Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33156
ORPP with MAIEP Based Technique for Loadability Enhancement
Authors: Norziana Aminudin, Titik Khawa Abdul Rahman, Ismail Musirin
Abstract:
One of the factors to maintain system survivability is the adequate reactive power support to the system. Lack of reactive power support may cause undesirable voltage decay leading to total system instability. Thus, appropriate reactive power support scheme should be arranged in order to maintain system stability. The strength of a system capacity is normally denoted as system loadability. This paper presents the enhancement of system loadability through optimal reactive power planning technique using a newly developed optimization technique, termed as Multiagent Immune Evolutionary Programming (MAIEP). The concept of MAIEP is developed based on the combination of Multiagent System (MAS), Artificial Immune System (AIS) and Evolutionary Programming (EP). In realizing the effectiveness of the proposed technique, validation is conducted on the IEEE-26-Bus Reliability Test System. The results obtained from pre-optimization and post-optimization process were compared which eventually revealed the merit of MAIEP.Keywords: Load margin, MAIEP, Maximum loading point, ORPP.
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1084562
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1504References:
[1] F. C. V. Malange et al., "Real Power Losses Reduction and Loading Margin Improvement via Continuation Method," in IEEE Trans. Power Syst.,Vol. 19, No. 3, Aug. 2003, pp. 1690-1692.
[2] Naoto Yorino et al., "Predictor/Corrector Scheme for Obtaining Q-Limit Points for Power Flow Studies," in IEEE Trans. Power Syst.,Vol. 20, No. 1, Feb. 2005, pp. 130-137.
[3] Mohd. Rozely Kalil et al., "Ant Colony Optimization for Maximum Loadability Search in Voltage Control Study," in Inter. Power and Energy Conf., Putrajaya, Malaysia, 2006.
[4] Ismail Musirin and Titik Khawa Abdul Rahman, "Evolutionary Programming based Optimization Technique for Maximum Loadability Estimation in Electric Power System," in National Power and Energy Conf., Bangi, Malaysia, 2003.
[5] Amgad A. El-Dib et al., "Maximum Loadability of Power System using Hybrid Particle Swarm Optimization," in Electric Power System Research, 76(2006) 485-492.
[6] Marcos A. N. Guimaraes, Jorge F. C. Lorenzeti and Carlos A. Castro, "Reconfiguration of Distribution System for Voltage Stability Margin Enhancement using Tabu Search," in Inter. Conf. on Power Syst. Technology, Singapore, 21-24 November 2004.
[7] Arthit Sode_Yome et al., "A Maximum Loading Margin Method for Static Voltage Stability in Power System," in IEEE Trans. Power Syst.,Vol. 21, No. 2, May 2006, pp. 799-808.
[8] Ronghai Wang and Robert H. Lasseter, "Re-dispatching Generation to Increase Power System Security Margin and Support Low Voltage Bus," in IEEE Trans. Power Syst.,Vol. 15, No. 2, May 2000, pp. 496-501.
[9] E. A. Leonidaki et al., "Decision Trees for Determination of Optimal Location and Rate of Series Compensation to Increase Power System Loading Margin," in IEEE Trans. Power Syst.,Vol. 21, No. 3, Aug. 2006, pp. 1303-1310.
[10] A. Kazemi and B. Badrzadeh, "Modelling and Simulation of SVC and TCSC to Study their Limits on Maximum Loadability Point," in Electrical Power & Energy Systems, 26(2004) 619-626.
[11] Norziana Aminudin et al., "Optimal Power Flow for Load Margin Improvement using Evolutionary Programming," in The 5th Student Conf. on Research and Development, Malaysia, 2007.
[12] Yongchun Su et al., "Reactive Power Generation Management for the Improvement of Power System Voltage Stability Margin," in Proc. of The 6th World Congress on Intelligent Control and Automation, Dalian, China, 2006.
[13] T. V. Menezes et al., "MVAR Management on the Pre-dispatch Problem for Improving Voltage Stability Margin," in IEE Proc.-Gener. Transm. Distrib., Vol. 151, No. 6, Nov. 2004.
[14] B. Venkatesh et al., "A New Optimal Reactive Power Scheduling Method for Loss Minimization and Voltage Stability Margin Maximization Using Successive Multi-Objective Fuzzy LP Technique," in IEEE Trans. Power Syst.,Vol. 15, No. 2, May 2000.
[15] F. M. Echavarren, E. Lobato and L. Rouco, "A Load Shedding Algorithm for Improvement of Load Margin to Voltage Collapse," in IEEE Bologna PowerTech Conf., Italy, 2003.
[16] Scott Greene, Ian Dobson and Fernando L. Alvarado, "Sensitivity of the Loading Margin to Voltage Collapse with Respect to Arbitrary Parameters," in IEEE Trans. Power Syst.,Vol. 12, No. 1, Feb. 1997, pp. 262-272.
[17] Yog Raj Sood, "Evolutionary Programming based Optimal Power Flow and its Validation for Deregulated Power System Analysis," in Electrical Power & Energy Systems, 29(2007) 65-75.
[18] Jason Yuryevich and Kit Po Wong, "Evolutionary Programming based Optimal Power Flow Algorithm," in IEEE Trans. Power Syst.,Vol. 14, No. 4, Nov. 1999, pp. 1245-1250.
[19] B. K. Panipraghi et al., "A Clonal Algorithm to Solve Economic Load Dispatch," in Electric Power System Research, 77(2007) 1381-1389.
[20] W. Z. Zhong et al., "A Multiagent Genetic Algorithm for Global Numerical Optimization," in IEEE Trans. Syst. Man. Cybern. B. Cybern.,Vol. 34, pp. 1128-1141, Apr. 2004.
[21] B. Zhao et al., "A Multiagent-Based Particle Swarm Optimization Approach for Optimal Reactive Power Dispatch," in IEEE Trans. Power Syst.,Vol. 20, No. 2, May. 2005.