Search results for: Hydraulic conductivity
488 Li4SiO4 Prepared by Sol-gel Method as Potential Host for LISICON Structured Solid Electrolytes
Authors: Syed Bahari Ramadzan Syed Adnan, Nor Sabirin Mohamed, Norwati K.A
Abstract:
In this study, Li4SiO4 powder was successfully synthesized via sol gel method followed by drying at 150oC. Lithium oxide, Li2O and silicon oxide, SiO2 were used as the starting materials with citric acid as the chelating agent. The obtained powder was then sintered at various temperatures. Crystallographic phase analysis, morphology and ionic conductivity were investigated systematically employing X-ray diffraction, Fourier Transform Infrared, Scanning Electron Microscopy and AC impedance spectroscopy. XRD result showed the formation of pure monoclinic Li4SiO4 crystal structure with lattice parameters a = 5.140 Å, b = 6.094 Å, c = 5.293 Å, β = 90o in the sample sintered at 750oC. This observation was confirmed by FTIR analysis. The bulk conductivity of this sample at room temperature was 3.35 × 10-6 S cm-1 and the highest bulk conductivity of 1.16 × 10-4 S cm-1 was obtained at 100°C. The results indicated that, the Li4SiO4 compound has potential to be used as host for LISICON structured solid electrolyte for low temperature application.Keywords: Conductivity, LISICON, Li4SiO4, Solid electrolyte, Structure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3320487 Analyzing of Temperature-Dependent Thermal Conductivity Effect in the Numerical Modeling of Fin-Tube Radiators: Introduction of a New Method
Authors: Farzad Bazdidi-Tehrani, Mohammad Hadi Kamrava
Abstract:
In all industries which are related to heat, suitable thermal ranges are defined for each device to operate well. Consideration of these limits requires a thermal control unit beside the main system. The Satellite Thermal Control Unit exploits from different methods and facilities individually or mixed. For enhancing heat transfer between primary surface and the environment, utilization of radiating extended surfaces are common. Especially for large temperature differences; variable thermal conductivity has a strong effect on performance of such a surface .In most literatures, thermo-physical properties, such as thermal conductivity, are assumed as constant. However, in some recent researches the variation of these parameters is considered. This may be helpful for the evaluation of fin-s temperature distribution in relatively large temperature differences. A new method is introduced to evaluate temperature-dependent thermal conductivity values. The finite volume method is employed to simulate numerically the temperature distribution in a space radiating fin. The present modeling is carried out for Aluminum as fin material and compared with previous method. The present results are also compared with those of two other analytical methods and good agreement is shown.Keywords: Variable thermal conductivity, New method, Finitevolume method, Combined heat transfer, Extended Surface
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2328486 Self-Excited Vibration in Hydraulic Ball Check Valve
Authors: L. Grinis, V. Haslavsky, U. Tzadka
Abstract:
This paper describes an experimental, theoretical model and numerical study of concentrated vortex flow past a sphere in a hydraulic check valve. The phenomenon of the rotation of the ball around the axis of the device through which liquid flows has been found. That is, due to the rotation of the sphere in the check valve vibration is caused. We observe the rotation of the sphere around the longitudinal axis of the check valve. This rotation is induced by a vortex shedding from the sphere. We will discuss computational simulation and experimental investigations of this strong sphere rotation. The frequency of the sphere vibration and interaction with the check valve wall has been measured as a function of the wide range Reynolds Number. The validity of the computational simulation and of the assumptions on which it is based has been proved experimentally. This study demonstrates the possibility to control the vibrations in a hydraulic system and proves to be very effective suppression of the self-excited vibration.Keywords: Check-valve, vibration, vortex shedding
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2844485 A Note on MHD Flow and Heat Transfer over a Curved Stretching Sheet by Considering Variable Thermal Conductivity
Authors: M. G. Murtaza, E. E. Tzirtzilakis, M. Ferdows
Abstract:
The mixed convective flow of MHD incompressible, steady boundary layer in heat transfer over a curved stretching sheet due to temperature dependent thermal conductivity is studied. We use curvilinear coordinate system in order to describe the governing flow equations. Finite difference solutions with central differencing have been used to solve the transform governing equations. Numerical results for the flow velocity and temperature profiles are presented as a function of the non-dimensional curvature radius. Skin friction coefficient and local Nusselt number at the surface of the curved sheet are discussed as well.
Keywords: Curved stretching sheet, finite difference method, MHD, variable thermal conductivity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1102484 Effect of Chromium Behavior on Mechanical and Electrical Properties of P/M Copper-Chromium Alloy Dispersed with VGCF
Authors: Hisashi Imai, Kuan-Yu Chen, Katsuyoshi Kondoh, Hung-Yin Tsai, Junko Umeda
Abstract:
Microstructural and electrical properties of Cu-chromium alloy (Cu-Cr) dispersed with vapor-grown carbon fiber (VGCF) prepared by powder metallurgy (P/M) process have been investigated. Cu-0.7 mass% Cr pre-alloyed powder (Cu-Cr) made by water atomization process was used as raw materials, which contained solid solute Cr elements in Cu matrix. The alloy powder coated with un-bundled VGCF by using oil coating process was consolidated at 1223 K in vacuum by spark plasma sintering, and then extruded at 1073 K. The extruded Cu-Cr alloy (monolithic alloy) had 209.3 MPa YS and 80.4 IACS% conductivity. The extruded Cu-Cr with 0.1 mass% VGCF composites revealed a small decrease of YS compared to the monolithic Cu-Cr alloy. On the other hand, the composite had a higher electrical conductivity than that of the monolithic alloy. For example, Cu-Cr with 0.1 mass% VGCF composite sintered for 5 h showed 182.7 MPa YS and 89.7 IACS% conductivity. In the case of Cu-Cr with VGCFs composites, the Cr concentration was observed around VGCF by SEM-EDS analysis, where Cr23C6 compounds were detected by TEM observation. The amount of Cr solid solution in the matrix of the Cu-Cr composites alloy was about 50% compared to the monolithic Cu-Cr sintered alloy, and resulted in the remarkable increment of the electrical conductivity.Keywords: Powder metallurgy Cu-Cr alloy powder, vapor-grown carbon fiber, electrical conductivity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2210483 Synthesis of New Bio-Based Solid Polymer Electrolyte Polyurethane-LiClO4 via Prepolymerization Method: Effect of NCO/OH Ratio on Their Chemical, Thermal Properties and Ionic Conductivity
Authors: C. S. Wong, K. H. Badri, N. Ataollahi, K. P. Law, M. S. Su’ait, N. I. Hassan
Abstract:
Novel bio-based polymer electrolyte was synthesized with LiClO4 as the main source of charge carrier. Initially, polyurethane-LiClO4 polymer electrolytes were synthesized via prepolymerization method with different NCO/OH ratios and labelled them as PU1, PU2, PU3 and PU4. Fourier transform infrared (FTIR) analysis indicates the co-ordination between Li+ ion and polyurethane in PU1. Differential scanning calorimetry (DSC) analysis indicates PU1 has the highest glass transition temperature (Tg) corresponds to the most abundant urethane group which is the hard segment in PU1. Scanning electron microscopy (SEM) shows the good miscibility between lithium salt and the polymer. The study found that PU1 possessed the greatest ionic conductivity and the lowest activation energy, Ea. All the polyurethanes exhibited linear Arrhenius variations indicating ion transport via simple lithium ion hopping in polyurethane. This research proves the NCO content in polyurethane plays an important role in affecting the ionic conductivity of this polymer electrolyte.
Keywords: Ionic conductivity, Palm kernel oil-based monoester polyol, polyurethane, solid polymer electrolyte.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3144482 Sizing the Protection Devices to Control Water Hammer Damage
Authors: I. Abuiziah, A. Oulhaj, K. Sebari, D. Ouazar
Abstract:
The primary objectives of transient analysis are to determine the values of transient pressures that can result from flow control operations and to establish the design criteria for system equipment and devices (such as control devices and pipe wall thickness) so as to provide an acceptable level of protection against system failure due to pipe collapse or bursting. Because of the complexity of the equations needed to describe transients, numerical computer models are used to analyze transient flow hydraulics. An effective numerical model allows the hydraulic engineer to analyze potential transient events and to identify and evaluate alternative solutions for controlling hydraulic transients, thereby protecting the integrity of the hydraulic system. This paper presents the influence of using the protection devices to control the adverse effects due to excessive and low pressure occurs in the transient.
Keywords: Flow Transient, Water hammer, Pipeline System, Surge Tank, Simulation Model, Protection Devices.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9492481 Model of Continuous Cheese Whey Fermentation by Candida Pseudotropicalis
Authors: Rudy Agustriyanto, Akbarningrum Fatmawati
Abstract:
The utilization of cheese whey as a fermentation substrate to produce bio-ethanol is an effort to supply bio-ethanol demand as a renewable energy. Like other process systems, modeling is also required for fermentation process design, optimization and plant operation. This research aims to study the fermentation process of cheese whey by applying mathematics and fundamental concept in chemical engineering, and to investigate the characteristic of the cheese whey fermentation process. Steady state simulation results for inlet substrate concentration of 50, 100 and 150 g/l, and various values of hydraulic retention time, showed that the ethanol productivity maximum values were 0.1091, 0.3163 and 0.5639 g/l.h respectively. Those values were achieved at hydraulic retention time of 20 hours, which was the minimum value used in this modeling. This showed that operating reactor at low hydraulic retention time was favorable. Model of bio-ethanol production from cheese whey will enhance the understanding of what really happen in the fermentation process.Keywords: Cheese whey, ethanol, fermentation, modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1817480 Study of Fly Ash Geopolymer Based Composites with Polyester Waste Addition
Authors: Konstantinos Sotiriadis, Olesia Mikhailova
Abstract:
In the present work, fly ash geopolymer based composites including polyester (PES) waste were studied. Specimens of three compositions were prepared: (a) fly ash geopolymer with 5% PES waste; (b) fly ash geopolymer mortar with 5% PES waste; (c) fly ash geopolymer mortar with 6.25% PES waste. Compressive and bending strength measurements, water absorption test and determination of thermal conductivity coefficient were performed. The results showed that the addition of sand in a mixture of geopolymer with 5% PES content led to higher compressive strength, while it increased water absorption and reduced thermal conductivity coefficient. The increase of PES addition in geopolymer mortars resulted in a more dense structure, indicated by the increase of strength and thermal conductivity and the decrease of water absorption.
Keywords: Fly ash, geopolymers, polyester waste, composites.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2497479 Thermal Properties of the Ground in Cyprus and Their Correlations and Effect on the Efficiency of Ground Heat Exchangers
Authors: G. A. Florides, E. Theofanous, I. Iosif-Stylianou, P. Christodoulides, S. Kalogirou, V. Messarites, Z. Zomeni, E. Tsiolakis, P. D. Pouloupatis, G. P. Panayiotou
Abstract:
Ground Coupled Heat Pumps (GCHPs) exploit effectively the heat capacity of the ground, with the use of Ground Heat Exchangers (GHE). Depending on the mode of operation of the GCHPs, GHEs dissipate or absorb heat from the ground. For sizing the GHE the thermal properties of the ground need to be known. This paper gives information about the density, thermal conductivity, specific heat and thermal diffusivity of various lithologies encountered in Cyprus with various relations between these properties being examined through comparison and modeling. The results show that the most important correlation is the one encountered between thermal conductivity and thermal diffusivity with both properties showing similar response to the inlet and outlet flow temperature of vertical and horizontal heat exchangers.
Keywords: Ground heat exchangers, ground thermal conductivity, ground thermal diffusivity, ground thermal properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1916478 Development of the Measurement Apparatus for the Effective Thermal Conductivity of Core Material
Authors: Jongmin Kim, Tae-Ho Song
Abstract:
A measurement apparatus is designed and fabricated to measure the effective thermal conductivity (keff) of a VIP (vacuum insulation panel) core specimen under various vacuum states and external loads. The apparatus consists of part for measuring keff, and parts for controlling external load and vacuum condition. Uncertainty of the apparatus is validated by measuring the standard reference material and comparing with commercial devices with VIP samples. Assessed uncertainty is maximum 2.5 % in case of the standard reference material, 10 % in case of VIP samples. Using the apparatus, keff of glass paper under various vacuum levels is examined.Keywords: Effective thermal conductivity, guarded hot plate method, vacuum insulation panel
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2090477 Preparation of ATO Conductive Particles with Narrow Size Distribution
Authors: Yueying Wu, Fengzhu Lv, Yihe Zhang, Zixian Xu
Abstract:
Antimosy-doped tin oxide (ATO) particles were prepared via chemical coprecipitation and reverse emulsion. The size and size distribution of ATO particles were obviously decreased via reverse microemulsion method. At the relatively high yield the ATO particles were nearly spherical in shape, meanwhile the crystalline structure and excellent conductivity were reserved, which could satisfy the requirement as composite fillers, such as dielectric filler of polyimide film.Keywords: ATO particle, Conductivity, Distribution, Reverse emulsion
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1886476 Strength and Permeability of the Granular Pavement Materials Treated with Polyacrylamide Based Additive
Authors: Romel N. Georgees, Rayya A Hassan, Robert P. Evans, Piratheepan Jegatheesan
Abstract:
Among other traditional and non-traditional additives, polymers have shown an efficient performance in the field and improved sustainability. Polyacrylamide (PAM) is one such additive that has demonstrated many advantages including a reduction in permeability, an increase in durability and the provision of strength characteristics. However, information about its effect on the improved geotechnical characteristics is very limited to the field performance monitoring. Therefore, a laboratory investigation was carried out to examine the basic and engineering behaviors of three types of soils treated with a PAM additive. The results showed an increase in dry density and unconfined compressive strength for all the soils. The results further demonstrated an increase in unsoaked CBR and a reduction in permeability for all stabilized samples.Keywords: CBR, Hydraulic conductivity, PAM, Unconfined compressive strength.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1977475 Ohmic Quality Factor and Efficiency Estimation for a Gyrotron Cavity
Authors: R. K. Singh, P.K.Jain
Abstract:
Operating a device at high power and high frequency is a major problem because wall losses greatly reduce the efficiency of the device. In the present communication, authors analytically analyzed the dependence of ohmic/RF efficiency, the fraction of output power with respect to the total power generated, of gyrotron cavity structure on the conductivity of copper for the second harmonic TE0,6 mode. This study shows a rapid fall in the RF efficiency as the quality (conductivity) of copper degrades. Starting with an RF efficiency near 40% at the conductivity of ideal copper (5.8 x 107 S/m), the RF efficiency decreases (upto 8%) as the copper quality degrades. Assuming conductivity half that of ideal copper the RF efficiency as a function of diffractive quality factor, Qdiff, has been studied. Here the RF efficiency decreases rapidly with increasing diffractive Q. Ohmic wall losses as a function of frequency for 460 GHz gyrotron cavity excited in TE0,6 mode has also been analyzed. For 460 GHz cavity, the extracted power is reduced to 32% of the generated power due to ohmic losses in the walls of the cavity.Keywords: Diffractive quality factor, Gyrotron, Ohmic wall losses, Open cavity resonator, RF Efficiency.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2243474 A High Thermal Dissipation Performance Polyethyleneterephthalate Heat Pipe
Authors: Chih-Chieh Chen, Chih-Hao Chen, Guan-Wei Wu, Sih-Li Chen
Abstract:
A high thermal dissipation performance polyethylene terephthalate heat pipe has been fabricated and tested in this research. Polyethylene terephthalate (PET) is used as the container material instead of copper. Copper mesh and methanol are sealed in the middle of two PET films as the wick structure and working fluid. Although the thermal conductivity of PET (0.15-0.24 W/m·K) is much smaller than copper (401 W/m·K), the experiment results reveal that the PET heat pipe can reach a minimum thermal resistance of 0.146 (oC/W) and maximum effective thermal conductivity of 18,310 (W/m·K) with 36.9 vol% at 26 W input power. However, when the input power is larger than 30 W, the laminated PET will debond due to the high vapor pressure of methanol.
Keywords: PET, heat pipe, thermal resistance, effective thermal conductivity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2995473 Determine of Constant Coefficients to RelateTotal Dissolved Solids to Electrical Conductivity
Authors: M. Siosemarde, F. Kave, E. Pazira, H. Sedghi, S. J. Ghaderi
Abstract:
Salinity is a measure of the amount of salts in the water. Total Dissolved Solids (TDS) as salinity parameter are often determined using laborious and time consuming laboratory tests, but it may be more appropriate and economical to develop a method which uses a more simple soil salinity index. Because dissolved ions increase salinity as well as conductivity, the two measures are related. The aim of this research was determine of constant coefficients for predicting of Total Dissolved Solids (TDS) based on Electrical Conductivity (EC) with Statistics of Correlation coefficient, Root mean square error, Maximum error, Mean Bias error, Mean absolute error, Relative error and Coefficient of residual mass. For this purpose, two experimental areas (S1, S2) of Khuzestan province-IRAN were selected and four treatments with three replications by series of double rings were applied. The treatments were included 25cm, 50cm, 75cm and 100cm water application. The results showed the values 16.3 & 12.4 were the best constant coefficients for predicting of Total Dissolved Solids (TDS) based on EC in Pilot S1 and S2 with correlation coefficient 0.977 & 0.997 and 191.1 & 106.1 Root mean square errors (RMSE) respectively.Keywords: constant coefficients, electrical conductivity, Khuzestan plain and total dissolved solids.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3902472 Optimization of Shale Gas Production by Advanced Hydraulic Fracturing
Authors: Fazl Ullah, Rahmat Ullah
Abstract:
This paper shows a comprehensive learning focused on the optimization of gas production in shale gas reservoirs through hydraulic fracturing. Shale gas has emerged as an important unconventional vigor resource, necessitating innovative techniques to enhance its extraction. The key objective of this study is to examine the influence of fracture parameters on reservoir productivity and formulate strategies for production optimization. A sophisticated model integrating gas flow dynamics and real stress considerations is developed for hydraulic fracturing in multi-stage shale gas reservoirs. This model encompasses distinct zones: a single-porosity medium region, a dual-porosity average region, and a hydraulic fracture region. The apparent permeability of the matrix and fracture system is modeled using principles like effective stress mechanics, porous elastic medium theory, fractal dimension evolution, and fluid transport apparatuses. The developed model is then validated using field data from the Barnett and Marcellus formations, enhancing its reliability and accuracy. By solving the partial differential equation by means of COMSOL software, the research yields valuable insights into optimal fracture parameters. The findings reveal the influence of fracture length, diversion capacity, and width on gas production. For reservoirs with higher permeability, extending hydraulic fracture lengths proves beneficial, while complex fracture geometries offer potential for low-permeability reservoirs. Overall, this study contributes to a deeper understanding of hydraulic cracking dynamics in shale gas reservoirs and provides essential guidance for optimizing gas production. The research findings are instrumental for energy industry professionals, researchers, and policymakers alike, shaping the future of sustainable energy extraction from unconventional resources.
Keywords: Fluid-solid coupling, apparent permeability, shale gas reservoir, fracture property, numerical simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 167471 Influence of Hydraulic Retention Time on Biogas Production from Frozen Seafood Wastewater using Decanter Cake as Anaerobic Co-digestion Material
Authors: Thaniya Kaosol, Narumol Sohgrathok
Abstract:
In this research, an anaerobic co-digestion using decanter cake from palm oil mill industry to improve the biogas production from frozen seafood wastewater is studied using Continuously Stirred Tank Reactor (CSTR) process. The experiments were conducted in laboratory-scale. The suitable Hydraulic Retention Time (HRT) was observed in CSTR experiments with 24 hours of mixing time using the mechanical mixer. The HRT of CSTR process impacts on the efficiency of biogas production. The best performance for biogas production using CSTR process was the anaerobic codigestion for 20 days of HRT with the maximum methane production rate of 1.86 l/d and the average maximum methane production of 64.6%. The result can be concluded that the decanter cake can improve biogas productivity of frozen seafood wastewater.
Keywords: anaerobic co-digestion, frozen seafood wastewater, decanter cake, biogas, hydraulic retention time
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4670470 Prospects for Building Mobile Micro Hydro Power Plants with Information Management Systems
Authors: B. S. Akhmetov, P. T.Kharitonov, L. Sh.Balgabayeva, O. V. Kisseleva, T. S. Kartbayev
Abstract:
This article analyzes the applicability of known renewable energy technical means as mobile power sources under the field and extreme conditions. The requirements are determined for the parameters of mobile micro HPP. The application prospectively of the mobile micro HPP with intelligent control systems is proved for this purpose. Variants of low-speed electric generators for micro HPP are given. Variants of designs for mobile micro HPP are presented with direct (gearless) transfer of torque from the hydraulic drive to the rotor of the electric generator. Variant of the hydraulic drive for micro HPP is described workable at low water flows. A general structure of the micro HPP intelligent system control is offered that implements the principle of maximum energy efficiency. The legitimacy of construction and application of mobile micro HPP is proved as electrical power sources for life safety of people under the field and extreme conditions.
Keywords: Mobile micro hydro power plants, information management systems, hydraulic drive.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2005469 Kinematic Parameters for Asa River Routing
Authors: A. O. Ogunlela, B. Adelodun
Abstract:
Flood routing is used in estimating the travel time and attenuation of flood waves as they move downstream a river or channel. The routing procedure is usually classified as hydrologic or hydraulic. Hydraulic methods utilize the equations of continuity and motion. Kinematic routing, a hydraulic technique was used in routing Asa River at Ilorin. The river is of agricultural and industrial importance to Ilorin, the capital of Kwara State, Nigeria. This paper determines the kinematic parameters of kinematic wave velocity, time step, time required to traverse, weighting factor and change in length. Values obtained were 4.67 m/s, 19 secs, 21 secs, 0.75 and 100 m, respectively. These parameters adequately reflect the watershed and flow characteristics essential for the routing. The synthetic unit hydrograph was developed using the Natural Resources Conservation Service (NRCS) method. 24-hr 10yr, 25yr, 50yr and 100yr storm hydrographs were developed from the unit hydrograph using convolution procedures and the outflow hydrographs were obtained for each of 24-hr 10yr, 25yr, 50yr and 100yr indicating 0.11 m3/s, 0.10 m3/s, 0.10 m3/s and 0.10 m3/s attenuations respectively.
Keywords: Asa River, Kinematic parameters, Routing
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2301468 3D CFD Simulation of Thermal Hydraulic Performances on Louvered Fin Automotive Heat Exchangers
Authors: S. Ben Saad, F. Ayad, H. Damotte
Abstract:
This study deals with Computational Fluid Dynamics (CFD) studies of the interactions between the air flow and louvered fins which equipped the automotive heat exchangers. 3D numerical simulation results are obtained by using the ANSYS Fluent 13.0 code and compared to experimental data. The paper studies the effect of louver angle and louver pitch geometrical parameters, on overall thermal hydraulic performances of louvered fins. The comparison between CFD simulations and experimental data show that established 3-D CFD model gives a good agreement. The validation agrees, with about 7% of deviation respectively of friction and Colburn factors to experimental results. As first, it is found that the louver angle has a strong influence on the heat transfer rate. Then, louver angle and louver pitch variation of the louvers and their effects on thermal hydraulic performances are studied. In addition to this study, it is shown that the second half of the fin takes has a significant contribution on pressure drop increase without any increase in heat transfer.Keywords: CFD simulations, automotive heat exchanger, performances.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2990467 Numerical Modeling of Flow in USBR II Stilling Basin with End Adverse Slope
Authors: Hamidreza Babaali, Alireza Mojtahedi, Nasim Soori, Saba Soori
Abstract:
Hydraulic jump is one of the effective ways of energy dissipation in stilling basins that the energy is highly dissipated by jumping. Adverse slope surface at the end stilling basin is caused to increase energy dissipation and stability of the hydraulic jump. In this study, the adverse slope has been added to end of United States Bureau of Reclamation (USBR) II stilling basin in hydraulic model of Nazloochay dam with scale 1:40, and flow simulated into stilling basin using Flow-3D software. The numerical model is verified by experimental data of water depth in stilling basin. Then, the parameters of water level profile, Froude Number, pressure, air entrainment and turbulent dissipation investigated for discharging 300 m3/s using K-Ɛ and Re-Normalization Group (RNG) turbulence models. The results showed a good agreement between numerical and experimental model as numerical model can be used to optimize of stilling basins.
Keywords: Experimental and numerical modeling, end adverse slope, flow parameters, USBR II Stilling Basin.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 994466 A Comparative Studies on Methanesulfonic and p-Touluene Sulfonic Acid Incorporated Polyacrylamide Gel Polymer Electrolyte for Tin-Air Battery
Authors: S. Sumathi, V. Sethuprakhash, W. J. Basirun
Abstract:
This study was focused on polymer electrolytes containing methanesulfonic acid (MSA) and p-toluene sulfonic acid (pTSA) mixed with polyacrylamide (PAAm) respectively. Impedance Spectroscopy technique has been employed to compare the ionic conductivity of these polymer electrolytes. The ionic conductivity of the PAAm hydrogel electrolytes increase upon adding the sulfonic acids. Ionic conductivity of PAAm-pTSA is higher than PAAm-MSA. The electrochemical performance evaluations were done with the tin-air cells discharge at zero current for 30minutes and at constant current density of 2.5, 5, 7.5, 10, 12.5 and 15mA/cm2. The tin-air cell of PAAm-MSA produce higher specific discharge capacity compared to PAAm-pTSA. Open-circuit voltage measurement revealed a higher voltage for tin-air cell of PAAm-MSA which is 1.27V.
Keywords: Methane sulfonic acid, polyacrylamide, polymer gel electrolytes, p-toluene sulfonic acid.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3644465 Thermal Hydraulic Analysis of the IAEA 10MW Benchmark Reactor under Normal Operating Condition
Authors: Hamed Djalal
Abstract:
The aim of this paper is to perform a thermal-hydraulic analysis of the IAEA 10 MW benchmark reactor solving analytically and numerically, by mean of the finite volume method, respectively the steady state and transient forced convection in rectangular narrow channel between two parallel MTR-type fuel plates, imposed under a cosine shape heat flux. A comparison between both solutions is presented to determine the minimal coolant velocity which can ensure a safe reactor core cooling, where the cladding temperature should not reach a specific safety limit 90 °C. For this purpose, a computer program is developed to determine the principal parameter related to the nuclear core safety, such as the temperature distribution in the fuel plate and in the coolant (light water) as a function of the inlet coolant velocity. Finally, a good agreement is noticed between the both analytical and numerical solutions, where the obtained results are displayed graphically.
Keywords: Forced convection, friction factor pressure drop thermal hydraulic analysis, vertical heated rectangular channel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 866464 Change of the Thermal Conductivity of Polystyrene Insulation in term of Temperature at the Mid Thickness of the Insulation Material: Impact on the Cooling Load
Authors: M. Khoukhi
Abstract:
Accurate prediction of the cooling/heating load and consequently, the sizing of the heating, ventilating, and air-conditioning equipment require precise calculation of the heat transfer mainly by conduction through envelope components of a building. The thermal resistance of most thermal insulation materials depends on the operating temperature. The temperature to which the insulation materials are exposed varies, depending on the thermal resistance of the materials, the location of the insulation layer within the assembly system, and the effective temperature which depends on the amount of solar radiation received on the surface of the assembly. The main objective of this paper is to investigate the change of the thermal conductivity of polystyrene insulation material in terms of the temperature at the mid-thickness of the material and its effect on the cooling load required by the building.
Keywords: Operating temperature, polystyrene insulation, thermal conductivity, cooling load.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2531463 Design and Performance Analysis of a Hydro-Power Rim-Driven Superconducting Synchronous Generator
Authors: A. Hassannia, S. Ramezani
Abstract:
The technology of superconductivity has developed in many power system devices such as transmission cable, transformer, current limiter, motor and generator. Superconducting wires can carry high density current without loss, which is the capability that is used to design the compact, lightweight and more efficient electrical machines. Superconducting motors have found applications in marine and air propulsion systems as well as superconducting generators are considered in low power hydraulic and wind generators. This paper presents a rim-driven superconducting synchronous generator for hydraulic power plant. The rim-driven concept improves the performance of hydro turbine. Furthermore, high magnetic field that is produced by superconducting windings allows replacing the rotor core. As a consequent, the volume and weight of the machine is decreased significantly. In this paper, a 1 MW coreless rim-driven superconducting synchronous generator is designed. Main performance characteristics of the proposed machine are then evaluated using finite elements method and compared to an ordinary similar size synchronous generator.
Keywords: Coreless machine, electrical machine design, hydraulic generator, rim-driven machine, superconducting generator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 970462 High-Fidelity 1D Dynamic Model of a Hydraulic Servo Valve Using 3D Computational Fluid Dynamics and Electromagnetic Finite Element Analysis
Authors: D. Henninger, A. Zopey, T. Ihde, C. Mehring
Abstract:
The dynamic performance of a 4-way solenoid operated hydraulic spool valve has been analyzed by means of a one-dimensional modeling approach capturing flow, magnetic and fluid forces, valve inertia forces, fluid compressibility, and damping. Increased model accuracy was achieved by analyzing the detailed three-dimensional electromagnetic behavior of the solenoids and flow behavior through the spool valve body for a set of relevant operating conditions, thereby allowing the accurate mapping of flow and magnetic forces on the moving valve body, in lieu of representing the respective forces by lower-order models or by means of simplistic textbook correlations. The resulting high-fidelity one-dimensional model provided the basis for specific and timely design modification eliminating experimentally observed valve oscillations.Keywords: Dynamic performance model, high-fidelity model, 1D-3D decoupled analysis, solenoid-operated hydraulic servo valve, CFD and electromagnetic FEA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1152461 The Effect of Acrylic Gel Grouting on Groundwater in Porous Media
Authors: S. Wagner, C. Boley, Y. Forouzandeh
Abstract:
When digging excavations, groundwater bearing layers are often encountered. In order to allow anhydrous excavation, soil groutings are carried out, which form a water-impermeable layer. As it is injected into groundwater areas, the effects of the materials used on the environment must be known. Developing an eco-friendly, economical and low viscous acrylic gel which has a sealing effect on groundwater is therefore a significant task. At this point the study begins. Basic investigations with the rheometer and a reverse column experiment have been performed with different mixing ratios of an acrylic gel. A dynamic rheology study was conducted to determine the time at which the gel still can be processed and the maximum gel strength is reached. To examine the effect of acrylic gel grouting on determine the parameters pH value, turbidity, electric conductivity, and total organic carbon on groundwater, an acrylic gel was injected in saturated sand filled the column. The structure was rinsed with a constant flow and the eluate was subsequently examined. The results show small changes in pH values and turbidity but there is a dependency between electric conductivity and total organic carbon. The curves of the two parameters react at the same time, which means that the electrical conductivity in the eluate can be measured constantly until the maximum is reached and only then must total organic carbon (TOC) samples be taken.
Keywords: Acrylic gel grouting, dynamic rheology study, electric conductivity, total organic carbon.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 543460 Thermoelectric Properties of Doped Polycrystalline Silicon Film
Authors: Li Long, Thomas Ortlepp
Abstract:
The transport properties of carriers in polycrystalline silicon film affect the performance of polycrystalline silicon-based devices. They depend strongly on the grain structure, grain boundary trap properties and doping concentration, which in turn are determined by the film deposition and processing conditions. Based on the properties of charge carriers, phonons, grain boundaries and their interactions, the thermoelectric properties of polycrystalline silicon are analyzed with the relaxation time approximation of the Boltzmann transport equation. With this approach, thermal conductivity, electrical conductivity and Seebeck coefficient as a function of grain size, trap properties and doping concentration can be determined. Experiment on heavily doped polycrystalline silicon is carried out and measurement results are compared with the model.
Keywords: Conductivity, polycrystalline silicon, relaxation time approximation, Seebeck coefficient, thermoelectric property.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 231459 Measuring Pressure Wave Velocity in a Hydraulic System
Authors: Lari Kela, Pekka Vähäoja
Abstract:
Pressure wave velocity in a hydraulic system was determined using piezo pressure sensors without removing fluid from the system. The measurements were carried out in a low pressure range (0.2 – 6 bar) and the results were compared with the results of other studies. This method is not as accurate as measurement with separate measurement equipment, but the fluid is in the actual machine the whole time and the effect of air is taken into consideration if air is present in the system. The amount of air is estimated by calculations and comparisons between other studies. This measurement equipment can also be installed in an existing machine and it can be programmed so that it measures in real time. Thus, it could be used e.g. to control dampers.Keywords: Bulk modulus, pressure wave, sound velocity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4301