Search results for: Reliability optimization.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2530

Search results for: Reliability optimization.

2470 An Efficient Algorithm for Reliability Lower Bound of Distributed Systems

Authors: Mohamed H. S. Mohamed, Yang Xiao-zong, Liu Hong-wei, Wu Zhi-bo

Abstract:

The reliability of distributed systems and computer networks have been modeled by a probabilistic network or a graph G. Computing the residual connectedness reliability (RCR), denoted by R(G), under the node fault model is very useful, but is an NP-hard problem. Since it may need exponential time of the network size to compute the exact value of R(G), it is important to calculate its tight approximate value, especially its lower bound, at a moderate calculation time. In this paper, we propose an efficient algorithm for reliability lower bound of distributed systems with unreliable nodes. We also applied our algorithm to several typical classes of networks to evaluate the lower bounds and show the effectiveness of our algorithm.

Keywords: Distributed systems, probabilistic network, residual connectedness reliability, lower bound.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1683
2469 Development of an Attitude Scale Towards Social Networking Sites

Authors: Münevver Başman, Deniz Gülleroğlu

Abstract:

The purpose of this study is to develop a scale to determine the attitudes towards social networking sites. 45 tryout items, prepared for this aim, were applied to 342 students studying at Marmara University, Faculty of Education. The reliability and the validity of the scale were conducted with the help of these students. As a result of exploratory factor analysis with Varimax rotation, 41 items grouped according to the structure with three factors (interest, reality and negative effects) is obtained. While alpha reliability of the scale is obtained as .899; the reliability of factors is obtained as .899, .799, .775, respectively.

Keywords: Attitude, reliability, social networking sites, validity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1666
2468 Capacity Optimization in Cooperative Cognitive Radio Networks

Authors: Mahdi Pirmoradian, Olayinka Adigun, Christos Politis

Abstract:

Cooperative spectrum sensing is a crucial challenge in cognitive radio networks. Cooperative sensing can increase the reliability of spectrum hole detection, optimize sensing time and reduce delay in cooperative networks. In this paper, an efficient central capacity optimization algorithm is proposed to minimize cooperative sensing time in a homogenous sensor network using OR decision rule subject to the detection and false alarm probabilities constraints. The evaluation results reveal significant improvement in the sensing time and normalized capacity of the cognitive sensors.

Keywords: Cooperative networks, normalized capacity, sensing time.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1879
2467 Operation Strategy of Multi-Energy Storage System Considering Power System Reliability

Authors: Wook-Won Kim, Je-Seok Shin, Jin-O Kim

Abstract:

As the penetration of Energy Storage System (ESS) increases in the power system due to higher performance and lower cost than ever, ESS is expanding its role to the ancillary service as well as the storage of extra energy from the intermittent renewable energy resources. For multi-ESS with different capacity and SOC level each other, it is required to make the optimal schedule of SOC level use the multi-ESS effectively. This paper proposes the energy allocation method for the multiple battery ESS with reliability constraint, in order to make the ESS discharge the required energy as long as possible. A simple but effective method is proposed in this paper, to satisfy the power for the spinning reserve requirement while improving the system reliability. Modelling of ESS is also proposed, and reliability is evaluated by using the combined reliability model which includes the proposed ESS model and conventional generation one. In the case study, it can be observed that the required power is distributed to each ESS adequately and accordingly, the SOC is scheduled to improve the reliability indices such as Loss of Load Probability (LOLP) and Loss of Load Expectation (LOLE).

Keywords: Multiple energy storage system, energy allocation method, SOC schedule, reliability constraints.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1225
2466 IBFO_PSO: Evaluating the Performance of Bio-Inspired Integrated Bacterial Foraging Optimization Algorithm and Particle Swarm Optimization Algorithm in MANET Routing

Authors: K. Geetha, P. Thangaraj, C. Rasi Priya, C. Rajan, S. Geetha

Abstract:

This paper presents the performance of Integrated Bacterial Foraging Optimization and Particle Swarm Optimization (IBFO_PSO) technique in MANET routing. The BFO is a bio-inspired algorithm, which simulates the foraging behavior of bacteria. It is effectively applied in improving the routing performance in MANET. In results, it is proved that the PSO integrated with BFO reduces routing delay, energy consumption and communication overhead.

Keywords: Ant Colony Optimization, Bacterial Foraging Optimization, Hybrid Routing Intelligent Algorithm, Naturally inspired algorithms, Particle Swarm Optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2730
2465 The Characterisation of TLC NAND Flash Memory, Leading to a Definable Endurance/Retention Trade-Off

Authors: Sorcha Bennett, Joe Sullivan

Abstract:

Triple-Level Cell (TLC) NAND Flash memory at, and below, 20nm (nanometer) is still largely unexplored by researchers, and with the ever more commonplace existence of Flash in consumer and enterprise applications there is a need for such gaps in knowledge to be filled. At the time of writing, there was little published data or literature on TLC, and more specifically reliability testing, with a further emphasis on both endurance and retention. This paper will give an introduction to NAND Flash memory, followed by an overview of the relevant current research on the reliability of Flash memory, along with the planned future work which will provide results to help characterise the reliability of TLC memory.

Keywords: TLC NAND flash memory, reliability, endurance, retention, trade-off, raw flash, patterns.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3514
2464 Flow Modeling and Runner Design Optimization in Turgo Water Turbines

Authors: John S. Anagnostopoulos, Dimitrios E. Papantonis

Abstract:

The incorporation of computational fluid dynamics in the design of modern hydraulic turbines appears to be necessary in order to improve their efficiency and cost-effectiveness beyond the traditional design practices. A numerical optimization methodology is developed and applied in the present work to a Turgo water turbine. The fluid is simulated by a Lagrangian mesh-free approach that can provide detailed information on the energy transfer and enhance the understanding of the complex, unsteady flow field, at very small computing cost. The runner blades are initially shaped according to hydrodynamics theory, and parameterized using Bezier polynomials and interpolation techniques. The use of a limited number of free design variables allows for various modifications of the standard blade shape, while stochastic optimization using evolutionary algorithms is implemented to find the best blade that maximizes the attainable hydraulic efficiency of the runner. The obtained optimal runner design achieves considerably higher efficiency than the standard one, and its numerically predicted performance is comparable to a real Turgo turbine, verifying the reliability and the prospects of the new methodology.

Keywords: Turgo turbine, Lagrangian flow modeling, Surface parameterization, Design optimization, Evolutionary algorithms.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4057
2463 Reliability Factors Based Fuzzy Logic Scheme for Spectrum Sensing

Authors: Tallataf Rasheed, Adnan Rashdi, Ahmad Naeem Akhtar

Abstract:

The accurate spectrum sensing is a fundamental requirement of dynamic spectrum access for deployment of Cognitive Radio Network (CRN). To acheive this requirement a Reliability factors based Fuzzy Logic (RFL) Scheme for Spectrum Sensing has been proposed in this paper. Cognitive Radio User (CRU) predicts the presence or absence of Primary User (PU) using energy detector and calculates the Reliability factors which are SNR of sensing node, threshold of energy detector and decision difference of each node with other nodes in a cooperative spectrum sensing environment. Then the decision of energy detector is combined with Reliability factors of sensing node using Fuzzy Logic. These Reliability Factors used in RFL Scheme describes the reliability of decision made by a CRU to improve the local spectrum sensing. This Fuzzy combining scheme provides the accuracy of decision made by sensornode. The simulation results have shown that the proposed technique provide better PU detection probability than existing Spectrum Sensing Techniques.

Keywords: Cognitive radio, spectrum sensing, energy detector, reliability factors, fuzzy logic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1065
2462 A Novel Design Approach for Mechatronic Systems Based On Multidisciplinary Design Optimization

Authors: Didier Casner, Jean Renaud, Remy Houssin, Dominique Knittel

Abstract:

In this paper, a novel approach for the multidisciplinary design optimization (MDO) of complex mechatronic systems. This approach, which is a part of a global project aiming to include the MDO aspect inside an innovative design process. As a first step, the paper considers the MDO as a redesign approach which is limited to the parametric optimization. After defining and introducing the different keywords, the proposed method which is based on the V-Model which is commonly used in mechatronics.

Keywords: mechatronics, Multidisciplinary Design Optimization (MDO), multiobjective optimization, engineering design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2067
2461 Distribution Feeder Reconfiguration Considering Distributed Generators

Authors: R. Khorshidi , T. Niknam, M. Nayeripour

Abstract:

Recently, distributed generation technologies have received much attention for the potential energy savings and reliability assurances that might be achieved as a result of their widespread adoption. Fueling the attention have been the possibilities of international agreements to reduce greenhouse gas emissions, electricity sector restructuring, high power reliability requirements for certain activities, and concern about easing transmission and distribution capacity bottlenecks and congestion. So it is necessary that impact of these kinds of generators on distribution feeder reconfiguration would be investigated. This paper presents an approach for distribution reconfiguration considering Distributed Generators (DGs). The objective function is summation of electrical power losses A Tabu search optimization is used to solve the optimal operation problem. The approach is tested on a real distribution feeder.

Keywords: Distributed Generator, Daily Optimal Operation, Genetic Algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1712
2460 A New Approach for Network Reconfiguration Problem in Order to Deviation Bus Voltage Minimization with Regard to Probabilistic Load Model and DGs

Authors: Mahmood Reza Shakarami, Reza Sedaghati

Abstract:

Recently, distributed generation technologies have received much attention for the potential energy savings and reliability assurances that might be achieved as a result of their widespread adoption. The distribution feeder reconfiguration (DFR) is one of the most important control schemes in the distribution networks, which can be affected by DGs. This paper presents a new approach to DFR at the distribution networks considering wind turbines. The main objective of the DFR is to minimize the deviation of the bus voltage. Since the DFR is a nonlinear optimization problem, we apply the Adaptive Modified Firefly Optimization (AMFO) approach to solve it. As a result of the conflicting behavior of the single- objective function, a fuzzy based clustering technique is employed to reach the set of optimal solutions called Pareto solutions. The approach is tested on the IEEE 32-bus standard test system.

Keywords: Adaptive Modified Firefly Optimization (AMFO), Pareto solutions, feeder reconfiguration, wind turbines, bus voltage.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2017
2459 Comparison of Reliability Systems Based Uncertainty

Authors: A. Aissani, H. Benaoudia

Abstract:

Stochastic comparison has been an important direction of research in various area. This can be done by the use of the notion of stochastic ordering which gives qualitatitive rather than purely quantitative estimation of the system under study. In this paper we present applications of comparison based uncertainty related to entropy in Reliability analysis, for example to design better systems. These results can be used as a priori information in simulation studies.

Keywords: Uncertainty, Stochastic comparison, Reliability, serie's system, imperfect repair.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1253
2458 Artificial Intelligent in Optimization of Steel Moment Frame Structures: A Review

Authors: Mohsen Soori, Fooad Karimi Ghaleh Jough

Abstract:

The integration of Artificial Intelligence (AI) techniques in the optimization of steel moment frame structures represents a transformative approach to enhance the design, analysis, and performance of these critical engineering systems. The review encompasses a wide spectrum of AI methods, including machine learning algorithms, evolutionary algorithms, neural networks, and optimization techniques, applied to address various challenges in the field. The synthesis of research findings highlights the interdisciplinary nature of AI applications in structural engineering, emphasizing the synergy between domain expertise and advanced computational methodologies. This synthesis aims to serve as a valuable resource for researchers, practitioners, and policymakers seeking a comprehensive understanding of the state-of-the-art in AI-driven optimization for steel moment frame structures. The paper commences with an overview of the fundamental principles governing steel moment frame structures and identifies the key optimization objectives, such as efficiency of structures. Subsequently, it delves into the application of AI in the conceptual design phase, where algorithms aid in generating innovative structural configurations and optimizing material utilization. The review also explores the use of AI for real-time structural health monitoring and predictive maintenance, contributing to the long-term sustainability and reliability of steel moment frame structures. Furthermore, the paper investigates how AI-driven algorithms facilitate the calibration of structural models, enabling accurate prediction of dynamic responses and seismic performance. Thus, by reviewing and analyzing the recent achievements in applications artificial intelligent in optimization of steel moment frame structures, the process of designing, analysis, and performance of the structures can be analyzed and modified.

Keywords: Artificial Intelligent, optimization process, steel moment frame, structural engineering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 246
2457 An Optimization of Orbital Transfer for Spacecrafts with Finite-thrust Based on Legendre Pseudospectral Method

Authors: Yanan Yang, Zhigang Wang, Xiang Chen

Abstract:

This paper presents the use of Legendre pseudospectral method for the optimization of finite-thrust orbital transfer for spacecrafts. In order to get an accurate solution, the System-s dynamics equations were normalized through a dimensionless method. The Legendre pseudospectral method is based on interpolating functions on Legendre-Gauss-Lobatto (LGL) quadrature nodes. This is used to transform the optimal control problem into a constrained parameter optimization problem. The developed novel optimization algorithm can be used to solve similar optimization problems of spacecraft finite-thrust orbital transfer. The results of a numerical simulation verified the validity of the proposed optimization method. The simulation results reveal that pseudospectral optimization method is a promising method for real-time trajectory optimization and provides good accuracy and fast convergence.

Keywords: Finite-thrust, Orbital transfer, Legendre pseudospectral method

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1801
2456 Reliability of Slender Reinforced Concrete Columns: Part 1

Authors: Metwally Abdel Aziz Ahmed, Ahmed Shaban Abdel Hay Gabr, Inas Mohamed Saleh

Abstract:

The main objective of structural design is to ensure safety and functional performance requirements of a structural system for its target reliability levels. In this study, the reliability index for the reinforcement concrete slender columns with rectangular cross section is studied. The variable parameters studied include the loads, the concrete compressive strength, the steel yield strength, the dimensions of concrete cross-section, the reinforcement ratio, and the location of steel placement. Risk analysis program was used to perform the analytical study. The effect of load eccentricity on the reliability index of reinforced concrete slender column was studied and presented. The results of this study indicate that the good quality control improve the performance of slender reinforced columns through increasing the reliability index β.

Keywords: Reliability, reinforced concrete, safety, slender column.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1670
2455 Transmission Lines Loading Enhancement Using ADPSO Approach

Authors: M. Mahdavi, H. Monsef, A. Bagheri

Abstract:

Discrete particle swarm optimization (DPSO) is a powerful stochastic evolutionary algorithm that is used to solve the large-scale, discrete and nonlinear optimization problems. However, it has been observed that standard DPSO algorithm has premature convergence when solving a complex optimization problem like transmission expansion planning (TEP). To resolve this problem an advanced discrete particle swarm optimization (ADPSO) is proposed in this paper. The simulation result shows that optimization of lines loading in transmission expansion planning with ADPSO is better than DPSO from precision view point.

Keywords: ADPSO, TEP problem, Lines loading optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1619
2454 ORPP with MAIEP Based Technique for Loadability Enhancement

Authors: Norziana Aminudin, Titik Khawa Abdul Rahman, Ismail Musirin

Abstract:

One of the factors to maintain system survivability is the adequate reactive power support to the system. Lack of reactive power support may cause undesirable voltage decay leading to total system instability. Thus, appropriate reactive power support scheme should be arranged in order to maintain system stability. The strength of a system capacity is normally denoted as system loadability. This paper presents the enhancement of system loadability through optimal reactive power planning technique using a newly developed optimization technique, termed as Multiagent Immune Evolutionary Programming (MAIEP). The concept of MAIEP is developed based on the combination of Multiagent System (MAS), Artificial Immune System (AIS) and Evolutionary Programming (EP). In realizing the effectiveness of the proposed technique, validation is conducted on the IEEE-26-Bus Reliability Test System. The results obtained from pre-optimization and post-optimization process were compared which eventually revealed the merit of MAIEP.

Keywords: Load margin, MAIEP, Maximum loading point, ORPP.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1496
2453 Mathematical Programming Models for Portfolio Optimization Problem: A Review

Authors: M. Mokhtar, A. Shuib, D. Mohamad

Abstract:

Portfolio optimization problem has received a lot of attention from both researchers and practitioners over the last six decades. This paper provides an overview of the current state of research in portfolio optimization with the support of mathematical programming techniques. On top of that, this paper also surveys the solution algorithms for solving portfolio optimization models classifying them according to their nature in heuristic and exact methods. To serve these purposes, 40 related articles appearing in the international journal from 2003 to 2013 have been gathered and analyzed. Based on the literature review, it has been observed that stochastic programming and goal programming constitute the highest number of mathematical programming techniques employed to tackle the portfolio optimization problem. It is hoped that the paper can meet the needs of researchers and practitioners for easy references of portfolio optimization.

Keywords: Portfolio optimization, Mathematical programming, Multi-objective programming, Solution approaches.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6573
2452 Particle Swarm Optimization for Design of Water Distribution Systems

Authors: A. Vasan

Abstract:

Particle swarm optimization (PSO) technique is applied to design the water distribution pipeline network. A simulation-optimization model is formulated with the objective of minimizing cost and is applied to a benchmark water distribution system optimization problem. The benchmark problem taken for the application of PSO technique to optimize the pipe size of the water distribution network is New York City water supply system problem. The results from the analysis infer that PSO is a potential alternative optimization technique when compared to other heuristic techniques for optimal sizing of water distribution systems.

Keywords: Water distribution systems, Optimization, Particle swarm optimization, Swarm intelligence, New York water supply system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1537
2451 Investigation and Calculation of Seismic Reliability of Structures

Authors: Panam. Zarfam, Mohsen. Javan Pour

Abstract:

Recently, analysis and designing of the structures based on the Reliability theory have been the center of attention. Reason of this attention is the existence of the natural and random structural parameters such as the material specification, external loads, geometric dimensions etc. By means of the Reliability theory, uncertainties resulted from the statistical nature of the structural parameters can be changed into the mathematical equations and the safety and operational considerations can be considered in the designing process. According to this theory, it is possible to study the destruction probability of not only a specific element but also the entire system. Therefore, after being assured of safety of every element, their reciprocal effects on the safety of the entire system can be investigated.

Keywords: Probability, Reliability, Statistics, Uncertainty

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1600
2450 Influence of Wind Induced Fatigue Damage in the Reliability of Wind Turbines

Authors: Emilio A. Berny-Brandt, Sonia E. Ruiz

Abstract:

Steel tubular towers serving as support structures for large wind turbines are subjected to several hundred million stress cycles caused by the turbulent nature of the wind. This causes highcycle fatigue, which could govern the design of the tower. Maintaining the support structure after the wind turbines reach its typical 20-year design life has become a common practice; however, quantifying the changes in the reliability on the tower is not usual. In this paper the effect of fatigue damage in the wind turbine structure is studied whit the use of fracture mechanics, and a method to estimate the reliability over time of the structure is proposed. A representative wind turbine located in Oaxaca, Mexico is then studied. It is found that the system reliability is significantly affected by the accumulation of fatigue damage. 

Keywords: Crack growth, fatigue, Monte Carlo simulation, structural reliability, wind turbines

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2326
2449 The Whale Optimization Algorithm and Its Implementation in MATLAB

Authors: S. Adhirai, R. P. Mahapatra, Paramjit Singh

Abstract:

Optimization is an important tool in making decisions and in analysing physical systems. In mathematical terms, an optimization problem is the problem of finding the best solution from among the set of all feasible solutions. The paper discusses the Whale Optimization Algorithm (WOA), and its applications in different fields. The algorithm is tested using MATLAB because of its unique and powerful features. The benchmark functions used in WOA algorithm are grouped as: unimodal (F1-F7), multimodal (F8-F13), and fixed-dimension multimodal (F14-F23). Out of these benchmark functions, we show the experimental results for F7, F11, and F19 for different number of iterations. The search space and objective space for the selected function are drawn, and finally, the best solution as well as the best optimal value of the objective function found by WOA is presented. The algorithmic results demonstrate that the WOA performs better than the state-of-the-art meta-heuristic and conventional algorithms.

Keywords: Optimization, optimal value, objective function, optimization problems, meta-heuristic optimization algorithms, Whale Optimization Algorithm, Implementation, MATLAB.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2902
2448 SFCL Location Selection Considering Reliability Indices

Authors: Wook-Won Kim, Sung-Yul Kim, Jin-O Kim

Abstract:

The fault current levels through the electric devices have a significant impact on failure probability. New fault current results in exceeding the rated capacity of circuit breaker and switching equipments and changes operation characteristic of overcurrent relay. In order to solve these problems, SFCL (Superconducting Fault Current Limiter) has rising as one of new alternatives so as to improve these problems. A fault current reduction differs depending on installed location. Therefore, a location of SFCL is very important. Also, SFCL decreases the fault current, and it prevents surrounding protective devices to be exposed to fault current, it then will bring a change of reliability. In this paper, we propose method which determines the optimal location when SFCL is installed in power system. In addition, the reliability about the power system which SFCL was installed is evaluated. The efficiency and effectiveness of this method are also shown by numerical examples and the reliability indices are evaluated in this study at each load points. These results show a reliability change of a system when SFCL was installed.

Keywords: Superconducting Fault Current Limiter, OptimalLocation, Reliability

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1680
2447 Suitability of Black Box Approaches for the Reliability Assessment of Component-Based Software

Authors: Anjushi Verma, Tirthankar Gayen

Abstract:

Although, reliability is an important attribute of quality, especially for mission critical systems, yet, there does not exist any versatile model even today for the reliability assessment of component-based software. The existing Black Box models are found to make various assumptions which may not always be realistic and may be quite contrary to the actual behaviour of software. They focus on observing the manner in which the system behaves without considering the structure of the system, the components composing the system, their interconnections, dependencies, usage frequencies, etc.As a result, the entropy (uncertainty) in assessment using these models is much high.Though, there are some models based on operation profile yet sometimes it becomes extremely difficult to obtain the exact operation profile concerned with a given operation. This paper discusses the drawbacks, deficiencies and limitations of Black Box approaches from the perspective of various authors and finally proposes a conceptual model for the reliability assessment of software.

Keywords: Black Box, faults, failure, software reliability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1384
2446 Framework for Delivery Reliability in European Machinery and Equipment Industry

Authors: G. Schuh, A. Kampker, A. Hoeschen, T. Jasinski

Abstract:

Today-s manufacturing companies are facing multiple and dynamic customer-supplier-relationships embedded in nonhierarchical production networks. This complex environment leads to problems with delivery reliability and wasteful turbulences throughout the entire network. This paper describes an operational model based on a theoretical framework which improves delivery reliability of each individual customer-supplier-relationship within non-hierarchical production networks of the European machinery and equipment industry. By developing a non-centralized coordination mechanism based on determining the value of delivery reliability and derivation of an incentive system for suppliers the number of in time deliveries can be increased and thus the turbulences in the production network smoothened. Comparable to an electronic stock exchange the coordination mechanism will transform the manual and nontransparent process of determining penalties for delivery delays into an automated and transparent market mechanism creating delivery reliability.

Keywords: delivery reliability, machinery and equipmentindustry, non-hierarchical production networks, supply chainmanagement

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1559
2445 Distributed Generator Placement for Loss Reduction and Improvement in Reliability

Authors: Priyanka Paliwal, N.P. Patidar

Abstract:

Distributed Power generation has gained a lot of attention in recent times due to constraints associated with conventional power generation and new advancements in DG technologies .The need to operate the power system economically and with optimum levels of reliability has further led to an increase in interest in Distributed Generation. However it is important to place Distributed Generator on an optimum location so that the purpose of loss minimization and voltage regulation is dully served on the feeder. This paper investigates the impact of DG units installation on electric losses, reliability and voltage profile of distribution networks. In this paper, our aim would be to find optimal distributed generation allocation for loss reduction subjected to constraint of voltage regulation in distribution network. The system is further analyzed for increased levels of Reliability. Distributed Generator offers the additional advantage of increase in reliability levels as suggested by the improvements in various reliability indices such as SAIDI, CAIDI and AENS. Comparative studies are performed and related results are addressed. An analytical technique is used in order to find the optimal location of Distributed Generator. The suggested technique is programmed under MATLAB software. The results clearly indicate that DG can reduce the electrical line loss while simultaneously improving the reliability of the system.

Keywords: AENS, CAIDI, Distributed Generation, lossreduction, Reliability, SAIDI

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3101
2444 A Discretizing Method for Reliability Computation in Complex Stress-strength Models

Authors: Alessandro Barbiero

Abstract:

This paper proposes, implements and evaluates an original discretization method for continuous random variables, in order to estimate the reliability of systems for which stress and strength are defined as complex functions, and whose reliability is not derivable through analytic techniques. This method is compared to other two discretizing approaches appeared in literature, also through a comparative study involving four engineering applications. The results show that the proposal is very efficient in terms of closeness of the estimates to the true (simulated) reliability. In the study we analyzed both a normal and a non-normal distribution for the random variables: this method is theoretically suitable for each parametric family.

Keywords: Approximation, asymmetry, experimental design, interference theory, Monte Carlo simulations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1770
2443 Topology Optimization of Aircraft Fuselage Structure

Authors: Muniyasamy Kalanchiam, Baskar Mannai

Abstract:

Topology Optimization is a defined as the method of determining optimal distribution of material for the assumed design space with functionality, loads and boundary conditions [1]. Topology optimization can be used to optimize shape for the purposes of weight reduction, minimizing material requirements or selecting cost effective materials [2]. Topology optimization has been implemented through the use of finite element methods for the analysis, and optimization techniques based on the method of moving asymptotes, genetic algorithms, optimality criteria method, level sets and topological derivatives. Case study of Typical “Fuselage design" is considered for this paper to explain the benefits of Topology Optimization in the design cycle. A cylindrical shell is assumed as the design space and aerospace standard pay loads were applied on the fuselage with wing attachments as constraints. Then topological optimization is done using Finite Element (FE) based software. This optimization results in the structural concept design which satisfies all the design constraints using minimum material.

Keywords: Fuselage, Topology optimization, payloads, designoptimization, Finite Element Analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4094
2442 A Bayesian Network Reliability Modeling for FlexRay Systems

Authors: Kuen-Long Leu, Yung-Yuan Chen, Chin-Long Wey, Jwu-E Chen, Chung-Hsien Hsu

Abstract:

The increasing importance of FlexRay systems in automotive domain inspires unceasingly relative researches. One primary issue among researches is to verify the reliability of FlexRay systems either from protocol aspect or from system design aspect. However, research rarely discusses the effect of network topology on the system reliability. In this paper, we will illustrate how to model the reliability of FlexRay systems with various network topologies by a well-known probabilistic reasoning technology, Bayesian Network. In this illustration, we especially investigate the effectiveness of error containment built in star topology and fault-tolerant midpoint synchronization algorithm adopted in FlexRay communication protocol. Through a FlexRay steer-by-wire case study, the influence of different topologies on the failure probability of the FlexRay steerby- wire system is demonstrated. The notable value of this research is to show that the Bayesian Network inference is a powerful and feasible method for the reliability assessment of FlexRay systems.

Keywords: Bayesian Network, FlexRay, fault tolerance, network topology, reliability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2029
2441 Validity and Reliability of Competency Assessment Implementation (CAI) Instrument Using Rasch Model

Authors: Nurfirdawati Muhamad Hanafi, Azmanirah Ab Rahman, Marina Ibrahim Mukhtar, Jamil Ahmad, Sarebah Warman

Abstract:

This study was conducted to generate empirical evidence on validity and reliability of the item of Competency Assessment Implementation (CAI) Instrument using Rasch Model for polythomous data aided by Winstep software version 3.68. The construct validity was examined by analyzing the point-measure correlation index (PTMEA), infit and outfit MNSQ values; meanwhile the reliability was examined by analyzing item reliability index. A survey technique was used as the major method with the CAI instrument on 156 teachers from vocational schools. The results have shown that the reliability of CAI Instrument items were between 0.80 and 0.98. PTMEA Correlation is in positive values, in which the item is able to distinguish between the ability of the respondent. Statistical data obtained show that out of 154 items, 12 items from the instrument suggested to be omitted. This study is hoped could bring a new direction to the process of data analysis in educational research.

Keywords: Competency Assessment, Reliability, Validity, Item Analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2831