Search results for: Fuel source.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2000

Search results for: Fuel source.

1940 Experimental Investigation of Proton Exchange Membrane Fuel Cells Operated with Nanofiber and Nanofiber/Nanoparticle

Authors: Kevser Dincer, Basma Waisi, M. Ozan Ozdemir, Ugur Pasaogullari, Jeffrey McCutcheon

Abstract:

Nanofibers are defined as fibers with diameters less than 100 nanometers. In this study, behaviours of activated carbon nanofiber (ACNF), carbon nanofiber (CNF), polyacrylonitrile/ carbon nanotube (PAN/CNT), polyvinyl alcohol/nanosilver (PVA/Ag) in proton exchange membrane (PEM) fuel cells are investigated experimentally. This material was used as gas diffusion layer (GDL) in PEM fuel cells. In this study, the electrical conductivities of nanofiber and nanofiber/nanoparticles have been studied to understand their effects on PEM fuel cell performance. According to the experimental results, the maximum electrical conductivity performance of the fuel cell with nanofiber was found to be at PVA/Ag (at UConn condition). The electrical conductivities of CNF, ACNF, PAN/CNT are lower for PEM. The resistance of cell with PVA/Ag is lower than the resistance of cell with PAN/CNT, ACNF, CNF.

Keywords: Proton exchange membrane fuel cells, electrospinning, carbon nanofiber, activate carbon nanofiber, PVA fiber, pan fiber, carbon nanotube, nanoparticle, nanocomposites.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2480
1939 Selection and Exergy Analysis of Fuel Cell System to Meet all Energy Needs of Residential Buildings

Authors: G.R. Ashari, N.Hedayat, S. Shalbaf, E.Hajidavalloo

Abstract:

In this paper a polymer electrolyte membrane (PEM) fuel cell power system including burner, steam reformer, heat exchanger and water heater has been considered to meet the electrical, heating, cooling and domestic hot water loads of residential building which in Tehran. The system uses natural gas as fuel and works in CHP mode. Design and operating conditions of a PEM fuel cell system is considered in this study. The energy requirements of residential building and the number of fuel cell stacks to meet them have been estimated. The method involved exergy analysis and entropy generation thorough the months of the year. Results show that all the energy needs of the building can be met with 12 fuel cell stacks at a nominal capacity of 8.5 kW. Exergy analysis of the CHP system shows that the increase in the ambient air temperature from 1oC to 40oC, will have an increase of entropy generation by 5.73%.Maximum entropy generates for 15 hour in 15th of June and 15th of July is estimated to amount at 12624 (kW/K). Entropy generation of this system through a year is estimated to amount to 1004.54 GJ/k.year.

Keywords: CHP mode, entropy, exergy, no of fuel cell stacks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1874
1938 A CFD Analysis of Hydraulic Characteristics of the Rod Bundles in the BREST-OD-300 Wire-Spaced Fuel Assemblies

Authors: Dmitry V. Fomichev, Vladimir I. Solonin

Abstract:

This paper presents the findings from a numerical simulation of the flow in 37-rod fuel assembly models spaced by a double-wire trapezoidal wrapping as applied to the BREST-OD-300 experimental nuclear reactor. Data on a high static pressure distribution within the models, and equations for determining the fuel bundle flow friction factors have been obtained. Recommendations are provided on using the closing turbulence models available in the ANSYS Fluent. A comparative analysis has been performed against the existing empirical equations for determining the flow friction factors. The calculated and experimental data fit has been shown.

An analysis into the experimental data and results of the numerical simulation of the BREST-OD-300 fuel rod assembly hydrodynamic performance are presented.

Keywords: BREST-OD-300, ware-spaces, fuel assembly, computation fluid dynamics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2204
1937 Liquid Fuel Production via Catalytic Pyrolysis of Waste Oil

Authors: Malee Santikunaporn, Neera Wongtyanuwat, Channarong Asavatesanupap

Abstract:

Pyrolysis of waste oil is an effective process to produce high quality liquid fuels. In this work, pyrolysis experiments of waste oil over Y zeolite were carried out in a semi-batch reactor under a flow of nitrogen at atmospheric pressure and at different reaction temperatures (350-450 oC). The products were gas, liquid fuel, and residue. Only liquid fuel was further characterized for its composition and properties by using gas chromatography, thermogravimetric analyzer, and bomb calorimeter. Experimental results indicated that the pyrolysis reaction temperature significantly affected both yield and composition distribution of pyrolysis oil. An increase in reaction temperature resulted in increased fuel yield, especially gasoline fraction. To obtain high amount of fuel, the optimal reaction temperature should be higher than 350 oC. A presence of Y zeolite in the system enhanced the cracking activity. In addition, the pyrolysis oil yield is proportional to the catalyst quantity.

Keywords: Waste oil, pyrolysis oil, Y zeolite, gasoline, diesel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 771
1936 Performance, Emission and Combustion Characteristics of Direct Injection Diesel Engine Running on Rice Bran Oil / Diesel Fuel Blend

Authors: B.K.Venkanna, C. Venkataramana Reddy, Swati B Wadawadagi

Abstract:

Triglycerides and their derivatives are considered as viable alternatives for diesel fuels. Rice bran oil is used as diesel fuel. Highly viscous rice bran oil can be reduced by blending it with diesel fuel. The present research is aimed to investigate experimentally the performance, exhaust emission and combustion characteristics of a direct injection (DI) diesel engine, typically used in agricultural sector, over the entire load range when fuelled with rice bran oil and diesel fuel blends, RB10 (10% rice bran oil + 90% diesel fuel) to RB50. The performance, emission and combustion parameters of RB20 were found to be very close to neat diesel fuel (ND). The injector opening pressure (IOP) undoubtedly is of prime importance in diesel engine operation. Performance, emission and combustion characteristics with RB30 at enhanced IOPs are better than ND. Improved premixed heat release rate were noticed with RB30 when the IOP is enhanced.

Keywords: Rice bran oil, injector opening pressure, performance, emissions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2342
1935 Signal and Thermodynamic Analysis for Evaluation of Thermal and Power of Gas Turbine-Solid Oxide Fuel Cell Hybrid System

Authors: R. Mahjoub, K. Maghsoudi Mehraban

Abstract:

In recent years, solid oxide fuel cells have been used as one of the main technologies for the production of electrical energy with high-efficiency ratio, which is used hydrogen and other hydrocarbons as fuels. The fuel cell technology can be used either alone or in hybrid gas turbines systems. In this study, thermodynamics analysis for GT-SOFC hybrid system is developed, and then mass balance and exergy equations have been applied not only on the process but also on the individual components of the hybrid system, which enable us to estimate the thermal efficiency of the hybrid systems. Furthermore, various sources of irreversibility in the solid oxide fuel cell system are discussed, and modeling and parametric analyses like heat and pressure are carried out. This study enables us to consider the irreversible effects of solid oxide fuel cells, and also it leads to the specification of efficiency of the system accurately. Next in the study, both methane and hydrogen as a fuel for SOFC are used and implemented, and finally, our results are compared with other references.

Keywords: hybrid system, gas turbine, entropy and exergy analysis, irreversibility analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 456
1934 The Pack-Bed Sphere Liquid Porous Burner

Authors: B. Krittacom, P. Amatachaya, W. Srimuang, K. Inla

Abstract:

The combustion of liquid fuel in the porous burner (PB) was experimented to investigate evaporation mechanism and combustion behavior. The diesel oil was used as fuel and the pebbles carefully chosen in the same size like the solid sphere homogeneously was adopted as the porous media. Two structures of the liquid porous burner, i.e. the PB without and with installation of porous emitter (PE), were performed. PE was installed by lower than PB with distance of 20 cm. The pebbles having porosity (φ) of 0.45 and 0.52 were, respectively, used in PB and PE. The fuel was supplied dropwise from the top through the PB and the combustion was occurred between PB and PE. Axial profiles of temperature along the burner length were measured to clarify the evaporation and combustion phenomena. The pollutant emission characteristics were monitored at the burner exit. From the experiment, it was found that the temperature profiles of both structures decreased with the three ways swirling air flows (QA) increasing. On the other hand, the temperature profiles increased with fuel heat input (QF). Obviously, the profile of the porous burner installed with PE was higher than that of the porous burner without PE

Keywords: Liquid fuel, Porous burner, Temperature profile.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1739
1933 Low Sulfur Diesel Like Fuel Oil from Quick Remediation Process of Waste Oil Sludge

Authors: Isam A. H. Al Zubaidi

Abstract:

Low sulfur diesel like fuel oil was produced from a quick remediation process of waste oil sludge (WOS). This quick process will reduce the volume of the WOS in petroleum refineries as well as oil fields by transferring the waste to more beneficial product. The practice includes mixing process of WOS with commercial diesel fuel. Different ratios of WOS to diesel fuel were prepared ranging 1:1 to 20:1 by mass. The mixture was continuously mixed for 10 minutes using a bench-type overhead stirrer, and followed by the filtration process to separate the soil waste from filtrate oil product. The quantity and the physical properties of the oil filtrate were measured. It was found that the addition of up to 15% WOS to diesel fuel was accepted without dramatic changes to the properties of diesel fuel. The amount of WOS was decreased by about 60% by mass. This means that about 60% of the mass of sludge was recovered as light fuel oil. The physical properties of the resulting fuel from 10% sludge mixing ratio showed that the specific gravity, ash content, carbon residue, asphaltene content, viscosity, diesel index, cetane number, and calorific value were affected slightly. The color was changed to light black. The sulfur content was increased also. This requires another process to reduce the sulfur content of resulting light fuel. A desulfurization process was achieved using adsorption techniques with activated biomaterial to reduce the sulfur content to acceptable limits. Adsorption process by ZnCl2 activated date palm kernel powder was effective for improvement of the physical properties of diesel like fuel. The final sulfur content was increased to 0.185 wt%. This diesel like fuel can be used in all tractors, buses, tracks inside and outside the refineries. The solid remaining seems to be smooth and can be mixed with asphalt mixture for asphalting the roads or can be used with other materials as asphalt coating material for constructed buildings. Through this process, valuable fuel has been recovered, and the amount of waste material had decreased.

Keywords: Oil sludge, diesel fuel, blending process, filtration process.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 292
1932 Properties of Biodiesel Produced by Enzymatic Transesterification of Lipids Extracted from Microalgae in Supercritical Carbon Dioxide Medium

Authors: Hanifa Taher, Sulaiman Al-Zuhair, Ali H. Al-Marzouqi, Yousef Haik, Mohammed Farid

Abstract:

Biodiesel, as an alternative renewable fuel, has been receiving increasing attention due to the limited supply of fossil fuels and the increasing need for energy. Microalgae are promising source for lipids, which can be converted to biodiesel. The biodiesel production from microalgae lipids using lipase catalyzed reaction in supercritical CO2 medium has several advantages over conventional production processes. However, identifying the optimum microalgae lipid extraction and transesterification conditions is still a challenge. In this study, the quality of biodiesel produced from lipids extracted from Scenedesmus sp. and their enzymatic transesterification using supercritical carbon dioxide have been investigated. At the optimum conditions, the highest biodiesel production yield was found to be 82%. The fuel properties of the produced biodiesel, without any separation step, at optimum reaction condition, were determined and compared to ASTM standards. The properties were found to comply with the limits, and showed a low glycerol content, without any separation step.

Keywords: Biodiesel, fuel standards, lipase, microalgae, Supercritical CO2.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2481
1931 Biodiesel from Coconut Oil: A Renewable Alternative Fuel for Diesel Engine

Authors: Md A. Hossain, Shabab M. Chowdhury, Yamin Rekhu, Khandakar S. Faraz, Monzur Ul Islam

Abstract:

With the growth of modern civilization and industrialization in worldwide, the demand for energy is increasing day by day. Majority of the world-s energy needs are met through fossil fuels and natural gas. As a result the amount of fossil fuels is on diminishing from year to year. Since the fossil fuel is nonrenewable, so fuel price is gouging as a consequence of spiraling demand and diminishing supply. At present the power generation of our country is mainly depends on imported fossil fuels. To reduce the dependency on imported fuel, the use of renewable sources has become more popular. In Bangladesh coconut is widely growing tree. Especially in the southern part of the country a large area will be found where coconut tree is considered as natural asset. So, our endeavor was to use the coconut oil as a renewable and alternative fuel. This article shows the prospect of coconut oil as a renewable and alternative fuel of diesel fuel. Since diesel engine has a versatile uses including small electricity generation, an experimental set up is then made to study the performance of a small diesel engine using different blends of bio diesel converted from coconut oil. It is found that bio diesel has slightly different properties than diesel. With biodiesel the engine is capable of running without difficulty. Different blends of bio diesel (i.e. B80, B60, and B 50 etc.) have been used to avoid complicated modification of the engine or the fuel supply system. Finally, a comparison of engine performance for different blends of biodiesel has been carried out to determine the optimum blend for different operating conditions.

Keywords: Biodiesel, Bio-fuel, Renewable Energy, Transesterification

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9731
1930 A Neuro Adaptive Control Strategy for Movable Power Source of Proton Exchange Membrane Fuel Cell Using Wavelets

Authors: M. Sedighizadeh, A. Rezazadeh

Abstract:

Movable power sources of proton exchange membrane fuel cells (PEMFC) are the important research done in the current fuel cells (FC) field. The PEMFC system control influences the cell performance greatly and it is a control system for industrial complex problems, due to the imprecision, uncertainty and partial truth and intrinsic nonlinear characteristics of PEMFCs. In this paper an adaptive PI control strategy using neural network adaptive Morlet wavelet for control is proposed. It is based on a single layer feed forward neural networks with hidden nodes of adaptive morlet wavelet functions controller and an infinite impulse response (IIR) recurrent structure. The IIR is combined by cascading to the network to provide double local structure resulting in improving speed of learning. The proposed method is applied to a typical 1 KW PEMFC system and the results show the proposed method has more accuracy against to MLP (Multi Layer Perceptron) method.

Keywords: Adaptive Control, Morlet Wavelets, PEMFC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1842
1929 The Model Establishment and Analysis of TRACE/FRAPTRAN for Chinshan Nuclear Power Plant Spent Fuel Pool

Authors: J. R. Wang, H. T. Lin, Y. S. Tseng, W. Y. Li, H. C. Chen, S. W. Chen, C. Shih

Abstract:

TRACE is developed by U.S. NRC for the nuclear power plants (NPPs) safety analysis. We focus on the establishment and application of TRACE/FRAPTRAN/SNAP models for Chinshan NPP (BWR/4) spent fuel pool in this research. The geometry is 12.17 m × 7.87 m × 11.61 m for the spent fuel pool. In this study, there are three TRACE/SNAP models: one-channel, two-channel, and multi-channel TRACE/SNAP model. Additionally, the cooling system failure of the spent fuel pool was simulated and analyzed by using the above models. According to the analysis results, the peak cladding temperature response was more accurate in the multi-channel TRACE/SNAP model. The results depicted that the uncovered of the fuels occurred at 2.7 day after the cooling system failed. In order to estimate the detailed fuel rods performance, FRAPTRAN code was used in this research. According to the results of FRAPTRAN, the highest cladding temperature located on the node 21 of the fuel rod (the highest node at node 23) and the cladding burst roughly after 3.7 day.

Keywords: TRACE, FRAPTRAN, SNAP, spent fuel pool.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1387
1928 Optimization of PEM Fuel Cell Biphasic Model

Authors: Boubekeur Dokkar, Nasreddine Chennouf, Noureddine Settou, Belkhir Negrou, Abdesslam Benmhidi

Abstract:

The optimal operation of proton exchange membrane fuel cell (PEMFC) requires good water management which is presented under two forms vapor and liquid. Moreover, fuel cells have to reach higher output require integration of some accessories which need electrical power. In order to analyze fuel cells operation and different species transport phenomena a biphasic mathematical model is presented by governing equations set. The numerical solution of these conservation equations is calculated by Matlab program. A multi-criteria optimization with weighting between two opposite objectives is used to determine the compromise solutions between maximum output and minimal stack size. The obtained results are in good agreement with available literature data.

Keywords: Biphasic model, PEM fuel cell, optimization, simulation, specie transport.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2008
1927 Potential of Selected Microbial Strains to Degrade the Gasoil of Hydrocarbon Polluted Soil

Authors: Ali Zazoua, Anis Zazoua, Ahcen Taleb, Nicole Jaffrezic-Renault

Abstract:

Although oil-based drilling fluids are of paramount practical and economical interest, they represent a serious source of pollution, once released into the environment as drill cuttings. The aim of this study is to assess the capability of isolated microorganisms to degrade gasoil fuel. The commonly used physicochemical and biodegradation remediation techniques of petroleum contaminated soil were both investigated. The study revealed that natural biodegradation is favorable. Even though, the presence of heavy metals, the moisture level of (8.55%) and nutrient deficiencies put severe constrains on microorganisms- survival ranges inhibiting the biodegradation process. The selected strains were able to degrade the diesel fuel at significantly high rates (around 98%).

Keywords: Biodegradation, Gasoil, Pollution, Microbial strains, Hydrocarbon, soil pollution

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1742
1926 The Analysis of TRACE/FRAPTRAN in the Fuel Rods of Maanshan PWR for LBLOCA

Authors: J. R. Wang, W.Y. Li, H.T. Lin, J.H. Yang, C. Shih, S.W. Chen

Abstract:

Fuel rod analysis program transient (FRAPTRAN)  code was used to study the fuel rod performance during a postulated  large break loss of coolant accident (LBLOCA) in Maanshan nuclear  power plant (NPP). Previous transient results from thermal hydraulic  code, TRACE, with the same LBLOCA scenario, were used as input  boundary conditions for FRAPTRAN. The simulation results showed  that the peak cladding temperatures and the fuel centerline  temperatures were all below the 10CFR50.46 LOCA criteria. In  addition, the maximum hoop stress was 18 MPa and the oxide  thickness was 0.003mm for the present simulation cases, which are all  within the safety operation ranges. The present study confirms that this  analysis method, the FRAPTRAN code combined with TRACE, is an  appropriate approach to predict the fuel integrity under LBLOCA with  operational ECCS.

 

Keywords: —FRAPTRAN, TRACE, LOCA, PWR.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2643
1925 Effect of Fuel Spray Angle on Soot Formation in Turbulent Spray Flames

Authors: K. Bashirnezhad, M. Moghiman, M. Javadi Amoli, F. Tofighi, S. Zabetnia

Abstract:

Results are presented from a combined experimental and modeling study undertaken to understand the effect of fuel spray angle on soot production in turbulent liquid spray flames. The experimental work was conducted in a cylindrical laboratory furnace at fuel spray cone angle of 30º, 45º and 60º. Soot concentrations inside the combustor are measured by filter paper technique. The soot concentration is modeled by using the soot particle number density and the mass density based acetylene concentrations. Soot oxidation occurred by both hydroxide radicals and oxygen molecules. The comparison of calculated results against experimental measurements shows good agreement. Both the numerical and experimental results show that the peak value of soot and its location in the furnace depend on fuel spray cone angle. An increase in spray angle enhances the evaporating rate and peak temperature near the nozzle. Although peak soot concentration increase with enhance of fuel spray angle but soot emission from the furnace decreases.

Keywords: Soot, spray angle, turbulent flames, liquid fuel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1857
1924 Modelling of Heating and Evaporation of Biodiesel Fuel Droplets

Authors: Mansour Al Qubeissi, Sergei S. Sazhin, Cyril Crua, Morgan R. Heikal

Abstract:

This paper presents the application of the Discrete Component Model for heating and evaporation to multi-component biodiesel fuel droplets in direct injection internal combustion engines. This model takes into account the effects of temperature gradient, recirculation and species diffusion inside droplets. A distinctive feature of the model used in the analysis is that it is based on the analytical solutions to the temperature and species diffusion equations inside the droplets. Nineteen types of biodiesel fuels are considered. It is shown that a simplistic model, based on the approximation of biodiesel fuel by a single component or ignoring the diffusion of components of biodiesel fuel, leads to noticeable errors in predicted droplet evaporation time and time evolution of droplet surface temperature and radius.

Keywords: Heat/Mass Transfer, Biodiesel, Multi-component Fuel, Droplet, Evaporation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2774
1923 Combustion and Emissions Performance of Syngas Fuels Derived from Palm Kernel Shell and Polyethylene (PE) Waste via Catalytic Steam Gasification

Authors: Chaouki Ghenai

Abstract:

Computational fluid dynamics analysis of the burning of syngas fuels derived from biomass and plastic solid waste mixture through gasification process is presented in this paper. The syngas fuel is burned in gas turbine can combustor. Gas turbine can combustor with swirl is designed to burn the fuel efficiently and reduce the emissions. The main objective is to test the impact of the alternative syngas fuel compositions and lower heating value on the combustion performance and emissions. The syngas fuel is produced by blending palm kernel shell (PKS) with polyethylene (PE) waste via catalytic steam gasification (fluidized bed reactor). High hydrogen content syngas fuel was obtained by mixing 30% PE waste with PKS. The syngas composition obtained through the gasification process is 76.2% H2, 8.53% CO, 4.39% CO2 and 10.90% CH4. The lower heating value of the syngas fuel is LHV = 15.98 MJ/m3. Three fuels were tested in this study natural gas (100%CH4), syngas fuel and pure hydrogen (100% H2). The power from the combustor was kept constant for all the fuels tested in this study. The effect of syngas fuel composition and lower heating value on the flame shape, gas temperature, mass of carbon dioxide (CO2) and nitrogen oxides (NOX) per unit of energy generation is presented in this paper. The results show an increase of the peak flame temperature and NO mass fractions for the syngas and hydrogen fuels compared to natural gas fuel combustion. Lower average CO2 emissions at the exit of the combustor are obtained for the syngas compared to the natural gas fuel.

Keywords: CFD, Combustion, Emissions, Gas Turbine Combustor, Gasification, Solid Waste, Syngas and Waste to Energy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3627
1922 Sampled-Data Control for Fuel Cell Systems

Authors: H. Y. Jung, Ju H. Park, S. M. Lee

Abstract:

Sampled-data controller is presented for solid oxide fuel cell systems which is expressed by a sector bounded nonlinear model. The proposed control law is obtained by solving a convex problem satisfying several linear matrix inequalities. Simulation results are given to show the effectiveness of the proposed design method.

Keywords: Sampled-data control, Sector bound, Solid oxide fuel cell, Time-delay.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1699
1921 Application of Computational Intelligence Techniques for Economic Load Dispatch

Authors: S.C. Swain, S. Panda, A.K. Mohanty, C. Ardil

Abstract:

This paper presents the applications of computational intelligence techniques to economic load dispatch problems. The fuel cost equation of a thermal plant is generally expressed as continuous quadratic equation. In real situations the fuel cost equations can be discontinuous. In view of the above, both continuous and discontinuous fuel cost equations are considered in the present paper. First, genetic algorithm optimization technique is applied to a 6- generator 26-bus test system having continuous fuel cost equations. Results are compared to conventional quadratic programming method to show the superiority of the proposed computational intelligence technique. Further, a 10-generator system each with three fuel options distributed in three areas is considered and particle swarm optimization algorithm is employed to minimize the cost of generation. To show the superiority of the proposed approach, the results are compared with other published methods.

Keywords: Economic Load Dispatch, Continuous Fuel Cost, Quadratic Programming, Real-Coded Genetic Algorithm, Discontinuous Fuel Cost, Particle Swarm Optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2249
1920 Providing Energy Management of a Fuel Cell-Battery Hybrid Electric Vehicle

Authors: Fatma Keskin Arabul, Ibrahim Senol, Ahmet Yigit Arabul, Ali Rifat Boynuegri

Abstract:

On account of the concern of the fossil fuel is depleting and its negative effects on the environment, interest in alternative energy sources is increasing day by day. However, considering the importance of transportation in human life, instead of oil and its derivatives fueled vehicles with internal combustion engines, electric vehicles which are sensitive to the environment and working with electrical energy has begun to develop. In this study, simulation was carried out for providing energy management and recovering regenerative braking in fuel cell-battery hybrid electric vehicle. The main power supply of the vehicle is fuel cell on the other hand not only instantaneous power is supplied by the battery but also the energy generated due to regenerative breaking is stored in the battery. Obtained results of the simulation is analyzed and discussed.

Keywords: Electric vehicles, fuel cell, battery, regenerative braking, energy management.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2211
1919 Ethanol Fuelled HCCI Engine: A Review

Authors: B. Bahri, A. A. Aziz, M. Shahbakhti, M. F. Muhamad Said

Abstract:

The greenhouse effect and limitations on carbon dioxide emissions concern engine maker and the future of the internal combustion engines should go toward substantially and improved thermal efficiency engine. Homogeneous charge compression ignition (HCCI) is an alternative high-efficiency technology for combustion engines to reduce exhaust emissions and fuel consumption. However, there are still tough challenges in the successful operation of HCCI engines, such as controlling the combustion phasing, extending the operating range, and high unburned hydrocarbon and CO emissions. HCCI and the exploitation of ethanol as an alternative fuel is one way to explore new frontiers of internal combustion engines with an eye towards maintaining its sustainability. This study was done to extend database knowledge about HCCI with ethanol a fuel.

Keywords: Ethanol combustion, Ethanol fuel, HCCI.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2800
1918 Development of Synthetic Jet Air Blower for Air-breathing PEM Fuel Cell

Authors: Jongpil Choi, Eon-Soo Lee, Jae-Huk Jang, Young Ho Seo, Byeonghee Kim

Abstract:

This paper presents a synthetic jet air blower actuated by PZT for air blowing for air-breathing micro PEM fuel cell. The several factors to affect the performance of air-breathing PEM fuel cell such as air flow rate, opening ratio and cathode open type in the cathode side were studied. Especially, an air flow rate is critical condition to improve its performance. In this paper, we developed a synthetic jet air blower to supply a high stoichiometric air flow. The synthetic jet mechanism is a zero mass flux device that converts electrical energy into the momentum. The synthetic jet actuation is usually generated by a traditional PZT actuator, which consists of a small cylindrical cavity, in/outlet channel and PZT diaphragms. The flow rate of the fabricated synthetic jet air blower was 400cc/min at 550Hz and its power consumption was very low under 0.3W. The proposed air-breathing PEM fuel cell which installed synthetic jet air blower was higher performance and stability during continuous operation than the air-breathing fuel cell without auxiliary device to supply the air. The results showed that the maximum power density was 188mW/cm2 at 400mA/cm2. This maximum power density and durability were improved more than 40% and 20%, respectively.

Keywords: Air-breathing PEM fuel cell, Synthetic jet air blower, Opening ratio, Power consumption.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2259
1917 Microscopic Emission and Fuel Consumption Modeling for Light-duty Vehicles Using Portable Emission Measurement System Data

Authors: Wei Lei, Hui Chen, Lin Lu

Abstract:

Microscopic emission and fuel consumption models have been widely recognized as an effective method to quantify real traffic emission and energy consumption when they are applied with microscopic traffic simulation models. This paper presents a framework for developing the Microscopic Emission (HC, CO, NOx, and CO2) and Fuel consumption (MEF) models for light-duty vehicles. The variable of composite acceleration is introduced into the MEF model with the purpose of capturing the effects of historical accelerations interacting with current speed on emission and fuel consumption. The MEF model is calibrated by multivariate least-squares method for two types of light-duty vehicle using on-board data collected in Beijing, China by a Portable Emission Measurement System (PEMS). The instantaneous validation results shows the MEF model performs better with lower Mean Absolute Percentage Error (MAPE) compared to other two models. Moreover, the aggregate validation results tells the MEF model produces reasonable estimations compared to actual measurements with prediction errors within 12%, 10%, 19%, and 9% for HC, CO, NOx emissions and fuel consumption, respectively.

Keywords: Emission, Fuel consumption, Light-duty vehicle, Microscopic, Modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1972
1916 A Review on the Potential of Electric Vehicles in Reducing World CO2 Footprints

Authors: S. Alotaibi, S. Omer, Y. Su

Abstract:

The conventional Internal Combustion Engine (ICE) based vehicles are a threat to the environment as they account for a large proportion of the overall greenhouse gas (GHG) emissions in the world. Hence, it is required to replace these vehicles with more environment-friendly vehicles. Electric Vehicles (EVs) are promising technologies which offer both human comfort “noise, pollution” as well as reduced (or no) emissions of GHGs. In this paper, different types of EVs are reviewed and their advantages and disadvantages are identified. It is found that in terms of fuel economy, Plug-in Hybrid EVs (PHEVs) have the best fuel economy, followed by Hybrid EVs (HEVs) and ICE vehicles. Since Battery EVs (BEVs) do not use any fuel, their fuel economy is estimated as price per kilometer. Similarly, in terms of GHG emissions, BEVs are the most environmentally friendly since they do not result in any emissions while HEVs and PHEVs produce less emissions compared to the conventional ICE based vehicles. Fuel Cell EVs (FCEVs) are also zero-emission vehicles, but they have large costs associated with them. Finally, if the electricity is provided by using the renewable energy technologies through grid connection, then BEVs could be considered as zero emission vehicles.

Keywords: Electric vehicle, fuel cell electric vehicle, hybrid electric vehicle, internal combustion engine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 507
1915 Assessment of Solar Hydrogen Production in an Energetic Hybrid PV-PEMFC System

Authors: H. Rezzouk, M. Hatti, H. Rahmani, S. Atoui

Abstract:

This paper discusses the design and analysis of a hybrid PV-Fuel cell energy system destined to power a DC load. The system is composed of a photovoltaic array, a fuel cell, an electrolyzer and a hydrogen tank. HOMER software is used in this study to calculate the optimum capacities of the power system components that their combination allows an efficient use of solar resource to cover the hourly load needs. The optimal system sizing allows establishing the right balance between the daily electrical energy produced by the power system and the daily electrical energy consumed by the DC load using a 28 KW PV array, a 7.5 KW fuel cell, a 40KW electrolyzer and a 270 Kg hydrogen tank. The variation of powers involved into the DC bus of the hybrid PV-fuel cell system has been computed and analyzed for each hour over one year: the output powers of the PV array and the fuel cell, the input power of the elctrolyzer system and the DC primary load. Equally, the annual variation of stored hydrogen produced by the electrolyzer has been assessed. The PV array contributes in the power system with 82% whereas the fuel cell produces 18%. 38% of the total energy consumption belongs to the DC primary load while the rest goes to the electrolyzer.

Keywords: Electrolyzer, Hydrogen, Hydrogen Fueled Cell, Photovoltaic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1567
1914 Source Direction Detection based on Stationary Electronic Nose System

Authors: Jie Cai, David C. Levy

Abstract:

Electronic nose (array of chemical sensors) are widely used in food industry and pollution control. Also it could be used to locate or detect the direction of the source of emission odors. Usually this task is performed by electronic nose (ENose) cooperated with mobile vehicles, but when a source is instantaneous or surrounding is hard for vehicles to reach, problem occurs. Thus a method for stationary ENose to detect the direction of the source and locate the source will be required. A novel method which uses the ratio between the responses of different sensors as a discriminant to determine the direction of source in natural wind surroundings is presented in this paper. The result shows that the method is accurate and easily to be implemented. This method could be also used in movably, as an optimized algorithm for robot tracking source location.

Keywords: Electronic nose, Nature wind situation, Source direction detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1308
1913 Optimization of Proton Exchange Membrane Fuel Cell Parameters Based on Modified Particle Swarm Algorithms

Authors: M. Dezvarei, S. Morovati

Abstract:

In recent years, increasing usage of electrical energy provides a widespread field for investigating new methods to produce clean electricity with high reliability and cost management. Fuel cells are new clean generations to make electricity and thermal energy together with high performance and no environmental pollution. According to the expansion of fuel cell usage in different industrial networks, the identification and optimization of its parameters is really significant. This paper presents optimization of a proton exchange membrane fuel cell (PEMFC) parameters based on modified particle swarm optimization with real valued mutation (RVM) and clonal algorithms. Mathematical equations of this type of fuel cell are presented as the main model structure in the optimization process. Optimized parameters based on clonal and RVM algorithms are compared with the desired values in the presence and absence of measurement noise. This paper shows that these methods can improve the performance of traditional optimization methods. Simulation results are employed to analyze and compare the performance of these methodologies in order to optimize the proton exchange membrane fuel cell parameters.

Keywords: Clonal algorithm, proton exchange membrane fuel cell, particle swarm optimization, real valued mutation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1160
1912 Energy Analysis of Pressurized Solid Oxide Fuel Cell Combined Power Turbine

Authors: M. Ayazi, R. Karami, B. Kamkari

Abstract:

Solid oxide fuel cells have been considered in the last years as one of the most promising technologies for very highefficiency electric energy generation from hydrogen or other hydrocarbons, both with simple fuel cell plants and with integrated gas turbine-fuel cell systems. In the present study, a detailed thermodynamic analysis has been carried out. Mass and exergy balances are performed not only for the whole plant but also for each component in order to evaluate the thermal efficiency of combined cycle. Moreover, different sources of irreversibilities within the SOFC stack have been discussed and a parametric study conducted to evaluate the effect of temperature as well as pressure on SOFC irreversibilities and its performance. In this investigation methane and hydrogen have been used for fueling the SOFC stack and combustion chamber.

Keywords: SOFC, Energy, Power turbine, Irreversibility.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1784
1911 Computational Investigation of Air-Gas Venturi Mixer for Powered Bi-Fuel Diesel Engine

Authors: Mofid Gorjibandpy, Mehdi Kazemi Sangsereki

Abstract:

In a bi-fuel diesel engine, the carburetor plays a vital role in switching from fuel gas to petrol mode operation and viceversa. The carburetor is the most important part of the fuel system of a diesel engine. All diesel engines carry variable venturi mixer carburetors. The basic operation of the carburetor mainly depends on the restriction barrel called the venturi. When air flows through the venturi, its speed increases and its pressure decreases. The main challenge focuses on designing a mixing device which mixes the supplied gas is the incoming air at an optimum ratio. In order to surmount the identified problems, the way fuel gas and air flow in the mixer have to be analyzed. In this case, the Computational Fluid Dynamics or CFD approach is applied in design of the prototype mixer. The present work is aimed at further understanding of the air and fuel flow structure by performing CFD studies using a software code. In this study for mixing air and gas in the condition that has been mentioned in continuance, some mixers have been designed. Then using of computational fluid dynamics, the optimum mixer has been selected. The results indicated that mixer with 12 holes can produce a homogenous mixture than those of 8-holes and 6-holes mixer. Also the result showed that if inlet convergency was smoother than outlet divergency, the mixture get more homogenous, the reason of that is in increasing turbulence in outlet divergency.

Keywords: Computational Fluid Dynamics, Venturi mixer, Air-fuel ratio, Turbulence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3933