under High Temperature Effect

Authors: B. Akturk, N. Yuzer, N. Kabay

Abstract:

When concrete is exposed to high temperatures, some changes may occur in its physical and mechanical properties. Especially, high strength concrete (HSC), may exhibit damages such as cracks and spallings. To overcome this problem, incorporating polymer fibers such as polypropylene (PP) in concrete is a well-known method. In high temperatures, PP decomposes and releases harmful gases such as CO and CO2. This study researches the use of raw rice husk (RRH) as a sustainable material, instead of PP fibers considering its several favorable properties, and its usability in HSC. RRH and PP fibers were incorporated in concrete at 0.5-3% and 0.2-0.5% by weight of cement, respectively. Concrete specimens were exposed to 20 (control), 300, 600 and 900°C. Under these temperatures, residual compressive and splitting tensile strength was determined. During the high temperature effect, the amount of released harmful gases was measured by a gas detector.

Keywords: Gas analysis, high temperature, high strength concrete, polypropylene fibers, raw rice husk.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2190
707 Stress Intensity Factor for Dynamic Cracking of Composite Material by X-FEM Method

Authors: S. Lecheb, A. Nour, A. Chellil, H. Mechakra, N. Hamad, H. Kebir

Abstract:

The work involves develops attended by a numerical execution of the eXtend Finite Element Method premises a measurement by the fracture process cracked so many cracked plates an application will be processed for the calculation of the stress intensity factor SIF. In the first we give in statically part the distribution of stress, displacement field and strain of composite plate in two cases uncrack/edge crack, also in dynamical part the first six modes shape. Secondly, we calculate Stress Intensity Factor SIF for different orientation angle θ of central crack with length (2a=0.4mm) in plan strain condition, KI and KII are obtained for mode I and mode II respectively using X-FEM method. Finally from crack inclined involving mixed modes results, the comparison we chose dangerous inclination and the best crack angle when K is minimal.

Keywords: Stress Intensity Factor (SIF), Crack orientation, Glass/Epoxy, natural Frequencies, X-FEM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2894