Search results for: Thin plate
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 758

Search results for: Thin plate

698 Stabilization of Steel Beams of Monosymmetric Thin-Walled Cross-Section by Trapezoidal Sheeting

Authors: Ivan Balázs, Jindřich Melcher

Abstract:

Steel thin-walled beams have been widely used in civil engineering as purlins, ceiling beams or wall substructure beams. There are often planar members such as trapezoidal sheeting or sandwich panels used as roof or wall cladding fastened to the steel beams. The planar members also serve as stabilization of thin-walled beams against buckling due to loss of stability. This paper focuses on problem of stabilization of steel monosymmetric thin-walled beams by trapezoidal sheeting. Some factors having influence on overall behavior of this structural system are investigated using numerical analysis. Thin-walled beams in bending stabilized by trapezoidal sheeting are of primarily interest of this study.

Keywords: Beam, buckling, numerical analysis, stability, steel structures, trapezoidal sheeting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2449
697 Stress Analysis for Two Fitted Thin Walled Cylinder with High Angular Velocity

Authors: A.V. Hoseini, A. Bidi, M. H. Pol, M.Jalali azizpour

Abstract:

In this paper stress and strain for two rotating thin wall cylinder fitted together with initial interference and overlap are computed. Also stress value for variation of initial interference is calculated. At first problem is considered without rotation and next angular velocity increased from 0 to 50000 rev/min and stress in each stage is calculated. The important point is that when stress become very small in magnitude the angular velocity is critical and two cylinders will separate. The critical speed i.e. speed of separation is calculated in each step.

Keywords: Thin walled cylinder, high angular velocity, twofitted thin walled

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1422
696 Application of Method of Symmetries at a Calculation and Planning of Circular Plate with Variable Thickness

Authors: Kirill Trapezon, Alexandr Trapezon

Abstract:

A problem is formulated for the natural oscillations of a circular plate of linearly variable thickness on the basis of the symmetry method. The equations of natural frequencies and forms for a plate are obtained, providing that it is rigidly fixed along the inner contour. The first three eigenfrequencies are calculated, and the eigenmodes of the oscillations of the acoustic element are constructed. An algorithm for applying the symmetry method and the factorization method for solving problems in the theory of oscillations for plates of variable thickness is shown. The effectiveness of the approach is demonstrated on the basis of comparison of known results and those obtained in the article. It is shown that the results are more accurate and reliable.

Keywords: Vibrations, plate, thickness, symmetry, factorization, approximation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 796
695 Stress Variation around a Circular Hole in Functionally Graded Plate under Bending

Authors: Parveen K. Saini, Mayank Kushwaha

Abstract:

The influence of material property variation on stress concentration factor (SCF) due to the presence of a circular hole in a functionally graded material (FGM) plate is studied in this paper. A numerical method based on complex variable theory of elasticity is used to investigate the problem. To achieve the material property, variation plate is decomposed into a number of rings. In this research work, Young’s modulus is assumed to be varying exponentially and it is found that stress concentration factor can be reduced by increasing Young’s modulus progressively away from the hole.

Keywords: Stress Concentration, Circular Hole, FGM Plate, Bending.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3079
694 Analytical Solution for Free Vibration of Rectangular Kirchhoff Plate from Wave Approach

Authors: Mansour Nikkhah-Bahrami, Masih Loghmani, Mostafa Pooyanfar

Abstract:

In this paper, an analytical approach for free vibration analysis of four edges simply supported rectangular Kirchhoff plates is presented. The method is based on wave approach. From wave standpoint vibration propagate, reflect and transmit in a structure. Firstly, the propagation and reflection matrices for plate with simply supported boundary condition are derived. Then, these matrices are combined to provide a concise and systematic approach to free vibration analysis of a simply supported rectangular Kirchhoff plate. Subsequently, the eigenvalue problem for free vibration of plates is formulated and the equation of plate natural frequencies is constructed. Finally, the effectiveness of the approach is shown by comparison of the results with existing classical solution.

Keywords: Kirchhoff plate, propagation matrix, reflection matrix, vibration analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2420
693 A New Developed Formula to Determine the Shear Buckling Stress in Welded Aluminum Plate Girders

Authors: Badr Alsulami, Ahmed S. Elamary

Abstract:

This paper summarizes and presents main results of an in-depth numerical analysis dealing with the shear buckling resistance of aluminum plate girders. The studies conducted have permitted the development of a simple design expression to determine the critical shear buckling stress in aluminum web panels. This expression takes into account the effects of reduction of strength in aluminum alloys due to welding process. Ultimate shear resistance (USR) of plate girders can be obtained theoretically using Cardiff theory or Hӧglunds theory. USR of aluminum alloy plate girders predicted theoretically using BS8118 appear inconsistent when compared with test data. Theoretical predictions based on Hӧglunds theory, are more realistic. Cardiff theory proposed to predict the USR of steel plate girders only. Welded aluminum alloy plate girders studied experimentally by others; the USR resulted from tests are reviewed. Comparison between the test results with the values obtained from Hӧglunds theory, BS8118 design method and Cardiff theory performed theoretically. Finally, a new equation based on Cardiff tension-field theory, proposed to predict theoretically the USR of aluminum plate girders.

Keywords: Shear resistance, Aluminum, Cardiff theory, Hӧglund's theory, Plate girder.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2867
692 A Review of Current Trends in Thin Film Solar Cell Technologies

Authors: Adekanmi M. Adeyinka, Onyedika V. Mbelu, Yaqub B. Adediji, Daniel I. Yahya

Abstract:

Growing energy demand and the world's dependence on fossil fuel-based energy systems causing greenhouse gas emissions and climate change have intensified the need for utilizing renewable energy sources. Solar energy can be converted directly into electricity via photovoltaic solar cells. Thin-film solar cells are preferred due to their cost effectiveness, less material consumption, flexibility, and rising trend in efficiency. In this paper, Gallium arsenide (GaAs), Amorphous silicon (a-Si), Copper Indium Gallium Selenide (CIGS), and Cadmium Telluride (CdTe) thin film solar cells are reviewed. The evolution, structures, fabrication methods, stability and degradation methods, and trend in the efficiency of the thin-film solar cells over the years are discussed in detail. Also, a comparison of the thin-film solar cells reviewed with crystalline silicon in terms of physical properties and performance is made.

Keywords: Climate change, conversion efficiency, solar energy, thin-film solar cell.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1200
691 Effect of Laser Welding Properties on Ti/Al Dissimilar Thin Sheets – A Review

Authors: K. Kalaiselvan, A. Elango, N.M. Nagarajan

Abstract:

Laser beam welding is an important joining technique for Titanium/Aluminum thin sheet alloys with their increasing applications in aerospace, aircraft, automotive, electronics and other industries. In this paper the research and progress in laser welding of Ti/Al thin sheets are critically reviewed from different perspectives. Some important aspects such as microstructure, metallurgical defects and mechanical properties in weldments are discussed. Also the recent progress in laser welding of Ti/Al dissimilar thin sheets to provide a basis for further research work is reported.

Keywords: Laser welding, Titanium/Aluminium sheets, microstructure, metallurgical defects and mechanical properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3499
690 Formulating the Stochastic Finite Elements for Free Vibration Analysis of Plates with Variable Elastic Modulus

Authors: Mojtaba Aghamiri Esfahani, Mohammad Karkon, Seyed Majid Hosseini Nezhad, Reza Hosseini-Ara

Abstract:

In this study, the effect of uncertainty in elastic modulus of a plate on free vibration response is investigated. For this purpose, the elastic modulus of the plate is modeled as stochastic variable with normal distribution. Moreover, the distance autocorrelation function is used for stochastic field. Then, by applying the finite element method and Monte Carlo simulation, stochastic finite element relations are extracted. Finally, with a numerical test, the effect of uncertainty in the elastic modulus on free vibration response of a plate is studied. The results show that the effect of uncertainty in elastic modulus of the plate cannot play an important role on the free vibration response.

Keywords: Stochastic finite elements, plate bending, free vibration, Monte Carlo, Neumann expansion method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1692
689 Organic Thin Film Transistors based Oligothiophine Derivatives using DZ-Dihexyl(quarter- and sexi-)Thiophene

Authors: Jae-Hong Kwon, Myung-Ho Chung, Tae-Yeon Oh, Hyeon-Seok Bae, Byeong-Kwon Ju

Abstract:

End-substitution of quarterthiophene and sexithiophene with hexyl groups leads to highly soluble conjugated oligomers,DZ-dihexylquarterthiophene (DH-4T) and DZ-dihexylsexithiophene (DH-6T). We have characterized these oligomers for optical and electrical properties. We fabricated an organic thin film transistor (OTFT) using the above two air-stable p-type organic semiconductor materials. We obtained a stable characteristic curve. The field effect mobility, Pwas calculated to be 3.2910-4 cm2/Vs for DH-6T based OTFT; while the DH-4T based OTFT had 1.8810-5 cm2/Vs.KeywordsOrganic thin film transistor, DZ-dihexylquarterthiophene, DZ-dihexylsexithiophene.

Keywords: Organic thin film transistor, DZ-dihexylquarterthiophene, DZ-dihexylsexithiophene.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1790
688 Vibration Characteristics of Functionally Graded Material Skew Plate in Thermal Environment

Authors: Gulshan Taj M. N. A., Anupam Chakrabarti, Vipul Prakash

Abstract:

In the present investigation, free vibration of functionally graded material (FGM) skew plates under thermal environment is studied. Kinematics equations are based on the Reddy’s higher order shear deformation theory and a nine noded isoparametric Lagrangian element is adopted to mesh the plate geometry. The issue of C1 continuity requirement related to the assumed displacement field has been circumvented effectively to develop C0 finite element formulation. Effective mechanical properties of the constituents of the plate are considered to be as position and temperature dependent and assumed to vary in the thickness direction according to a simple power law distribution. The displacement components of a rectangular plate are mapped into skew plate geometry by means of suitable transformation rule. One dimensional Fourier heat conduction equation is used to ascertain the temperature profile of the plate along thickness direction. Influence of different parameters such as volume fraction index, boundary condition, aspect ratio, thickness ratio and temperature field on frequency parameter of the FGM skew plate is demonstrated by performing various examples and the related findings are discussed briefly. New results are generated for vibration of the FGM skew plate under thermal environment, for the first time, which may be implemented in the future research involving similar kind of problems.

Keywords: Functionally graded material, finite element method, higher order shear deformation theory, skew plate, thermal vibration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3613
687 Mechanical Characteristics on Fatigue Crack Propagation in Aluminium Plate

Authors: A. Chellil, A. Nour, S. Lecheb, H. Mechakra, L. Addar, H. Kebir

Abstract:

This paper present a mechanical characteristics on fatigue crack propagation in Aluminium Plate based on strain and stress distribution using the abaqus software. The changes in shear strain and stress distribution during the fatigue cycle with crack growth is identified. In progressive crack in the strain distribution and the stress is increase in the critical zone. Numerical Modal analysis of the model developed, prove that the Eigen frequencies of aluminium plate were decreased after cracking, and this reduce is nonlinear. These results can provide a reference for analysts and designers of aluminium alloys in aeronautical systems.

Therefore, the modal analysis is an important factor for monitoring the aeronautic structures.

Keywords: Aluminium alloys, plate, crack, failure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2101
686 Selective Wet-Etching of Amorphous/Crystallized Sb20se80 Thin Films

Authors: O. Shiman, V. Gerbreders, E. Sledevskis, A. Bulanovs, V.Pashkevich

Abstract:

The selective wet-etching of amorphous and crystalline region of Sb20Se80 thin films was carried out using organic based solution e.g. amines. We report the development of an in situ real-time method to study the wet chemical etching process of thin films. Characterization of the structure and surface of films studied by X-ray diffraction, SEM and EBSD methods has been done and potential application suggested.

Keywords: amorphous and crystalline phases, chalcogenide thinfilm, etching process

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1974
685 Sol-gel Synthesis and Optical Characterisation of TiO2 Thin Films for Photovoltaic Application

Authors: N. H. Arabi, Aicha Iratni, Talaighil Razika, Bruno Capoen, Mohamed Bouazaoui

Abstract:

TiO2 thin films have been prepared by the sol-gel dipcoating technique in order to elaborate antireflective thin films for monocrystalline silicon (mono-Si). The titanium isopropoxyde was chosen as a precursor with hydrochloric acid as a catalyser for preparing a stable solution. The optical properties have been tailored with varying the solution concentration, the withdrawn speed, and the heat-treatment. We showed that using a TiO2 single layer with 64.5 nm in thickness, heat-treated at 450°C or 300°C reduces the mono-Si reflection at a level lower than 3% over the broadband spectral domains [669-834] nm and [786-1006] nm respectively. Those latter performances are similar to the ones obtained with double layers of low and high refractive index glasses respectively.

Keywords: Dip coating, mono-Si, titanium oxide, thin film.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2325
684 Influence of Turbulence Model, Grid Resolution and Free-Stream Turbulence Intensity on the Numerical Simulation of the Flow Field around an Inclined Flat Plate

Authors: M. Raciti Castelli, P. Cioppa, E. Benini

Abstract:

The flow field around a flat plate of infinite span has been investigated for several values of the angle of attack. Numerical predictions have been compared to experimental measurements, in order to examine the effect of turbulence model and grid resolution on the resultant aerodynamic forces acting on the plate. Also the influence of the free-stream turbulence intensity, at the entrance of the computational domain, has been investigated. A full campaign of simulations has been conducted for three inclination angles (9°, 15° and 30°), in order to obtain some practical guidelines to be used for the simulation of the flow field around inclined plates and discs.

Keywords: CFD, lift, drag, flat plate

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1583
683 Flow Field Analysis of Submerged Horizontal Plate Type Breakwater

Authors: Ke Wang, Zhi-Qiang Zhang, Z. Chen

Abstract:

A submerged horizontal plate type breakwater is pointed out as an efficient wave protection device for cage culture in marine fishery. In order to reveal the wave elimination principle of this type breakwater, boundary element method is utilized to investigate this problem. The flow field and the trajectory of water particles are studied carefully. The flow field analysis shows that: the interaction of incident wave and adverse current above the plate disturbs the water domain drastically. This can slow down the horizontal velocity and vertical velocity of the water particles.

Keywords: boundary element method, plate type breakwater, flow field analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2091
682 Deposition of Transparent IGZO Conducting Thin Films by Co-Sputtering of Zn2Ga2O3 and In2O3 Targets at Room Temperature

Authors: Yu-Hsin Chen, Yuan-Tai Hsieh, Cheng-Shong Hong, Chia-Ching Wu, Cheng-Fu Yang, Yu-Jhen Liou

Abstract:

In this study, we investigated (In,Ga,Zn)Ox (IGZO) thin films and examined their characteristics of using Ga2O3-2 ZnO (GZO) co-sputtered In2O3 prepared by dual target radio frequency magnetron sputtering at room temperature in a pure Ar atmosphere. RF powers of 80 W and 70 W were used for GZO and pure In2O3, room temperature (RT) was used as deposition temperature, and the deposition time was changed from 15 min to 60 min. Structural, surface, electrical, and optical properties of IGZO thin films were investigated as a function of deposition time. Furthermore, the GZO co-sputtered In2O3 thin films showed a very smooth and featureless surface and an amorphous structure regardless of the deposition time due to the room temperature sputtering process. We would show that the co-sputtered IGZO thin films exhibited transparent electrode properties with high transmittance ratio and low resistivity.

Keywords: IGZO, co-sputter, Ga2O3-2 ZnO, In2O3.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3261
681 Refined Buckling Analysis of Rectangular Plates Under Uniaxial and Biaxial Compression

Authors: V. Piscopo

Abstract:

In the traditional buckling analysis of rectangular plates the classical thin plate theory is generally applied, so neglecting the plating shear deformation. It seems quite clear that this method is not totally appropriate for the analysis of thick plates, so that in the following the two variable refined plate theory proposed by Shimpi (2006), that permits to take into account the transverse shear effects, is applied for the buckling analysis of simply supported isotropic rectangular plates, compressed in one and two orthogonal directions. The relevant results are compared with the classical ones and, for rectangular plates under uniaxial compression, a new direct expression, similar to the classical Bryan-s formula, is proposed for the Euler buckling stress. As the buckling analysis is a widely diffused topic for a variety of structures, such as ship ones, some applications for plates uniformly compressed in one and two orthogonal directions are presented and the relevant theoretical results are compared with those ones obtained by a FEM analysis, carried out by ANSYS, to show the feasibility of the presented method.

Keywords: Buckling analysis, Thick plates, Biaxial stresses

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2627
680 Fabrication of High-Power AlGaN/GaN Schottky Barrier Diode with Field Plate Design

Authors: Chia-Jui Yu, Chien-Ju Chen, Jyun-Hao Liao, Chia-Ching Wu, Meng-Chyi Wu

Abstract:

In this letter, we demonstrate high-performance AlGaN/GaN planar Schottky barrier diodes (SBDs) on the silicon substrate with field plate structure for increasing breakdown voltage VB. A low turn-on resistance RON (3.55 mΩ-cm2), low reverse leakage current (< 0.1 µA) at -100 V, and high reverse breakdown voltage VB (> 1.1 kV) SBD has been fabricated. A virgin SBD exhibited a breakdown voltage (measured at 1 mA/mm) of 615 V, and with the field plate technology device exhibited a breakdown voltage (measured at 1 mA/mm) of 1525 V (the anode–cathode distance was LAC = 40 µm). Devices without the field plate design exhibit a Baliga’s figure of merit of VB2/ RON = 60.2 MW/cm2, whereas devices with the field plate design show a Baliga’s figure of merit of VB2/ RON = 340.9 MW/cm2 (the anode–cathode distance was LAC = 20 µm).

Keywords: AlGaN/GaN heterostructure, silicon substrate, Schottky barrier diode, high breakdown voltage, field plate, Baliga’s figure-of-merit.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1034
679 Study of Crashworthiness Behavior of Thin-Walled Tube under Axial Loading by Using Computational Mechanics

Authors: M. Kamal M. Shah, Noorhifiantylaily Ahmad, O. Irma Wani, J. Sahari

Abstract:

This paper presents the computationally mechanics analysis of energy absorption for cylindrical and square thin wall tubed structure by using ABAQUS/explicit. The crashworthiness behavior of AISI 1020 mild steel thin-walled tube under axial loading has been studied. The influence effects of different model’s cross-section, as well as model length on the crashworthiness behavior of thin-walled tube, are investigated. The model was placed on loading platform under axial loading with impact velocity of 5 m/s to obtain the deformation results of each model under quasi-static loading. The results showed that model undergoes different deformation mode exhibits different energy absorption performance.

Keywords: Axial loading, energy absorption performance, computational mechanics, crashworthiness behavior, deformation mode, thin-walled tubes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1158
678 Momentum and Heat Transfer in the Flow of a Viscoelastic Fluid Past a Porous Flat Plate Subject to Suction or Blowing

Authors: Motahar Reza, Anadi Sankar Gupta

Abstract:

An analysis is made of the flow of an incompressible viscoelastic fluid (of small memory) over a porous plate subject to suction or blowing. It is found that velocity at a point increases with increase in the elasticity in the fluid. It is also shown that wall shear stress depends only on suction and is also independent of the material of fluids. No steady solution for velocity distribution exists when there is blowing at the plate. Temperature distribution in the boundary layer is determined and it is found that temperature at a point decreases with increase in the elasticity in the fluid.

Keywords: Viscoelastic fluid, Flow past a porous plate, Heat transfer

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1335
677 Physical and Electrical Characterization of ZnO Thin Films Prepared by Sol-Gel Method

Authors: Mohammad Reza Tabatabaei, Ali Vaseghi Ardekani

Abstract:

In this paper, Zinc Oxide (ZnO) thin films are deposited on glass substrate by sol-gel method. The ZnO thin films with well defined orientation were acquired by spin coating of zinc acetate dehydrate monoethanolamine (MEA), de-ionized water and isopropanol alcohol. These films were pre-heated at 275°C for 10 min and then annealed at 350°C, 450°C and 550°C for 80 min. The effect of annealing temperature and different thickness on structure and surface morphology of the thin films were verified by Atomic Force Microscopy (AFM). It was found that there was a significant effect of annealing temperature on the structural parameters of the films such as roughness exponent, fractal dimension and interface width. Thin films also were characterizied by X-ray Diffractometery (XRD) method. XRD analysis revealed that the annealed ZnO thin films consist of single phase ZnO with wurtzite structure and show the c-axis grain orientation. Increasing annealing temperature increased the crystallite size and the c-axis orientation of the film after 450°C. Also In this study, ZnO thin films in different thickness have been prepared by sol-gel method on the glass substrate at room temperature. The thicknesses of films are 100, 150 and 250 nm. Using fractal analysis, morphological characteristics of surface films thickness in amorphous state were investigated. The results show that with increasing thickness, surface roughness (RMS) and lateral correlation length (ξ) are decreased. Also, the roughness exponent (α) and growth exponent (β) were determined to be 0.74±0.02 and 0.11±0.02, respectively.

Keywords: ZnO, Thin film, Fractal analysis, Morphology, AFM, annealing temperature, different thickness, XRD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3488
676 Preparation of Nanostructure ZnO-SnO2 Thin Films for Optoelectronic Properties and Post Annealing Influence

Authors: Vipin Kumar Jain, Praveen Kumar, Y.K. Vijay

Abstract:

ZnO-SnO2 i.e. Zinc-Tin-Oxide (ZTO) thin films were deposited on glass substrate with varying concentrations (ZnO:SnO2 - 100:0, 90:10, 70:30 and 50:50 wt.%) at room temperature by flash evaporation technique. These deposited ZTO film were annealed at 450 0C in vacuum. These films were characterized to study the effect of annealing on the structural, electrical, and optical properties. Atomic force microscopy (AFM) and Scanning electron microscopy (SEM) images manifest the surface morphology of these ZTO thin films. The apparent growth of surface features revealed the formation of nanostructure ZTO thin films. The small value of surface roughness (root mean square RRMS) ensures the usefulness in optical coatings. The sheet resistance was also found to be decreased for both types of films with increasing concentration of SnO2. The optical transmittance found to be decreased however blue shift has been observed after annealing.

Keywords: ZTO thin film, AFM, SEM, Optical transmittance, Sheet resistance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2408
675 Vertically Grown p–Type ZnO Nanorod on Ag Thin Film

Authors: Jihyun Park, Tae Il Lee, Jae-Min Myoung

Abstract:

A Silver (Ag) thin film is introduced as a template and doping source for vertically aligned p–type ZnO nanorods. ZnO nanorods were grown using an ammonium hydroxide based hydrothermal process. During the hydrothermal process, the Ag thin film was dissolved to generate Ag ions in the solution. The Ag ions can contribute to doping in the wurzite structure of ZnO and the (111) grain of Ag thin film can be the epitaxial temporal template for the (0001) plane of ZnO. Hence, Ag–doped p–type ZnO nanorods were successfully grown on the substrate, which can be an electrode or semiconductor for the device application. To demonstrate the potentials of this idea, p–n diode was fabricated and its electrical characteristics were demonstrated.

Keywords: Ag–doped ZnO nanorods, Hydrothermal process, p–n homo–junction diode, p–type ZnO.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2376
674 Dynamic Stability of Axially Moving Viscoelastic Plates under Non-Uniform In-Plane Edge Excitations

Authors: T. H. Young, S. J. Huang, Y. S. Chiu

Abstract:

This paper investigates the parametric stability of an axially moving web subjected to non-uniform in-plane edge excitations on two opposite, simply-supported edges. The web is modeled as a viscoelastic plate whose constitutive relation obeys the Kelvin-Voigt model, and the in-plane edge excitations are expressed as the sum of a static tension and a periodical perturbation. Due to the in-plane edge excitations, the moving plate may bring about parametric instability under certain situations. First, the in-plane stresses of the plate due to the non-uniform edge excitations are determined by solving the in-plane forced vibration problem. Then, the dependence on the spatial coordinates in the equation of transverse motion is eliminated by the generalized Galerkin method, which results in a set of discretized system equations in time. Finally, the method of multiple scales is utilized to solve the set of system equations analytically if the periodical perturbation of the in-plane edge excitations is much smaller as compared with the static tension of the plate, from which the stability boundaries of the moving plate are obtained. Numerical results reveal that only combination resonances of the summed-type appear under the in-plane edge excitations considered in this work.

Keywords: Axially moving viscoelastic plate, in-plane periodic excitation, non-uniformly distributed edge tension, dynamic stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1950
673 Numerical Analysis of End Plate Bolted Connection with Corrugated Beam

Authors: M. A. Sadeghian, J. Yang, Q. F. Liu

Abstract:

Steel extended end plate bolted connections are recommended to be widely utilized in special moment-resisting frame subjected to monotonic loading. Improper design of steel beam to column connection can lead to the collapse and fatality of structures. Therefore comprehensive research studies of beam to column connection design should be carried out. Also the performance and effect of corrugated on the strength of beam column end plate connection up to failure under monotonic loading in horizontal direction is presented in this paper. The non-linear elastic–plastic behavior has been considered through a finite element analysis using the multi-purpose software package LUSAS. The effect of vertically and horizontally types of corrugated web was also investigated.

Keywords: Corrugated beam, monotonic loading, finite element analysis, end plate connection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2483
672 Wetting Front Propagation during Quenching of Aluminum Plate by Water Spray

Authors: M. M. Seraj, M. S. Gadala

Abstract:

This study presents a systematic analysis of wetted region due to cooling of aluminum plate by water spray impingement with respect to different water flow rates, spray nozzle heights, and subcooling. Unlike jet impingement, the wetting is not commenced upon spray impingement and there is a delay in wetness of hot test surface. After initiation, the wetting (black zone) progresses gradually to cover all test plate and provides efficient cooling in nucleate boiling regime. Generally, spray cooling is found function of spray flow rate, spray-to-surface distance and water subcooling. Wetting delay is decreasing by increasing of spray flow rate until spray impact area is not become bigger that test surface. Otherwise, higher spray flow rate is not practically accelerated start of wetting. Very fast wetting due to spray cooling can be obtained by dense spray (high floe rate) discharged from adjacent nozzle to the test surface. Highly subcooling water spray also triggers earlier wetting of hot aluminum plate.

Keywords: Water spray, wetting, aluminum plate, flow rate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1956
671 Laser Beam Welding of Ti/Al Dissimilar Thin Sheets - A Literature Review

Authors: K. Kalaiselvan, A. Elango, N.M. Nagarajan, N. Mathiazhagan

Abstract:

Dissimilar joining of Titanium and Aluminum thin sheets has potential applications in aerospace and automobile industry which can reduce weight and cost and improve strength, corrosion resistance and high temperature properties. However successful welding of Titanium/Aluminium sheets is of challenge due to differences in physical, chemical and metallurgical properties between the two. This paper describes research results of Laser Beam Welding (LBW) of Ti/Al thin sheets in which many researchers have recently performed and critically reviewed from different perspectives. Also some of notable works in the field of laser welding with changes in mechanical properties, crack propagation, diffusion behavior, chemical potential, interfacial reaction and the microstructure are reported.

Keywords: Laser Beam Welding (LBW), Mechanical properties, Titanium and Aluminium thin sheets.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2913
670 Comparative Analysis of Two Modeling Approaches for Optimizing Plate Heat Exchangers

Authors: Fábio A. S. Mota, Mauro A. S. S. Ravagnani, E. P. Carvalho

Abstract:

In the present paper the design of plate heat exchangers is formulated as an optimization problem considering two mathematical modelling. The number of plates is the objective function to be minimized, considering implicitly some parameters configuration. Screening is the optimization method used to solve the problem. Thermal and hydraulic constraints are verified, not viable solutions are discarded and the method searches for the convergence to the optimum, case it exists. A case study is presented to test the applicability of the developed algorithm. Results show coherency with the literature.

Keywords: Plate heat exchanger, optimization, modeling, simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1961
669 Characteristics of Different Solar PV Modules under Partial Shading

Authors: Hla Hla Khaing, Yit Jian Liang, Nant Nyein Moe Htay, Jiang Fan

Abstract:

Partial shadowing is one of the problems that are always faced in terrestrial applications of solar photovoltaic (PV). The effects of partial shadow on the energy yield of conventional mono-crystalline and multi-crystalline PV modules have been researched for a long time. With deployment of new thin-film solar PV modules in the market, it is important to understand the performance of new PV modules operating under the partial shadow in the tropical zone. This paper addresses the impacts of different partial shadowing on the operating characteristics of four different types of solar PV modules that include multi-crystalline, amorphous thin-film, CdTe thin-film and CIGS thin-film PV modules.

Keywords: Partial shade, CdTe, CIGS, multi-crystalline (mc-Si), amorphous silicon (a-Si), bypass diode.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7333